# Computing and Estimating the Volume of the Solution Space of SMT(LA) Constraints

Cunjing Ge<sup>1,3</sup>, Feifei Ma<sup>1,2,31</sup>, Peng Zhang<sup>4</sup>, Jian Zhang<sup>1</sup>

 <sup>1</sup> State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences Email: {gccj,maff,zj}@ios.ac.cn
 <sup>2</sup> Laboratory of Parallel Software and Computational Science, Institute of Software, Chinese Academy of Sciences
 <sup>3</sup> University of Chinese Academy of Sciences
 <sup>4</sup> School of Computer Science and Technology, Shandong University, China. Email: algzhang@sdu.edu.cn

# Abstract

The satisfiability modulo theories (SMT) problem is a decision problem, i.e., deciding the satisfiability of logical formulas with respect to combinations of background theories (like reals, integers, arrays, bit-vectors). In this paper, we study the counting version of SMT with respect to linear arithmetic – SMT(LA), which generalizes both model counting and volume computation of convex polytopes. We describe a method for estimating the volume of convex polytopes based on the Multiphase Monte-Carlo method. It employs a new technique to reutilize random points, so that the number of random points can be significantly reduced. We prove that the reutilization technique has no side-effect on the error. We also investigate a simplified version of hit-and-run method: the coordinate directions method. Based on volume estimation method for polytopes, we present an approach to estimating the volume of the solution space of SMT(LA) formulas. It employs a heuristic strategy to accelerate the volume estimation procedure. In addition, we devise some specific techniques for instances that arise from program analysis.

Keywords: SMT, Volume, Counting, Convex Polytope

#### 1. Introduction

The satisfiability (SAT) problem in the propositional logic is a fundamental problem in computer science. But in practice, many problems cannot be expressed by propositional formulas directly or naturally. In recent years, there have been a lot of works on solving the Satisfiability Modulo Theories (SMT) problem, which try to decide the satisfiability of logical formulas with respect to combinations of background theories (like reals, integers, arrays, bit-vectors). SMT can be regarded as an extension to SAT, as well as a kind of constraint

 $Preprint\ submitted\ to\ Theoretical\ Computer\ Science$ 

February 21, 2017

satisfaction problem (CSP). Quite efficient SMT solvers have been developed, such as CVC3/CVC4, Z3 and Yices [1, 10, 11].

The counting version of CSP, i.e., #CSP, has been studied by various researchers [5, 6]. There has also been much work on the model counting problem in the propositional logic, i.e., counting the number of models of a propositional formula. It is closely related to approximate reasoning [33, 8].

On the other hand, the counting version of SMT, i.e., #SMT, has not been studied much. In this paper, we focus on the #SMT problem with respect to the theory of linear arithmetic – #SMT(LA). Given a set of SMT(LA) constraints, we would like to know how many solutions there are. Or, in other words, how large the solution space is. The problem can be regarded as an extension to SMT solving, and also a generalization of both the model counting problem in the propositional logic and volume computation of convex polytopes. It has recently gained some attention in the software engineering community [23, 16].

An SMT(LA) formula is satisfiable if and only if there exists a Boolean assignment to its linear inequalities such that the SMT formula is evaluated to true in Boolean level, and the conjunction of inequalities is also consistent. Such Boolean assignment is called feasible assignment. The linear system corresponding to a feasible assignment forms a convex polytope. Ma et al. [32] proposed an exact approach for #SMT(LA) problem which integrates SMT solving with volume computation for convex polytopes. However, exact volume computation in general is a difficult problem. It has been proved to be #P-hard, even for explicitly described polytopes [12, 21, 22]. Yet, in many applications, it suffices to have an approximate value of the volume of the solution space. Therefore, it is desirable to study highly efficient methods for *estimating* the volume of the solution space.

Volume computation for convex polytopes is a classical problem in mathematics. The high complexity of exact volume computation procedure for convex polytopes is the bottleneck of the approach in [32]. On the other hand, volume estimation methods for convex bodies have been extensively studied in theory. The Monte-Carlo method is a straightforward way to estimate the volume of a convex body. However, it suffers from the curse of dimensionality, which means the possibility of sampling inside a certain space in the target object decreases very quickly while the dimension increases. As a result, the sample size has to grow exponentially to achieve a reasonable estimation. To avoid the curse of dimensionality, Dyer et al. proposed a polynomial time randomized approximation algorithm (called Multiphase Monte-Carlo Algorithm) [13]. At first, the theoretical complexity of this algorithm is  $O^*(n^{23})^2$ , it was reduced to  $O^*(n^4)$ at last by Lovász, Kannan et al. [28, 19, 26, 31]. Despite the polynomial time results and reduced complexity, there is still a lack of practical implementation.

In this paper, we first describe an algorithm for estimating the volume of convex polytopes which is based on the Multiphase Monte-Carlo method. The

<sup>&</sup>lt;sup>2</sup>The "soft-O" notation  $O^*$  indicates that we suppress factors of  $\log n$  as well as factors depending on other parameters like the error bound.

algorithm is augmented with a new technique to reutilize random points, so that the number of random points can be significantly reduced. We prove that the reutilization technique has no side-effect on the error. We also investigate a simplified version of hit-and-run method: the coordinate directions method, which has never been employed in volume estimation before. Then we integrate our volume estimation method for convex polytopes into the framework of solving #SMT(LA) problems. We propose a heuristic improvement called two-round strategy, which automatically adjusts the number of random points for each invocation of polytope volume estimation. Besides, for instances arise from program analysis, we also introduce some effective techniques.

The rest of this paper is organized as follows. We first describe some basic concepts and notations, as well as some essential techniques and tools in Section 2. Then Section 3 reviews some related works. In Section 4, we present our volume estimation method for convex polytopes, with theoretical analysis. Section 5 presents our approach to volume computation and estimation for SMT(LA) formulas. In Section 6, we further discuss how to improve our approach for the instances generated from program analysis. Section 7 presents some experimental results. Finally, we conclude in Section 8.

This article is an extension of a conference paper [15] presented at the 9th International Workshop of Frontiers in Algorithmics.

#### 2. Preliminaries

This section describes some basic concepts and notations. We also mention some existing techniques and tools that will be used later.

## 2.1. SMT(LA) Formulas

**Definition 1.** A linear arithmetic (LA) constraint is an expression that may be written in the form  $a_1x_1 + a_2x_2 + \cdots + a_nx_n$  op  $a_0$ . Here  $x_1, x_2, \ldots, x_n$  are numeric variables,  $a_0, a_1, a_2, \ldots, a_n$  are constant coefficients, and  $op \in \{<, \leq, >, \geq, =, \neq\}$ .

**Definition 2.** An SMT formula  $\phi$  over LA constraints, i.e., an **SMT(LA)** formula, can be represented as a Boolean formula  $PS_{\phi}(b_1, \ldots, b_n)$  together with definitions in the form:  $b_i \equiv c_i$ . Here  $c_i$ s are LA constraints.  $PS_{\phi}$  is the propositional skeleton of the formula  $\phi$ .

The propositional skeleton contains logical operators, like AND, OR, NOT. A simple example of SMT(LA) formulas is

$$(x + y < 1 \text{ OR } x \ge y) \text{ AND } (x + y < 1 \text{ OR } x < y \text{ OR } b).$$

Let the Boolean variables  $b_1$  and  $b_2$  represent the linear inequalities x + y < 1and x < y respectively. Then we obtain the propositional skeleton

$$(b_1 \text{ OR } (\text{NOT } b_2)) \text{ AND } (b_1 \text{ OR } b_2 \text{ OR } b).$$

**Definition 3.** An SMT(LA) formula  $\phi$  is satisfiable if there is an assignment  $\alpha$  to the Boolean variables in  $PS_{\phi}$  such that:

- 1.  $\alpha$  propositionally satisfies  $\phi$ , or formally  $\alpha \models PS_{\phi}$ ;
- 2. The conjunction of LA constraints under the assignment  $\alpha$  is consistent.

The assignment  $\alpha$  is called a **feasible assignment**. We denote the set of all feasible assignments of  $\phi$  by  $Model(\phi)$ .

Let us consider two specific types of numeric variables, the integers and reals.

**Definition 4.** A linear integer arithmetic (LIA) constraint is an LA constraint with integer type variables. Analogously, we define the linear real arithmetic (LRA) constraint for real type variables.

Accordingly, there are **SMT(LIA)** formulas and **SMT(LRA)** formulas. For an SMT(LIA) formula, we count the number of solutions. For an SMT(LRA) formula, we compute the volume of the solution space instead.

## 2.2. Convex Polytopes

The assignment of the propositional skeleton of the SMT(LA) formula corresponds to a conjunction of linear constraints which can be regarded as a convex polytope.

**Definition 5.** A convex polytope P is a bounded subset of  $\mathbb{R}^d$  which is the intersection of a finite set of half spaces (inequalities).

Formally, it is usually described using the H-representation  $\{x | Ax \leq b\}$ , where A is a matrix of dimension  $m \times d$  and b is a vector of dimension m.  $a_{ij}$  represents the element at the *i*-th row and the *j*-th column of A, and  $a_i$ represents the *i*-th row vector of A.

There are already some tools available to compute the exact volume of a convex polytope. For example, Vinci [4] is such a tool, whose input is a set of linear inequalities. Sometimes we are interested in the number of *integer* points in the solution space for LIA constraints. LattE [25] is a tool dedicated to the counting of lattice points inside convex polytopes and the solution of integer programs. But all the parameters in the matrix A and vector b should be integers.

In this paper, we use vol(K) to denote the volume of a body K. For an assignment  $\alpha$  of an SMT(LA) formula  $\phi$ , we use  $vol(\alpha)$  to denote the volume of the corresponding polytope. The volume of  $\phi$ , denoted by  $vol(\phi)$ , is formally defined as follows:

$$vol(\phi) = \sum_{\alpha \in Model(\phi)} vol(\alpha)$$

# 3. Related Works

## 3.1. Volume Approximation for Convex Bodies

Liu et al. [24] developed a tool to estimate the volume of a convex body with a direct Monte-Carlo method. It can also deal with non-convex cases. Suffered from the curse of dimensionality, it can hardly solve high-dimensional problem instances. A more recent work [27] is an implementation of the  $O^*(n^4)$  volume algorithm in [31]. This algorithm is designed for convex bodies. However, there are no experimental results except cubes within 10 dimensions, because the oracle describing the convex bodies takes too long to run. Furthermore, it takes hours to approximate the volume of an 8-dimension cube. In Section 7.1.1, we present the experimental results about comparison between our approach and the method used in [27].

## 3.2. Model Counting for SMT Formulas

There was little work on the counting of SMT solutions, until quite recently. Fredrikson and Jha [14] relate a set of privacy and confidentiality verification problems to the so-called *model-counting satisfiability* problem, and present an abstract decision procedure for it. They implemented this procedure for linearinteger arithmetic. Their tool is called **countersat**.

Zhou et al. [36] propose a BDD-based search algorithm which reduces the number of conjunctions. For each conjunction, they propose a Monte-Carlo integration with a ray-based sampling strategy, which approximates the volume. Their tool is named RVC. It can handle formulas with up to 18 variables. But the running time is dozens of minutes.

A different approach is described in [9]. It is a bit-level hashing-based model counter. Their approach propositionalizes the solution space and uses XOR-based bit-level hash functions to obtain a randomized subset of the solution space. Then it calls an SMT solver repeatedly to count the subset and estimates the volume of the whole solution space. Note that this approach does not need to modify existing SMT solvers. Their work focuses on the problem of approximate model counting for a space projected from the solution space of a mixed integer SMT(LA) formula. For continuous problems, though [9] proposed a discretization procedure, it is not so practical, since it introduces too many discrete variables that may be even beyond the limit of Z3's XOR reasoning.

More recently, Chakraborty et al. [7] proposed a hashing-based approximate model counter. It benefits from state-of-the-art word-level SMT solvers. It also approximates the volume of the whole solution space instead of a projection space. For discrete problems without projection, [7] outperforms the previous approximate counter that employs XOR-based hash functions [9], especially, over benchmarks with word-level constraints (e.g., arithmetic constraints). In Section 7.2.3, we present the comparison between our approach and [7].

# 4. Volume Estimation for Convex Polytopes

In this section, we present our algorithm for estimating the volume of convex polytopes which is based on the Multiphase Monte-Carlo method [13]. We propose two improvements over the original Multiphase Monte-Carlo method. Firstly, we develop a new technique to reutilize random points, so that the number of random points can be significantly reduced. Secondly, we use the coordinate directions hit-and-run method instead of hypersphere directions method. We implemented the new method in a tool called PolyVest [15] (Polytope Volume Estimation).

We assume that P is a full-dimensional and nonempty convex polytope. We use B(x, R) to denote the ball with radius R and center x. And we define ellipsoid  $E = E(A, a) = \{x \in \mathbb{R}^n | (x - a)^T A^{-1} (x - a) \leq 1\}$ , where A is a symmetric positive definite matrix, i.e., for every non-zero column vector z, the scalar  $z^T A z$  is positive.



Figure 1: Multiphase Monte-Carlo



The basic procedure of PolyVest consists of the following three steps: rounding, subdivision and random point generation.

#### 4.1. Rounding

Given a convex polytope Q, the rounding procedure is to find an affine transformation T on Q such that  $B(0,1) \subseteq T(Q) \subseteq B(0,r)$ , with a constant  $\gamma = \frac{vol(Q)}{vol(T(Q))}$ . If r > n, T can be found by the Shallow- $\beta$ -Cut Ellipsoid Method [17] (Chapter 3), where  $\beta = \frac{1}{r}$ . It is an iterative method that generates a series of ellipsoids  $\{E_i = E(T_i, o_i)\}$  s.t.  $Q \subseteq E_i$ , until we find an  $E_k$  such that  $E(\beta^2 T_k, o_k) \subseteq Q$ . Then we transform the ellipsoid  $E_k$  into B(0, r). Intuitively, rounding can transform a very "thin" polytope, which cannot be subdivided directly, into a well-bounded one.

This procedure could take much time when r is close to n, e.g. r = n + 1. There is a tradeoff between rounding procedure and random point generation, since the smaller r is, the more iterations for rounding and the fewer points have to be generated. We used r = 2n in our implementation, so that the overhead of rounding is usually negligible compared to the whole estimation method for polytopes. In the sequel, we use P to represent the new polytope T(Q), and we only consider the polytope P instead of Q.

## 4.2. Subdivision

Then we divide P into a sequence of convex bodies. The high-level idea of the subdivision step is illustrated in Figure 1. We place l concentric balls  $\{B_i\}$ between B(0,1) and B(0,r). Set  $K_i = B_i \cap P$ , then  $K_0 = B(0,1)$ ,  $K_l = P$  and

$$vol(P) = vol(K_0) \prod_{i=0}^{l-1} \frac{vol(K_{i+1})}{vol(K_i)}$$

Let  $\alpha_i$  denote the ratio  $vol(K_{i+1})/vol(K_i)$ , then

$$vol(P) = vol(K_0) \prod_{i=0}^{l-1} \alpha_i.$$
(1)

Hence the volume of the polytope P is transformed to the product of a series of ratios and the volume of  $K_0$ . Note that  $K_0 = B(0, 1)$ , whose volume can be easily computed. So, we only have to estimate the value of  $\alpha_i$ .

Of course, one would like to choose the number of concentric balls, l, to be small. However, from Theorem 5, one needs about  $O(l^2)$  random points to get a sufficiently good approximation for  $\alpha_i$ . It follows that the  $\alpha_i$  must not be too large. In PolyVest, we set  $l = \lceil n \log_2 r \rceil$  and  $B_i = B(0, 2^{i/n})$  to construct the convex bodies  $\{K_i\}$ .

**Proposition 1.** If  $l = \lceil n \log_2 r \rceil$  and  $B_i = B(0, 2^{i/n})$ , then  $1 \le \alpha_i \le 2$ .

*Proof.* Let  $r_i$  denote the radius of ball  $B(0, 2^{i/n})$ , i.e.,  $r_i = 2^{i/n}$ . Since  $K_i = B_i \cap P \subseteq B_{i+1} \cap P = K_{i+1}$ , we get  $\alpha_i \ge 1$ . On the other hand, since P contains the origin after rounding procedure,  $K_i$ s also contain the origin. Note that  $K_i$ s are convex bodies, so

$$K_{i+1} \subseteq \frac{r_{i+1}}{r_i} K_i = 2^{1/n} K_i,$$

we have

$$\alpha_i = \frac{vol(K_{i+1})}{vol(K_i)} \le 2$$

That is,  $1 \leq \alpha_i \leq 2$ .

#### 4.3. Hit-and-run

To approximate  $\alpha_i$ , we generate  $step\_size$  random points in  $K_{i+1}$  and count the number of points  $c_i$  in  $K_i$ . The value of the parameter  $step\_size$  will be discussed in Section 4.7. Then there is

$$\alpha_i \approx \frac{step\_size}{c_i}.$$

It is easy to generate points in uniform distributions on cubes or ellipsoids but not easy on  $K_i$ s. So we consider the random walk method. Hit-and-run method is a random walk which has been studied for a long time [34, 3, 2]. There are two versions: the hypersphere directions method (HDHR), and the coordinate directions method (CDHR). HDHR starts from a point x in a convex body K, and generates the next point x' in K by two steps: (i) select a line L through x uniformly on a hypersphere, and (ii) then choose a point x' uniformly on the segment of line L in K. The CDHR is similar to HDHR, but it chooses directions with equal probability from the coordinate direction vectors and their opposites. Berbee et al. [3] proved the following theorems.

**Theorem 1.** The HDHR algorithm generates a sequence of interior points whose limiting distribution is uniform.

**Theorem 2.** The CDHR algorithm generates a sequence of interior points whose limiting distribution is uniform.

Note that coordinate directions are special cases of directions generated on a hypersphere, hence the previous theoretical research about volume approximation algorithm with hit-and-run methods mainly focuses on HDHR. In this paper, we investigate CDHR and apply it to the volume approximation algorithm. In our algorithm, CDHR starts from a point x in  $K_{k+1}$ , and generates the next point x' in  $K_{k+1}$  by two steps:

**Step 1.** Select a line *L* through *x* uniformly over *n* coordinate directions,  $e_1, \ldots, e_n$ .

**Step 2.** Choose a point x' uniformly on the segment of line L in  $K_{k+1}$ .

More specifically, we randomly select the *d*th component  $x_d$  of point x and get  $x_d$ 's bound [u, v] that satisfies

$$x|_{x_d=t} \in K_{k+1}, \ \forall t \in [u, v]$$

$$\tag{2}$$

$$x|_{x_d=u}, x|_{x_d=v} \in \partial K_{k+1} \tag{3}$$

(" $\partial$ " denotes the boundary of a set). Then we choose  $x'_d \in [u, v]$  with uniform distribution and generate the next point  $x' = x|_{x_d=x'_d} \in K_{k+1}$ .

Since  $r_i = 2^{i/n}$  is the radius of  $B_i$  and  $K_{k+1} = B_{k+1} \cap P$ , so  $x' \in B_{k+1}$  and  $x' \in P$ , we have

$$\begin{aligned} x' \in B_{k+1} \iff |x'| \leq r_{k+1} \iff x_d'^2 \leq r_{k+1}^2 - \sum_{i \neq d} x_i^2 \\ x' \in P \iff a_i x' \leq b_i \iff a_{id} x_d' \leq b_i - \sum_{j \neq d} a_{ij} x_j = \mu_i, \ \forall i \end{aligned}$$

$$u = \max_{\forall i \ s.t. \ a_{id} < 0} \left\{ \max\left\{ -\sqrt{r_{k+1}^2 - \sum_{i \neq d} x_i^2}, \ \frac{\mu_i}{a_{id}} \right\} \right\}$$
$$v = \min_{\forall i \ s.t. \ a_{id} > 0} \left\{ \min\left\{ \sqrt{r_{k+1}^2 - \sum_{i \neq d} x_i^2}, \ \frac{\mu_i}{a_{id}} \right\} \right\}$$

then interval [u, v] is the range of  $x'_d$  that satisfies Formula (2) and Formula (3).

# 4.4. Reutilization of Random Points

In the original description of the Multiphase Monte Carlo method, it is indicated that the ratios  $\alpha_i$  are estimated in natural order, from the first ratio  $\alpha_0$  to the last one  $\alpha_{l-1}$ . The method starts generating from the origin. At the *k*th phase, it generates a certain number of random independent points in  $K_{k+1}$  and counts the number of points  $c_k$  in  $K_k$  to estimate  $\alpha_k$ . However, our algorithm performs in the opposite way: Random points are generated from the outermost convex body  $K_l$  to the innermost convex body  $K_0$ , and ratios are estimated accordingly in reverse order.

The advantage of approximation in reverse order is that it is possible to fully exploit the random points generated in previous phases. Suppose that we have already generated a set of points S by random walk with almost uniform distribution in  $K_{i+1}$ , and some of them also hit the convex body  $K_i$ , denoted by S'. The ratio  $\alpha_i$  is thus estimated with  $\frac{|S|}{|S'|}$ . However, these random points can reveal more information than just the ratio  $\alpha_i$ . Since  $K_i$  is a sub-region of  $K_{i+1}$ , the points in S' are also almost uniformly distributed in  $K_i$ . Therefore, S' can serve as part of the random points in  $K_i$ . Furthermore, for any  $K_j$  $(0 \le j \le i)$  inside  $K_{i+1}$ , the points in  $K_{i+1}$  that hit  $K_j$  can serve as random points to approximate  $\alpha_j$  as well.

Based on this insight, we devise a different direction, i.e., generate from outside to inside. At the *i*-th phase which approximates ratio  $\alpha_i$ , the algorithm first calculates the number *count* of the former points that are also in  $K_{i+1}$ , then generates the rest (*step\_size* - *count*) points by random walk. The framework of our volume estimation algorithm with reutilization technique is presented in Algorithm 1. The parameter w is the number of sufficient steps for hit-and-run algorithm mixing. We discuss the value of w in Section 4.5.

Unlike generating random points in natural order, choosing the starting point for each phase in reverse order is a bit complex. The whole generating process in reverse order also starts from the origin. At the end of the *i*-th phase, we select a point x in  $K_{i+1}$  and employ  $x' = 2^{-\frac{1}{n}}x$  as the starting point of the next phase (the (i-1)-th phase) since  $2^{-\frac{1}{n}}x \in K_i$ . It is easy to find out that the expected number of saved random points with our algorithm is

$$\sum_{i=1}^{l-1} \left( step\_size \times \frac{1}{\alpha_i} \right). \tag{4}$$

Let

Algorithm 1 Volume Estimation Algorithm With Reutilization Technique

1: **function** ESTIMATEVOL(STEP\_SIZE)  $\gamma \leftarrow Rounding()$ 2: 3:  $x \leftarrow \text{Origin}$  $l \leftarrow \lceil n \log_2 r \rceil$ 4:  $count, t_0, \ldots, t_{l-1} \leftarrow 0$ 5: for  $i \leftarrow l - 1$  downto 0 do 6: for  $j \leftarrow count$  to  $step\_size$  do 7:  $x \leftarrow Walk(x, i, w) /*$  perform w steps of random walk in  $K_{i+1}*/$ 8: if  $x \in K_i$  then 9: calculate a value m such that  $x \in K_m$  and  $x \notin K_{m-1}$ 10:  $t_m \leftarrow t_m + 1$ 11: end if 12:end for 13: $count \leftarrow \sum_{i'=0}^{i} t_{i'}$ 14: $\alpha_i \leftarrow step\_size/count$ 15: $x \leftarrow 2^{-\frac{1}{n}}x$ 16:end for 17:**return**  $\gamma \cdot unit\_ball(n) \cdot \prod_{i=0}^{l-1} \alpha_i$ 18:19: end function

Since  $\alpha_i \leq 2$ , we only have to generate less than half random points with this technique. Actually, it can save over 70% time consumption on a large set of benchmarks (see Section 7.1.4). In addition, we shall prove that the reutilization technique has no effect on the error of the estimation result (see Section 4.6).

#### 4.5. About the Mixing Time

When generating the next point x' with the previous random point x, we have to make some steps from x to achieve stationarity and make x' independent of x. However, the number of sufficient steps w for hit-and-run algorithm mixing is hard to decide. The previous theoretical research [30, 29] presented the upper bounds on w in the Markov chain which are of the form:

 $w = O(n^2)$  for a random initial point, and  $w = O(n^3)$  for a fixed initial point.

Note that the hiding constant factors in  $O(n^2)$  and  $O(n^3)$  are  $10^{30}$  and  $10^{11}$  respectively. Lovász et al. [27] reported that the upper bound for HDHR method is much higher than actually required according to the numerical experiences. And they used to set w = n + 1. They also tried w = 2(n + 1) and  $w = n \ln n$  without visible improvement. We investigate the value of w for the CDHR method in a similar way, since obtaining the theoretical upper bound is hard. We conducted experiments with linear size of w, i.e., w = n, w = 2n, and w = 3n. Based on the observation in Section 7.1.2, we choose w = n.



Figure 3: An illustration of the *i*-th phase, which aims to estimate  $\alpha_i = \frac{k_{i+1}}{k_i}$ . The black round points are generated in and before the (i + 1)-th phase. The white triangle points are generated in the *i*-th phase.

# 4.6. Analysis of the Reutilization Technique

In the following analysis, we assume that our algorithm generates points in uniform distribution. For simplicity, we use  $k_i$  to represent  $vol(K_i)$  in this section. Let f(k; n, p) represent the probability mass function of the binomial distribution  $\mathbb{B}(n, p)$ , i.e.,  $f(k; n, p) = {n \choose k} p^k (1-p)^{n-k}$ .

Recall that in our volume estimation procedure, there are l phases in total. With the reutilization technique, in each phase i  $(0 \le i \le l-1)$ , to estimate the value of  $\alpha_i = \frac{k_{i+1}}{k_i}$ , we reuse all points in  $K_{i+1}$  generated in the earlier phases, and generate enough new points in  $K_{i+1}$ , so that the total number of already existing points and newly generated points in  $K_{i+1}$  is equal to *step\_size*. See Figure 3 for an illustration.

We introduce some new notations for the analysis.

For every  $0 \le i \le l-1$ , define

 $G_i = \{$ the points newly generated in the *i*-th phase $\}$ 

and

 $C_i = \{$ the points dropped in  $K_i$  at the end of the *i*-th phase $\}$ .

Note that  $C_i \subseteq K_i$  and  $G_i \subseteq K_{i+1}$  for every  $0 \leq i \leq l-1$ . Let  $c_i = |C_i|$  and  $g_i = |G_i|$ .

At the end of the *i*-th phase, Algorithm 1 counts the number of points lying in  $K_i$ , and use

$$\frac{\# \text{ of random points in } K_{i+1}}{\# \text{ of random points in } K_i} = \frac{step\_size}{c_i}$$

as the estimation of  $\alpha_i$   $(0 \le i \le l-1)$ .

Recall that the first phase of Algorithm 1 is the (l-1)-th phase. We additionally define  $C_l = \emptyset$  (and thus  $c_l = 0$ ) to indicate the fact that at the beginning of the algorithm, there is no random point in  $K_l$ .

By definition, we have

Lemma 1. For every  $0 \le i \le l-1$ ,

$$c_{i+1} + g_i = step\_size.$$

Lemma 1 says that for every phase i, the sum of the number of random points that are generated in and before the (i + 1)-th phase (in Figure 3, these points are the black round points in  $K_{i+1}$ ), and the number of random points newly generated in the *i*-th (this) phase (in Figure 3, these points are the triangle points in  $K_{i+1}$ ), is equal to *step\_size*.

Furthermore, we define

$$\begin{array}{rcl} C_{i,j} & = & C_i \cap K_j, & 0 \le i \le l-1, 0 \le j \le i, \\ G_{i,j} & = & G_i \cap K_j, & 0 \le i \le l-1, 0 \le j \le i+1. \end{array}$$

By definition, we have  $C_{i,i} = C_i$  and  $G_{i,i+1} = G_i$ . Let  $c_{i,j} = |C_{i,j}|$  and  $g_{i,j} = |G_{i,j}|$ .

**Lemma 2.** For each  $i = 0, \ldots, l-1$ , we have

1.  $C_i = C_{i+1,i} \cup G_{i,i}$ , and 2.  $c_i = c_{i+1,i} + q_{i,i}$ .

*Proof.* By definition,  $C_i$  is the set of random points that lie in  $K_i$  at the end of the *i*-th phase of Algorithm 1. These points consist of two parts as illustrated in Figure 3. One part is the set of random points that lie in  $K_i$  and are generated before the *i*-th phase. This set can be denoted by  $C_{i+1} \cap K_i = C_{i+1,i}$  using our notation. In Figure 3,  $C_{i+1,i}$  is the set of black round points in  $K_i$ . The other part is the set of random points that lie in  $K_i$  and are newly generated *in* the *i*-th phase. This set can be denoted by  $G_i \cap K_i = G_{i,i}$  using our notation. In Figure 3,  $G_{i,i}$  is the set of triangle points in  $K_i$ .

The above analysis shows that

$$C_i = (C_{i+1} \cap K_i) \cup (G_i \cap K_i)$$
  
=  $C_{i+1,i} \cup G_{i,i}.$ 

Since  $C_{i+1,i}$  and  $G_{i,i}$  are disjoint, we naturally have  $c_i = c_{i+1,i} + g_{i,i}$ . The lemma follows.

**Lemma 3.**  $c_{i+1,i}$  and  $g_{i,i}$  are conditionally independent given  $c_{i+1}$  or  $g_i$   $(i = 0, \ldots, l-1)$ .

*Proof.* Lemma 1 indicates that the value of  $g_i$  is determined by  $c_{i+1}$ , and vice versa. So, we only need to show that  $c_{i+1,i}$  and  $g_{i,i}$  are conditionally independent given one of  $c_{i+1}$  and  $g_i$ , say,  $g_i$ .

By definition,  $c_{i+1,1} = |C_{i+1} \cap K_i|$ , and  $g_{i,i} = |G_i \cap K_i|$ . See Figure 3 for example. In Figure 3,  $c_{i+1,i}$  is the number of black round points in  $K_i$ , and  $g_{i,i}$ is the number of triangle points in  $K_i$ . Although the total number of random points in  $K_{i+1}$  is equal to  $step\_size$  (which contains both  $c_{i+1,i}$  and  $g_{i,i}$ ), given the value  $g_i = |G_i|$ , the value  $g_{i,i}$  is only related to the shape of  $K_i$ , since all the points in  $G_i$  are distributed uniformly at random in  $K_{i+1}$ , which is a superset of  $K_i$ . Therefore,  $c_{i+1,i}$  and  $g_{i,i}$  are conditionally independent given the value  $g_i$ .

Lemma 3 is an important observation of our algorithm with reutilization technique. Then, with this observation, we introduce the following theorem which concerns the correctness of our algorithm.

**Theorem 3.** For each  $i = 0, \ldots, l-1, c_i \sim \mathbb{B}(step\_size, \frac{k_i}{k_{i+1}})$ .

Proof. For simplicity, let

$$p = \frac{k_i}{k_{i+1}}$$

and

$$s = step_size.$$

We consider the probability  $Pr(c_i = x)$  for arbitrary  $0 \le x \le s$ . We have

$$Pr(c_{i} = x) = \sum_{y=0}^{s} Pr(c_{i} = x, c_{i+1} = y)$$
  
= 
$$\sum_{y=0}^{s} Pr(c_{i} = x \mid c_{i+1} = y) Pr(c_{i+1} = y).$$
(5)

The conditional probability  $Pr(c_i = x | c_{i+1} = y)$  can be calculated as

$$\Pr(c_{i} = x \mid c_{i+1} = y)$$

$$= \Pr(c_{i+1,i} + g_{i,i} = x \mid c_{i+1} = y)$$

$$= \sum_{a=0}^{x} \Pr(c_{i+1,i} = a, g_{i,i} = x - a \mid c_{i+1} = y)$$

$$= \sum_{LM3}^{x} [\Pr(c_{i+1,i} = a \mid c_{i+1} = y) \cdot \Pr(g_{i,i} = x - a \mid g_{i} = s - y)].$$
(6)

Since the points in  $C_{i+1}$  are generated uniformly at random in  $K_{i+1}$ , and  $C_{i+1,i} = C_{i+1} \cap K_i$  (that is,  $C_{i+1,i}$  is the set of points in  $C_{i+1}$  that are dropped in  $K_i$ ), we have

$$\Pr(c_{i+1,i} = a \mid c_{i+1} = y) = f(a; y, \frac{k_i}{k_{i+1}}) = f(a; y, p),$$
(7)

Similarly, since the points in  $G_i$  are generated uniformly at random in  $K_{i+1}$ , and  $G_{i,i} = G_i \cap K_i$ , we have

$$\Pr(g_{i,i} = x - a \mid g_i = s - y) = f(x - a; s - y, p).$$
(8)

Combining Equations (6), (7) and (8), we have

$$Pr(c_{i} = x \mid c_{i+1} = y) = \sum_{a=0}^{x} f(a; y, p) f(x - a; s - y, p)$$
  
$$= \sum_{a=0}^{x} {y \choose a} {s - y \choose x - a} p^{x} (1 - p)^{s - x}$$
  
$$= p^{x} (1 - p)^{s - x} \sum_{a=0}^{x} {y \choose a} {s - y \choose x - a}$$
  
$$= p^{x} (1 - p)^{s - x} {s \choose x}$$
  
$$= f(x; s, p).$$
(9)

Finally, combining Equations (5) and (9), we have

$$\Pr(c_i = x) = \sum_{y=0}^{s} \Pr(c_{i+1} = y) f(x; s, p) = f(x; s, p).$$
(10)

The proof of Theorem 3 also shows that  $c_i$  and  $c_{i+1}$  are independent (see Equations (9) and (10)). Actually, we have stronger statement, which says that  $c_0, \ldots, c_{l-1}$  are mutually independent.

**Theorem 4.** The random variables  $c_0, \ldots, c_{l-1}$  are mutually independent.

*Proof.* We prove the theorem by induction on the indices of  $c_i$ 's, from l-2 down to 0.

**Basic Step:** When i = l - 2, we have already proved that  $c_{l-2}$  and  $c_{l-1}$  are independent in the proof of Theorem 3 (see Equations (9) and (10)).

**Induction Hypothesis:** Suppose that  $c_{i+1}, c_{i+2}, \ldots, c_{l-1}$  are mutually independent, i.e.,

$$\Pr(c_{i+1} = x_{i+1}, \dots, c_{l-1} = x_{l-1}) = \prod_{j=i+1}^{l-1} \Pr(c_j = x_j).$$
(11)

**Induction Step:** In the following we show that  $c_i, c_{i+1}, \ldots, c_{l-1}$  are mutually independent. For arbitrary  $0 \le x_i, \ldots, x_{l-1} \le step\_size$ , we consider the probability

$$\Pr(c_{i} = x_{i}, c_{i+1} = x_{i+1}, \dots, c_{l-1} = x_{l-1})$$

$$= \Pr(c_{i} = x_{i} \mid c_{i+1} = x_{i+1}, \dots, c_{l-1} = x_{l-1}) \cdot \Pr(c_{i+1} = x_{i+1}, \dots, c_{l-1} = x_{l-1}).$$
(12)

By definition, the set  $C_i$  consists of points in  $C_{i+1}$  and  $G_i$  which also lie in  $K_i$ . Though the set  $C_{i+1}$  consists of points generated in and before the (i + 1)-phase (i.e.,  $C_{i+1} = \bigcup_{j=i+1}^{l-1} (G_j \cap K_{i+1})$ ), the points in  $C_{i+1}$  are still distributed uniformly in  $K_{i+1}$ . In addition, although  $g_i$  is determined by  $c_{i+1}$ , the points in  $G_i$  are generated independently with the points in  $C_j$ 's  $(j \ge i+1)$ . Therefore,  $c_i$  is only affected by the shape of  $K_i$  for any value of  $c_{i+1}$ , since in the *i*-th phase, Algorithm 1 must generate  $step\_size$  uniformly distributed random points in  $K_{i+1}$ . In other words, the procedure to count  $c_i$  in the *i*-th phase of Algorithm 1 is equivalent to generating  $step\_size$  random points in  $K_{i+1}$  uniformly at random from scratch and then counting the number of random points dropped in  $K_i$ . Furthermore, when generating random points in  $K_{i+1}$ , Algorithm 1 does not check or count the points in  $C_{i+2}, \ldots, C_{l-1}$ . So, we have

$$\Pr(c_i = x_i \mid c_{i+1} = x_{i+1}, \dots, c_{l-1} = x_{l-1}) = \Pr(c_i = x_i \mid c_{i+1} = x_{i+1}) = \Pr(c_i = x_i).$$
(13)

Finally, combining Equations (11), (12) and (13), we have

$$\Pr(c_i = x_i, c_{i+1} = x_{i+1}, \dots, c_{l-1} = x_{l-1}) = \prod_{j=i}^{l-1} \Pr(c_j = x_j).$$

# 4.7. Analysis on the Number of Random Points

In this section, we provide some analysis about the number of random points for estimating each  $\alpha_i$ .

**Theorem 5.** Given  $\epsilon > 0$ ,  $\delta \in (0,1)$ , if we let  $step\_size = \left[ \left( \frac{z_{1-\delta/2} \cdot l}{\ln(1+\epsilon)} + z \right)^2 \right]$ , then the estimation result of Algorithm 1 lies in  $\left[ (1+\epsilon)^{-1} vol(P), (1+\epsilon)vol(P) \right]$  with probability at least  $1-\delta$ , where  $z_{1-\delta/2}$  is the  $1-\delta/2$  quantile of a standard normal distribution.

*Proof.* For simplicity, let

$$s = step\_size$$

and

$$z = z_{1-\delta/2}$$

We use v to represent the output estimation of Algorithm 1. Let  $p_i$  represent  $\frac{c_i}{s}$ . From Theorem 3, the value of  $p_i$  is the proportion of successes in a Bernoulli trail process which follows binomial distribution  $\mathbb{B}(s, \frac{vol(K_{i+1})}{vol(K_{i+2})})$ . So, we apply the approximate formula of a binomial proportion confidence interval  $p_i \pm z \sqrt{\frac{p_i(1-p_i)}{s}}$ , i.e.,

$$\Pr\left(p_i - z\sqrt{\frac{p_i(1-p_i)}{s}} \le \frac{vol(K_{i+1})}{vol(K_{i+2})} \le p_i + z\sqrt{\frac{p_i(1-p_i)}{s}}\right) \ge 1 - \delta.$$

Recall that Algorithm 1 uses  $\frac{s}{c_i}$  to estimate  $\alpha_i$ . There is  $v = vol(K_0) \prod_{i=0}^{l-1} \frac{1}{p_i}$ . Then the  $1 - \delta$  confidence interval of v shall be

$$\left\lfloor \frac{vol(K_0)}{\prod_{i=0}^{l-1} \left( p_i + z\sqrt{\frac{p_i(1-p_i)}{s}} \right)}, \frac{vol(K_0)}{\prod_{i=0}^{l-1} \left( p_i - z\sqrt{\frac{p_i(1-p_i)}{s}} \right)} \right\rfloor$$

To prove this theorem, it suffices to prove exact volume vol(P) lies in interval  $[(1+\epsilon)^{-1}v, (1+\epsilon)v]$  with probability at least  $1-\delta$ . Therefore, we only have to prove the following two inequalities,

$$\frac{vol(K_0)}{\prod_{i=0}^{l-1} \left( p_i + z \sqrt{\frac{p_i(1-p_i)}{s}} \right)} \ge (1+\epsilon)^{-1} v, \tag{14}$$

$$\frac{\operatorname{vol}(K_0)}{\prod_{i=0}^{l-1} \left( p_i - z \sqrt{\frac{p_i(1-p_i)}{s}} \right)} \le (1+\epsilon)v.$$
(15)

Consider Equation (14), it is equivalent to

$$\prod_{i=0}^{l-1} \left( 1 + z \sqrt{\frac{(1-p_i)}{s \cdot p_i}} \right) \le 1 + \epsilon.$$

Since Proposition 1 indicates  $\frac{1}{2} \leq p_i \leq 1$ , it is easy to see that  $(1 - p_i)/p_i \leq 1$ . That is, we only have to prove

$$\left(1 + \frac{z}{\sqrt{s}}\right)^l \le 1 + \epsilon. \tag{16}$$

Note that for arbitrary constant  $\beta$ ,  $(1 + \beta/l)^l$  is monotonically increasing with respect to l, and  $\lim_{l\to\infty}(1 + \beta/l)^l = e^{\beta}$ , where e is the base of the natural lograithm. So,  $s = (\frac{z \cdot l}{\ln(1+\epsilon)} + z)^2 \ge (\frac{z \cdot l}{\ln(1+\epsilon)})^2$  guarantees Equation (16).

In a similar way, we prove Equation (15). It is equivalent to

$$\prod_{i=0}^{l-1} \frac{1}{1 - z\sqrt{\frac{(1-p_i)}{s \cdot p_i}}} \le 1 + \epsilon.$$
(17)

Consider the left-hand-side of Equation (17), there is

$$LHS \le \left(\frac{1}{1 - \frac{z}{\sqrt{s}}}\right)^l = \left(1 + \frac{z}{\sqrt{s} - z}\right)^l.$$

Note that  $(1 + \frac{\ln(1+\epsilon)}{l})^l \leq 1 + \epsilon$ . So, it is easy to see that  $s \geq (\frac{z \cdot l}{\ln(1+\epsilon)} + z)^2$  guarantees  $(1 + \frac{z}{\sqrt{s-z}})^l \leq 1 + \epsilon$ .

#### 5. Integrating Polytope Volume Estimation into #SMT(LA) Solving

In this section, we first review the exact volume computation approach for SMT(LA) formulas in [32], then describle how to extend it to volume estimation of SMT(LA) Formulas. We also propose a two-round strategy to accelerate the volume estimation procedure.

# 5.1. From Computation to Estimation for #SMT(LRA) Problems

Given an SMT(LA) formula, the sum of volumes of all feasible assignments is the volume of the whole formula. Ma et al. [32] presented an exact approach to solving #SMT(LA) problem which integrates SMT solving with volume computation for convex polytopes. The basic idea is to enumerate feasible assignments by solving the SMT(LA) formula and accumulate the volumes of these assignments. Polytope volume computation serves as a subroutine which produces the volume of each feasible assignment. To reduce the number of calls of polytope volume computation, we also proposed a strategy that combines the feasible assignments into "bunches". Each time a feasible assignment is obtained, we search the neighbourhood of this assignment by negating its literals. We can combine the original assignment with one of its feasible neighbour assignments. Then we obtain a partial assignment that still propositionally satisfies the formula. The resulting assignment may cover a bunch of feasible assignments, hence is called a "bunch". For example, given a feasible assignment  $\{b_1, \neg b_2, \neg b_3, b_4\}$  of formula  $PS_{\phi}(b_1, b_2, b_3, b_4)$ , we search its neighbourhood. Assume  $\{b_1, \neg b_2, \neg b_3, \neg b_4\}$  is also feasible, then we could obtain a partial feasible assignment  $\{b_1, \neg b_2, \neg b_3\}$  such that  $vol(\{b_1, \neg b_2, \neg b_3\}) =$  $vol(\{b_1, \neg b_2, \neg b_3, b_4\}) + vol(\{b_1, \neg b_2, \neg b_3, \neg b_4\})$ . And the volume computation subroutine is called for the polytope corresponding to each bunch rather than each feasible assignment, so that the number of calls is reduced.

Although the number of calls of polytope volume computation is considerably reduced by the "bunch" strategy, polytope volume computation is still the bottleneck of our previous approach because of its high complexity. To overcome this obstacle, we can substitute the polytope volume computation subroutine with the volume estimation method in Section 4, thereby generalize our previous approach to estimate the volume of the solution space of SMT(LRA) formulas. The basic procedure is quite similar to that of volume computation as described in [32]. Each time we obtain a bunch of feasible (partial) assignments, we call PolyVest to estimate the volume of the polytope corresponding to this bunch. The sum of the estimated volumes of all bunches is approximately the volume for the whole formula.

# 5.2. Two-round Strategy

In the Multiphase Monte-Carlo method, the number of random points at each phase, i.e.,  $step\_size$ , is a key parameter. To control parameter  $step\_size$  easily, we introduce a weight S for  $step\_size$  so that the weighted version is  $step\_size = S \cdot \left[\frac{z_{1-\delta/2} \cdot l^2}{\ln(1+\epsilon)}\right]$ .

As the number of random points increases, the accuracy of estimation improves, and the estimation process also takes more time. It is important to balance the accuracy and the running time since the estimation subroutine is usually called many times. Therefore, we employ a **two-round strategy** that can dynamically determine a proper weight for each feasible (partial) assignment. At the first round of estimation, each feasible assignment is generated with a fixed small weight to get a quick and rough estimation. Since the volumes of feasible assignments may vary a lot, intuitively a feasible assignment with relatively larger volume should be estimated with higher accuracy. Hence at the second round, the weight for each assignment is determined according to its estimated volume from the first round. More specifically, we use the following rule to decide the weights in the second round:

• Suppose the fixed small weight in the first round is  $S_{min}$ , and the largest weight in the second round is set to  $S_{max}$ . Let  $V_{max}$  denote the largest estimated volume in the first round, and  $V_i$  denote the volume of the *i*th feasible assignment estimated in the first round. Then the weight  $S_i$  for the *i*th feasible assignment in the second round is:

$$S_i = \frac{2 \times S_{max} \times V_i}{V_{max}}.$$

If  $S_i \leq S_{min}$ , the *i*th feasible assignment is neglected at the second round, and we use the result from the first round as its estimated volume. If  $S_i > S_{max}$ , then set  $S_i$  to  $S_{max}$ .

We choose  $S_{min} = 0.01$  and  $S_{max} = 1$  in practice. It usually saves more than 95% points for random instances. The experimental results and further discussions are presented at Section 7.2.1.

## 6. Handling Practical Instances from Program Analysis

SMT solvers are the core engine of many tools for program analysis, testing, and verification. These tools may generate a large number of SMT(LA) formulas. It is important to improve the efficiency of our approach in these scenarios, especially when handling large instances.

## 6.1. The Difficulties

There almost always exist integer variables in the SMT(LA) formulas generated from program analysis. For such formulas, lattice counting with LattE can only handle instances with about 10 variables within a reasonable amount of time. However, even when analyzing just one function in a program, we might obtain problem instances with dozens of integer variables. Yet it is risky to use volume estimation (as described in the previous section) to approximate the number of lattice points, since there is no bound of the relative error of such an approximation. For example, volume estimation or computation will return zero directly if it encounters an equality constraint. But there may be many lattice points for such cases. In the following we present divide-and-conquer methods to deal with some large formulas.

# 6.2. Several Observations

We have made several observations on instances generated from program analysis.

- Usually there are just a few variables in each linear inequality.
- There exist groups of independent variables in the set of linear inequalities. So variables in different groups do not appear in the same inequality.
- In particular, there may exist some linear inequalities with only one variable.
- Due to the bunch technique, it is common that the inequalities in a bunch only contain part of variables.

The following SMT(LA) formula is generated from the analysis of a space management program:

(a > 0) AND (t >= a) AND (t <= a + 16) AND (NOT (b < c)) AND (NOT (d + 0 >= r)) AND ((e = 0) OR (e = 3) OR (e = 5) OR (e = 10) OR (e = 15)) AND ((y > p) OR (z > p) OR (x > q)) AND (f = 1)

It contains 13 variables and 14 linear inequalities. There are at most two variables in each inequality (our first observation). Then we consider one of the bunches:

(a > 0) AND (t >= a) AND (t <= a + 16) AND (b >= c) AND (d + 0 < r) AND (e != 0) AND (e != 3) AND (e != 5) AND (e != 10) AND (e = 15) AND (y <= p) AND (z > p) AND (f = 1)

There are 11 variables and 13 linear inequalities in this bunch (assume x > q is reduced by bunch techniques).

We can manually subdivide this bunch into 6 mutually independent groups of variables, as well as the inequalities:

G1. (a > 0) AND (t >= a) AND (t <= a + 16)
G2. (b >= c)
G3. (d + 0 < r)
G4. (e != 0) AND (e != 3) AND (e != 5) AND (e != 10) AND (e = 15)
G5. (y <= p) AND (z > p)
G6. (f = 1)

There are at most three different variables in each group. Specifically, there are only single-variable inequalities in group 4 and 6. We can compute their solution space easily. And the number of lattice points equals to the multiplication of the number of lattice points of each group. So we reduce this bunch into several one to two dimensional problems which are much easier to solve.

#### 6.3. Reduction and Division for Linear Inequalities

Based on the aforementioned observations, we propose several preprocessing techniques to reduce and divide the set of inequalities and variables. In our implementation, we use  $m \times n$  matrix A and vector b to represent the set of linear inequalities  $Ax \leq b$ , where m is the number of inequalities and n is the number of variables. For convenience, we use  $vol(Ax \leq b)$  to denote the volume of solution space of constraints  $Ax \leq b$ .

## 6.3.1. Variable Reduction

We call a variable **active** if it appears in at least one inequality in  $Ax \leq b$ . Due to the bunch technique, some variables are not always active in the inequalities of the bunch. So it is necessary to identify active variables and reduce the number of inactive variables. We observe that such reduction procedure is quite useful. This will be discussed in the evaluation section. In the example of Section 6.2, the bunch eliminates the inequality  $(\mathbf{x} > \mathbf{q})$  and variables x and q. So we could shrink the matrix A by deleting columns corresponding to x and q.

## 6.3.2. Graph-based Division

We introduce the **Inequality Relation Graph (IRG)** to divide a bunch into mutually independent groups of inequalities. It is constructed by two rules: (i) map each inequality into a vertex  $v \in V$ , (ii) add an edge e = (u, v) into E if and only if there exists a variable in both inequalities represented by u and v. The time complexity of the direct construction for IRG is  $O(m^2n)$ . Because there is no edge between vertices in different strongly connected components (SCC), the inequalities represented by these vertices are also independent. So each SCC in the IRG can represent a group. To obtain SCCs, one can use Tarjan's algorithm [35] which is linear time. The overhead of this division procedure is negligible compared to other parts of our approach for #SMT solving. Note that different groups don't share inequalities or variables, so we have the following proposition.

**Proposition 2.**  $vol(Ax \le b) = \prod_i vol(A_ix \le b)$ , where  $A_ix \le b$  represents the *i*th SCC.

Consider the example in Section 6.2. The IRG of the bunch is illustrated in Fig. 4. There are 6 SCCs in the graph which correspond to the groups listed in Section 6.2.



Figure 4: IRG of the Example in Section 6.2

#### 6.3.3. Special Case of One Dimension

LattE is based on the Barvinok's algorithm which is very sophisticated. For quite simple circumstances, such as one-dimensional problems, there is not any special treatment for them in LattE. The initialization takes so much time that division procedure becomes almost useless on small problems. And so does Vinci. Therefore, we handle one-dimensional problems directly and do not call LattE or Vinci. For a one-dimensional problem, it is an interval. So we only have to calculate the upper and lower bounds by checking the corresponding linear constraints.

# 7. Experimental Results

In this section, we first present the evaluation of PolyVest<sup>3</sup> in section 7.1. We then present the results of our approach for #SMT(LA) problems in section 7.2. By default, we used  $\epsilon = 0.45$ ,  $\delta = 0.1$ , and a timeout of 1 hour. Every experiment was conducted on a workstation with 3.40GHz Intel Core i7-2600 CPU and 8GB memory. In the following tables, "—" means that the instance takes more than one hour to solve (or the tool runs out of memory).

# 7.1. Evaluation of PolyVest

In this subsection, we first compare our approach with the Lovasz-Vempala method [27] and Vinci. Next we present evaluations of the accuracy of our approach. Then we discuss the size of w. After that we compare CDHR and HDHR methods. Finally, we show the effectiveness of reutilization technique. Our test cases include:

- "cube\_n": Hypercubes with side length 2. The volume of "cube\_n" is  $2^n$ .
- "cube\_n(S)": Apply 10 times random shear mappings on "cube\_n". The random shear mapping can be represented as PQP, with  $Q = \begin{pmatrix} I & M \\ 0 & I \end{pmatrix}$ , where the elements of matrix M are randomly chosen and P is the product of permutation matrices  $\{P_i\}$  that put rows and columns of Q in random orders. This mapping preserves the volume.
- "rh\_n\_m": An *n*-dimensional polytope constructed by randomly choosing *m* hyperplanes tangent to sphere.
- "cuboid\_n(S)": Scaling "cube\_n" by 100 in one dimension, and then apply random shear mapping to it once. We use this instance to approximate a "thin stick" which is not parallel to any axis.

<sup>&</sup>lt;sup>3</sup>The tool and benchmarks are available at http://lcs.ios.ac.cn/~zj/polyvest.html

#### 7.1.1. The Performance of PolyVest

Table 1 presents the result of comparing the performance of PolyVest vis-avis Lovasz-Vempala Method (LVM), which is also a volume estimation algorithm based on the Multiphase Monte-Carlo method. We only conducted experiments on cubes as the implementation of LVM presented in [27] could not handle instances other than cubes. In Table 1, column 1 gives the instance name, column 2 gives the number of dimensions n, and column 3 gives the exact volume v. The running times and estimating results for LVM are presented in columns 4 and 5. Column 6 gives the total error e which is estimated by LVM. It indicates that the estimating result lies in the interval [v-e, v+e] with high probability<sup>4</sup>. Column 7 gives the ratio e/v which is the relative error estimated by LVM. Column 8 gives the settings of parameter  $a_0$  of LVM. In [27], the authors used  $a_0 = 6n$  for cube\_2 and cube\_5, and  $a_0 = 2n$  for cube\_8. Column 9 gives the parameter  $\epsilon$  of our approach. The running times and estimating results for PolyVest are presented in columns 10 and 11. In these experiments, we specify the value of  $\epsilon$  exactly the same as e/v. It means that LVM estimates with similar size of error to PolyVest. The results show that our approach is significantly faster LVM. For the 8-dimensional cube, LVM could not solve in one hour. We could not obtain the value of e/v as well. So, we used the value of parameter  $\epsilon$ by default.

Table 1: Comparison between PolyVest and LVM

|          |   |     |         | ]      | LVM    |       |       |            | PolyVest |        |  |
|----------|---|-----|---------|--------|--------|-------|-------|------------|----------|--------|--|
| Instance | n | v   | Time(s) | Result | Err. e | e/v   | $a_0$ | $\epsilon$ | Time (s) | Result |  |
| cube_2   | 2 | 4   | 643.4   | 4.013  | 0.051  | 0.013 | 6n    | 0.013      | 0.134    | 4.006  |  |
| cube_3   | 3 | 8   | 1008    | 8.109  | 0.279  | 0.035 | 6n    | 0.035      | 0.128    | 8.071  |  |
| cube_4   | 4 | 16  | 1419    | 15.48  | 0.452  | 0.028 | 6n    | 0.028      | 0.984    | 16.11  |  |
| cube_5   | 5 | 32  | 1910    | 31.70  | 3.250  | 0.102 | 6n    | 0.102      | 0.291    | 32.43  |  |
| cube_6   | 6 | 64  | 2583    | 62.34  | 2.8    | 0.044 | 2n    | 0.044      | 3.913    | 64.42  |  |
| $cube_7$ | 7 | 128 | 3210    | 128.7  | 11.6   | 0.091 | 2n    | 0.091      | 2.442    | 129.2  |  |
| cube_8   | 8 | 256 | _       |        | _      |       | 2n    | 0.45       | 0.413    | 245.8  |  |

Table 2 presents the result of comparing the performance of PolyVest vis-avis Vinci. Vinci is a well-known package which implements the state-of-the-art algorithms for exact volume computation of convex polytopes. It consisted of several methods. In Table 2,  $T_{rlass}$ ,  $T_{hot}$  and  $T_{lawnd}$  represent the running times of three methods in Vinci respectively. The "rlass" uses Lasserre's method, which needs input of H-representation. The "hot" uses a Cohen&Hikey-like face enumeration scheme, which needs input of V-representation. The "lawnd" uses Lawrence's formula, which is the fastest method in Vinci and both descriptions are needed. In Table 2, the running times of Vinci do not contain transformation from H-representation to V-representation. Observe that the "rlass" and "hot" methods of Vinci usually take much more time and space as the scale of the problem grows a bit, e.g. "cube\_n( $n \geq 15$ )" and "rh-10\_30".

 $<sup>^4\</sup>mathrm{Note}$  that the authors of [27] did not specify the probability, but only reported it with "high" probability.

Given H- and V- representations, the "lawnd" method is very fast for instances smaller than 20 dimensions. However, enumerating all vertices of polytopes is non-trivial, as it is the dual problem of constructing the convex hull by the vertices. This process is both time-consuming and space-consuming. On the other hand, the running times of PolyVest appear to be more 'stable'.

|              |    |    | Poly      | Vest    | Vinci   |                |              |                |  |  |  |
|--------------|----|----|-----------|---------|---------|----------------|--------------|----------------|--|--|--|
| Instance     | n  | m  | Result    | Time(s) | Result  | $T_{rlass}(s)$ | $T_{hot}(s)$ | $T_{lawnd}(s)$ |  |  |  |
| cube_10      | 10 | 20 | 1037.9    | 2.063   | 1024    | 0.004          | 0.044        | 0.008          |  |  |  |
| $cube_10(S)$ | 10 | 20 | 990.5     | 0.939   | 1023.86 | 0.008          | 0.124        | 0.024          |  |  |  |
| cube_15      | 15 | 30 | 32729.3   | 22.583  | 3.28e+4 | 0.300          | 212.8        | 0.156          |  |  |  |
| cube_20      | 20 | 40 | 1.04e+6   | 126.1   | 1.05e+6 |                |              | 8.085          |  |  |  |
| cube_30      | 30 | 60 | 1.08e + 9 | 1672.6  |         |                | ###          | ###            |  |  |  |
| rh_8_25      | 8  | 25 | 815.5     | 0.460   | 785.989 | 0.864          | 0.160        | 0.016          |  |  |  |
| rh_10_20     | 10 | 20 | 14002     | 1.327   | 13882.7 | 0.284          | 0.340        | 0.012          |  |  |  |
| rh_10_25     | 10 | 25 | 5705.48   | 1.434   | 5729.52 | 5.100          | 1.932        | 0.072          |  |  |  |
| rh_10_30     | 10 | 30 | 2016.57   | 1.420   | 2015.58 | 660.4*         | 5.772        | 0.144          |  |  |  |
| rh_8_25(S)   | 8  | 25 | 796.329   | 0.452   | 785.984 | 1.268          | 0.156        | 0.032          |  |  |  |
| rh_10_20(S)  | 10 | 20 | 14062.9   | 1.278   | 13883.8 | 0.832          | 0.284        | 0.032          |  |  |  |
| rh_10_25(S)  | 10 | 25 | 5507.95   | 1.443   | 5729.18 | 11.949         | 1.960        | 0.104          |  |  |  |
| rh_10_30(S)  | 10 | 30 | 2043.33   | 1.489   | 2015.87 | 1251.1*        | 6.356        | 0.248          |  |  |  |

Table 2: Comparison between PolyVest and Vinci

\*: Enable the Vinci option to restrict memory storage, so as to avoid running out of memory. ###: We did not test "cube\_30" by "hot" and "lawnd", because there are too many vertices in these polytopes.

Recall that there are O(l) phases,  $O(l^2)$  random points in each phase, and O(w) steps for one random point. Since  $l = n \log_2 2n$  and w = n, our algorithm generates  $O(n^4(\log_2 2n)^3)$  steps of random walk. Note that  $10^4(\log_2 20)^3$ :  $20^4(\log_2 40)^3 : 30^4(\log_2 60)^3 \approx 1 : 30 : 207$ . Consider the running time growth of a walk with respect to n (for details, see Table 5), the overall running times of instances "cube\_10", "cube\_20" and "cube\_30" accord with the complexity. Besides, there are two factors which are also related to the running time: (i) the reutilizing ratio and (ii) the shape of the polytope after rounding procedure. These lead to the differences of running times for instances with the same scale, e.g., "cube\_10" and "cube\_10(S)". It is difficult to predict these factors. However, our analysis covers the worst cases.

We did more tests on our approach to see how accurate it is. We executed PolyVest 100 times for each instance. In Table 3, column 1 gives the instance name, column 2 gives the exact volume v, column 3 gives the interval  $[1.45^{-1}v, 1.45v]$ , column 4 gives the minimum value  $v_{min}$  and maximum value  $v_{max}$  over 100 times of experiment, column 5 and column 6 give the average values and standard deviations respectively. Since we used  $\epsilon = 0.45$  and  $\delta = 0.1$ , from Theorem 5, the estimating result should lie in interval  $[1.45^{-1}v, 1.45v]$  with probability at least 90%. Table 3 shows that  $[v_{min}, v_{max}] \subset [1.45^{-1}v, 1.45v]$ for each instance. In other words, it means that the frequency on interval  $[1.45^{-1}v, 1.45v]$  is 100 over 100 times of experiments, which follows our analysis. In addition, we observe that the interval  $[v_{min}, v_{max}]$  is significantly smaller than  $[1.45^{-1}v, 1.45v]$ . Actually, there is  $[v_{min}, v_{max}] \subset [1.1^{-1}v, 1.1v]$  for most

Table 3: More statistical results of PolyVest

| Instance       | v         | $[1.45^{-1}v, 1.45v]$ | $[v_{min}, v_{max}]$ | Avg.      | Std Dev. |
|----------------|-----------|-----------------------|----------------------|-----------|----------|
| cube_5         | 32        | [22.07, 46.4]         | [28.99, 33.86]       | 31.93     | 1.05     |
| cube_10        | 1024      | [953.6, 1485]         | [953.6, 1089]        | 1019      | 25.98    |
| $cube_10(S)$   | 1024      | [953.6, 1485]         | [980.4, 1064]        | 1023      | 15.20    |
| cube_15        | 32768     | [22598, 47513]        | [31169, 34508]       | 32866     | 588.5    |
| cube_20        | 1.05e+6   | [7.23e+5, 1.52e+6]    | [1.00e+6, 1.09e+6]   | 1.05e+6   | 16889    |
| $cube_20(S)$   | 1.05e+6   | [7.23e+5, 1.52e+6]    | [1.02e+6, 1.08e+6]   | 1.05e+6   | 10739    |
| $cuboid_10(S)$ | 1.02e+5   | [7.06e+4, 1.48e+5]    | [9.83e+4, 1.07e+5]   | 1.02e + 5 | 1626     |
| cuboid_20(S)   | 1.05e + 8 | [7.23e+7, 1.52e+8]    | [1.02e+8, 1.07e+8]   | 1.05e + 8 | 1.14e+6  |
| rh_8_25        | 786.0     | [542.1, 1139.7]       | [751.0, 822.9]       | 784.8     | 16.78    |
| rh_10_20       | 13883     | [9574.3, 20130]       | [13220, 14535]       | 13817     | 275.0    |
| rh_10_25       | 5730      | [3951, 8308]          | [5422, 5980]         | 5714      | 109.8    |
| rh_10_30       | 2016      | [1390, 2922]          | [1937, 2104]         | 2016      | 32.19    |

instances.

#### 7.1.2. The Experiments on Mixing Time

To achieve a proper mixing time, we experimented different sizes of w: w = 1, w = n, w = 2n and w = 3n. We executed PolyVest 100 times for each instance. In Table 4, "Avg." and "Std Dev." represent the average values and the standard deviations respectively.

Table 4: Comparison about different sizes of w

|          | w = 1   |          | w = n   |          | w =     | = 2n     | w = 3n  |          |
|----------|---------|----------|---------|----------|---------|----------|---------|----------|
| Instance | Avg.    | Std Dev. |
| cube_2   | 3.96    | 0.258    | 3.97    | 0.205    | 4.01    | 0.166    | 4.01    | 0.163    |
| cube_5   | 32.07   | 2.51     | 32.08   | 1.28     | 32.18   | 1.09     | 32.05   | 1.10     |
| cube_10  | 1027    | 63.03    | 1025    | 28.97    | 1022    | 23.36    | 1024    | 24.85    |
| cube_15  | 32658   | 1520     | 32809   | 680.9    | 32685   | 605.2    | 32800   | 643.6    |
| cube_20  | 1.05e+6 | 42703    | 1.05e+6 | 17080    | 1.05e+6 | 18516    | 1.05e+6 | 17108    |
| rh_8_25  | 785.1   | 39.60    | 785.5   | 17.66    | 789.3   | 17.52    | 785.8   | 17.23    |
| rh_10_20 | 13790   | 676.1    | 13882   | 298.4    | 13849   | 271.8    | 13881   | 247.6    |
| rh_10_25 | 5724    | 272.3    | 5734    | 99.07    | 5731    | 92.26    | 5729    | 95.59    |
| rh_10_30 | 2030    | 82.29    | 2015    | 37.73    | 2013    | 37.20    | 2017    | 34.60    |
| rh_20_40 | 107.9   | 4.34     | 108.4   | 1.38     | 108.2   | 1.39     | 108.0   | 1.48     |

Theorem 2 indicates that the standard deviation converges as w increases. In intuition, with sufficiently many times of experiments, the variance should be monotonically decreasing as w increases. The results in Table 4 also show such tendencies. Since we could only experiment with finite times (100 times), there exist errors, e.g., some standard deviations for w = 3n are larger than the ones for w = 2n or the ones for w = n. This phenomenon also indicates that the standard deviations are close to the convergence. There is a tradeoff of speed and accuracy, since the larger w, the smaller variance but larger number of steps. We observe that the overall differences between the standard deviations for w = n and w = 3n are small. So, we choose w = n at last.

## 7.1.3. The Comparison of Two Hit-and-run Methods

Table 5 illustrates the running times of 10 million steps of CDHR and HDHR in the intersection of a cube and a ball. This experiment is irrelevant to the procedure of volume estimation. Table 5 shows that CDHR is faster than its rival. The reason is that HDHR has to do more vector multiplications to find intersection points and  $m \times n$  more divisions during each step of walk.

Table 5: Comparison about speed between CDHR and HDHR

| n  | m  | CDHR (s) | HDHR (s) |
|----|----|----------|----------|
| 10 | 20 | 3.572    | 13.761   |
| 20 | 40 | 7.095    | 24.502   |
| 30 | 60 | 13.85    | 40.455   |
| 40 | 80 | 22.13    | 61.484   |

In addition, we also compare the two hit-and-run methods on accuracy. We set w = n for both methods and executed 100 times for each instance. The results are listed in Table 6. The column of "ERR." gives the ratios of standard deviations and average values. It clearly shows that the standard deviations of the volume estimated by CDHR method are smaller than HDHR method.

Table 6: Comparison about accuracy between CDHR and HDHR

|                |             |           | CDHR     |       | HDHR      |           |       |  |
|----------------|-------------|-----------|----------|-------|-----------|-----------|-------|--|
| Instance       | Exact.      | Avg.      | Std Dev. | ERR.  | Avg.      | Std Dev.  | ERR.  |  |
| cube_5         | 32          | 31.93     | 1.05     | 3.28% | 31.88     | 1.51      | 4.73% |  |
| cube_10        | 1024        | 1019      | 25.98    | 2.55% | 1032      | 32.04     | 3.10% |  |
| cube_15        | $3.28e{+4}$ | 32866     | 588.5    | 1.79% | 32973     | 766.4     | 2.32% |  |
| cube_20        | 1.05e+6     | 1.05e+6   | 16889    | 1.61% | 1.05e+6   | 22240     | 2.12% |  |
| $cuboid_10(S)$ | 1.02e + 5   | 1.02e + 5 | 1626     | 1.59% | 1.03e + 5 | 2161      | 2.10% |  |
| $cuboid_20(S)$ | 1.05e + 8   | 1.05e + 8 | 1.14e+6  | 1.02% | 1.05e + 8 | 1.27e + 6 | 1.21% |  |
| rh_8_25        | 785.99      | 784.8     | 16.78    | 2.14% | 786.4     | 26.06     | 3.31% |  |
| rh_10_20       | 13883       | 13817     | 275.0    | 1.99% | 14051     | 378.5     | 2.69% |  |
| rh_10_30       | 2016        | 2016      | 32.19    | 1.60% | 2006      | 61.04     | 3.04% |  |

#### 7.1.4. The Advantage of Reutilization of Random Points

We conducted experiments to demonstrate the effectiveness of the reutilization technique. We executed PolyVest 100 times for each instance.  $\overline{n_1}$  ( $\overline{n_2}$ ) represents the average number of newly generated random points without (with) this technique. Table 7 shows that the reutilization technique can save 60% to 70% random points, yet it has no visible effect on the average value and the variance.

# 7.2. Evaluation of VolCE

We implement our volume estimation algorithm and preprocessing techniques in a tool called  $VolCE^5$ , which is described in [32]. It has the following three functions:

<sup>&</sup>lt;sup>5</sup>The tool and benchmarks are available at http://lcs.ios.ac.cn/~zj/vc.html

Without Reusing With Reusing Instance  $\overline{n_1}$ Avg. Std Dev.  $\overline{n_2}$ Avg. Std Dev.  $\overline{n_2}/\overline{n_1}$ 95324 32.18 33617 31.9335.27%cube\_5 1.191.05cube\_10 1.57e + 61021 24.995.83e + 51019 25.9837.08% 32806 2.87e+638.41%cube\_15 7.48e+6625.832886 588.5cube\_20 2.24e + 71.05e + 619388 8.84e + 61.05e + 616889 39.39% cuboid\_10 8.07e + 51.03e + 514882.52e + 51.02e + 5162631.19% cuboid\_20 1.06e + 71.05e + 81.23e + 63.66e + 61.14e + 634.87%1.05e + 8rh\_8\_25 4.79e + 516.901.43e + 516.7829.74% 786.0784.8rh\_10\_20 1.22e + 613876280.93.44e + 513817 275.028.19%rh\_10\_30 1.04e+6201434.673.25e + 5201632.1931.15%

 Table 7: Effectiveness of reutilizing random points

- Estimate volume for SMT(LRA) formulas with PolyVest.
- Compute volume for SMT(LRA) formulas with Vinci [4].
- Count the number of lattice points for SMT(LIA) formulas with LattE [25].

For all experiments in this subsection, we used  $S_{min} = 0.01$  and  $S_{max} = 1$ . The test cases include:

- Random instances ran\_n\_l\_c: which have n numeric variables, l LACs and c clauses. They are generated by randomly choosing coefficients of LACs and literals of clauses. The length of each clause is between 3 and 5.
- Instances generated from static program analysis. We analyzed the following programs: (i) abs: a function which calculates absolute values; (ii) findmiddle: a function which finds the middle number among 3 numbers; (iii) Space\_manage: a program related to space technology; (iv) tritype: a program which determines the type of a triangle; (v) calDate: a function which converts the special date into a Julian date; (vi) tcas: a program about the traffic collision avoidance system; (vii) FINDpath: a selection program FIND [18]; (viii) getopPath: a program function called getop() [20].
- Instances from SMT-Lib, including the QF\_LIA benchmarks: CAV\_2009, bignum, int\_incompleteness, pigeon-hole, fischer, prime\_cone.

The QF\_LIA benchmark set is a huge and broad collection of benchmarks, which can be found in the SMT-LIB and is also part of the SMT Competition. It is the standard reference for measuring the performance of linear integer arithmetic solvers. Since VolCE is a counter instead of a solver, these benchmarks are usually too difficult for VolCE. We scanned this benchmark set and filtered out the complicated instances which cannot be handled by VolCE in one hour. At last, we selected 6 families and 112 instances from this benchmark set.

# 7.2.1. Volume Estimation for SMT(LRA) Formulas

In this subsection, we experimented our tool VolCE on randomly generated SMT(LRA) formulas to evaluate the capability of our volume estimation routine,

i.e., VolCE with PolyVest. Note that the linear constraints in random instances contain almost all variables, the reduction and division preprocessing techniques are not effective for these instances.

|              |     |      | Estimation |         | Compu      | tation  |  |
|--------------|-----|------|------------|---------|------------|---------|--|
| Instance     | NV. | BC.  | Result     | Time(s) | Result     | Time(s) |  |
| ran_7_15_45  | 7   | 116  | 1.79e + 15 | 2.817   | 1.84e + 15 | 10.4    |  |
| ran_7_20_60  | 7   | 253  | 6.85e + 14 | 4.015   | 6.74e + 14 | 73.2    |  |
| ran_7_30_90  | 7   | 385  | 4.78e + 13 | 7.994   | 4.58e + 13 | 872     |  |
| ran_8_15_45  | 8   | 220  | 3.49e + 17 | 4.311   | 3.50e + 17 | 71.8    |  |
| ran_8_20_60  | 8   | 456  | 1.07e + 17 | 11.07   | 1.09e + 17 | 327     |  |
| ran_8_30_90  | 8   | 1209 | 6.95e + 16 | 28.69   |            |         |  |
| ran_9_20_60  | 9   | 439  | 1.21e+19   | 24.79   |            |         |  |
| ran_10_20_60 | 10  | 949  | 2.57e+22   | 58.44   |            |         |  |

Table 8: Comparison between estimation and computation methods for #SMT(LRA)

Table 8 presents the result of comparing the performance of volume estimation method (VolCE with PolyVest) and volume computation method (VolCE with Vinci). In Table 8, column 1 gives the name of instances, column 2 and 3 give the number of numeric variables and partial feasible assignments respectively. The outputs and running times for estimation routine and computation routine are presented in column 4 to column 7. The results show that the volume estimation method for #SMT(LRA) is very efficient and the relative errors of approximation are small. When the dimension of instance grows to 8 or larger, volume computation method often fails to give an answer in one hour or depletes memory. Though Vinci has an option to restrict its memory storage, as a tradeoff it will take much more time to solve, and still cannot solve instances within the time limit.

|               |      |            | Original |           | ſ            |         |           |           |
|---------------|------|------------|----------|-----------|--------------|---------|-----------|-----------|
| Instance      | BC.  | Result     | Time(s)  | $n_1$     | Result       | Time(s) | $n_2$     | $n_2/n_1$ |
| ran_7_15_45   | 116  | 1.86e + 15 | 26.63    | 1.03e+7   | 1.79e + 15   | 2.817   | 9.34e + 5 | 9.07%     |
| ran_7_20_60   | 253  | 6.65e + 14 | 59.68    | 2.09e+7   | $6.85e{+}14$ | 4.015   | 8.70e + 5 | 4.17%     |
| ran_7_30_90   | 385  | 4.53e + 13 | 111.4    | 3.49e + 7 | 4.78e + 13   | 7.994   | 1.07e+6   | 3.06%     |
| ran_8_15_45   | 220  | 3.56e + 17 | 108.0    | 3.36e + 7 | 3.49e + 17   | 4.311   | 1.09e+6   | 3.23%     |
| ran_8_20_60   | 456  | 1.09e + 17 | 236.4    | 7.04e + 7 | 1.07e + 17   | 11.07   | 2.63e+6   | 3.73%     |
| ran_8_30_90   | 1209 | 6.96e + 16 | 723.6    | 1.91e + 8 | $6.95e{+}16$ | 28.69   | 3.58e+6   | 1.89%     |
| ran_10_15_45  | 228  | 1.18e + 23 | 399.4    | 8.41e+7   | 1.19e + 23   | 11.77   | 2.28e+6   | 2.71%     |
| ran_10_20_60  | 949  | 2.55e+22   | 1801     | 3.49e + 8 | 2.57e + 22   | 58.44   | 1.02e + 7 | 2.92%     |
| ran_10_30_90  | 8039 |            |          |           | 1.35e + 21   | 361.6   | 4.56e+7   | —         |
| ran_15_40_200 | 1726 |            |          |           | 7.88e + 27   | 619.2   | 3.88e + 7 | —         |
| ran_15_50_250 | 495  |            | _        |           | 1.25e + 23   | 217.1   | 1.18e + 7 | —         |
| ran_20_60_400 | 700  |            |          |           | 6.62e + 32   | 1666    | 5.19e + 7 |           |

Table 9: Effectiveness of the two-round strategy

Table 9 presents the results about the effectiveness of our two-round strategy. Columns " $n_1$ " and " $n_2$ " present the number of total random points generated by volume estimation method without and with the two-round strategy respectively. Table 9 shows that the two-round strategy saves 90% to 98% random points and more than 90% of running time. At the same time, the difference of

the output results between the original and the two-round strategy is usually less than 5%.

## 7.2.2. Reduction and Division Techniques

We experimented our reduction and division techniques over instances generated from program analysis and QF\_LIA benchmarks that are both SMT(LIA) formulas. Table 10 shows the experimental results about the comparison of the tool with and without the improvements introduced in Section 6. Column "Scale" presents the average scale of the instances in the instance family. Column "Original" presents the results of the original tool. Column "Reduction" presents the results of our tool with the reduction technique. Column "Reduc&Div" presents the results of the improved tool with both of the techniques. For each configuration, the experimental results consist of the number of solved instances and the running times.

|                            | Sc   | ale   | Original Reduction |          | Reduc&Div         |          |                   |         |
|----------------------------|------|-------|--------------------|----------|-------------------|----------|-------------------|---------|
| Instance                   | NV.  | Ineq. | Solved<br>(Total)  | Time (s) | Solved<br>(Total) | Time (s) | Solved<br>(Total) | Time(s) |
| abs                        | 1    | 1     | 2(2)               | 0.061    | 2(2)              | 0.011    | 2(2)              | 0.01    |
| findmiddle                 | 3    | 6.8   | 10 (10)            | 0.998    | 10 (10)           | 0.632    | 10 (10)           | 0.622   |
| getopPath                  | 2    | 15    | 2(2)               | 0.392    | 2(2)              | 0.199    | 2(2)              | 0.063   |
| tritype                    | 4    | 15.0  | 54 (54)            | 9.93     | 54 (54)           | 5.27     | 54 (54)           | 5.39    |
| calDate                    | 6    | 6.67  | 21 (21)            | 1.18     | 21 (21)           | 0.378    | 21 (21)           | 0.379   |
| FINDpath                   | 8    | 15.5  | 2(2)               | 0.139    | 2(2)              | 0.115    | 2 (2)             | 0.123   |
| Space_manage               | 17   | 12.5  | 56(56)             |          | 56(56)            | 190      | 56(56)            | 14.8    |
| tcas                       | 24   | 24.2  | 0<br>(1801)        |          | 1801<br>(1801)    | 70.45    | 1801<br>(1801)    | 42.3    |
| CAV_2009                   | 9.17 | 17.5  | 2(6)               | 0.138    | 2(6)              | 0.753    | 2(6)              | 0.752   |
| bignum                     | 6    | 13    | 2(2)               | 0.095    | 2(2)              | 0.061    | 2(2)              | 0.059   |
| $int_{-}$<br>incompletness | 3.33 | 4.67  | 3(3)               | 0.091    | 3(3)              | 0.014    | 3 (3)             | 0.014   |
| pigeon-hole                | 162  | 347   | 19 (19)            | 0.56     | 19 (19)           | 1.38     | 19 (19)           | 1.38    |
| fischer                    | 28.0 | 184   | 47 (49)            | 1605     | 47 (49)           | 1786     | 47 (49)           | 1747    |
| prime_cone                 | 11.2 | 24.7  | 15 (37)            |          | 13 (37)           | 1103     | 14 (37)           |         |

Table 10: Comparison of the tool with and without preprocessing techniques

Table 10 shows that our preprocessing techniques work well for the instances generated from program analysis. There is no significant improvements for the QF\_LIA benchmarks, which is not surprising. In some circumstances, our tool is even slower with preprocessing techniques, since the division may cause overhead. For example, a set of 6-dimensional constraints is divided into three groups of 2-dimensional problems. Then the lattice counting has to be initialized three times for these subproblems.

#### 7.2.3. Performance Comparison for SMT(LIA) Formulas

To further evaluate the performance of VolCE for solution counting, we compare it with SMTApproxMC [7] which is a hashing-based approximate counter for SMT(BV) formulas. For comparison, we transformed SMT(LIA) formulas into SMT(BV) formulas manually by replacing integer variables with fixedlength variables, bit-vector constants and bit operations. We experimented SMTApproxMC with parameters  $\epsilon = 0.8$  and  $\delta = 0.2$ . It guarantees the output lying in interval  $[1.8^{-1}R_F, 1.8R_F]$  with probability at least 80%, where  $R_F$  is the real count of a given formula F.

|                  |     |     |     | VolCE        |         | SMTApproxMC |         |         |  |
|------------------|-----|-----|-----|--------------|---------|-------------|---------|---------|--|
| Instance         | NV. | BV. | BC. | Result       | Time(s) | TB.         | Result  | Time(s) |  |
| FINDpath_1       | 8   | 0   | 1   | 4.08e+6      | 0.07    | 32          | 3.98e+6 | 1021    |  |
| FINDpath_2       | 8   | 0   | 1   | 87516        | 0.05    | 32          | 90000   | 116.8   |  |
| getopPath_1      | 1   | 0   | 6   | 242          | 0.02    | 8           | 245     | 2.568   |  |
| getopPath_2      | 3   | 0   | 18  | 8085         | 0.06    | 24          | 8381    | 14.96   |  |
| findmiddle_4     | 3   | 0   | 2   | 5527040      | 0.02    | 24          |         |         |  |
| findmiddle_6     | 3   | 0   | 4   | 130560       | 0.04    | 24          | 1.33e+5 | 151.5   |  |
| findmiddle_8     | 3   | 0   | 2   | 65280        | 0.02    | 24          | 62135   | 207.9   |  |
| Space_manage_38  | 7   | 0   | 7   | 5.41e + 14   | 0.11    | 56          |         |         |  |
| Space_manage_49  | 13  | 0   | 7   | 2.51e+27     | 0.85    | 104         |         |         |  |
| $tcas_1200$      | 5   | 0   | 6   | $2.81e{+}14$ | 0.02    | 80          |         |         |  |
| $tcas_1201$      | 7   | 0   | 34  | 1.21e + 24   | 0.05    | 112         |         |         |  |
| $tcas_1214$      | 7   | 0   | 10  | 1.84e + 19   | 0.02    | 112         |         | _       |  |
| prime_cone_sat_2 | 2   | 0   | 1   | 4159         | 0.02    | 32          | 3855    | 5.950   |  |
| prime_cone_sat_3 | 3   | 0   | 1   | 25777        | 0.02    | 48          | 24672   | 284.3   |  |
| prime_cone_sat_4 | 4   | 0   | 1   | 75662        | 0.12    | 64          | 65535   | 1134    |  |
| prime_cone_sat_5 | 5   | 0   | 1   | 48505        | 1.23    | 80          |         |         |  |
| prime_cone_sat_6 | 6   | 0   | 1   | 55143        | 6.85    | 96          |         |         |  |
| prime_cone_sat_7 | 7   | 0   | 1   | 17823        | 76.37   | 112         |         |         |  |
| FISCHER1-1-fair  | 4   | 20  | 1   | 256          | 0.03    | 40          | 253     | 5.825   |  |
| FISCHER2-7-fair  | 24  | 193 | 35  | 30135        | 4.94    | 240         | 28749   | 2463    |  |
| FISCHER3-8-fair  | 36  | 320 | 565 | 120540       | 243.11  | 360         |         | _       |  |

Table 11: Comparison between VolCE and SMTApproxMC over SMT(LIA) formulas

Table 11 presents the result of comparing the performance of VolCE with SMTApproxMC on a subset of our benchmarks. In these experiments, VolCE calls LattE for integer solution counting inside a polytope, so our tool returns the exact counts instead of approximations. Table 11 shows that our approach significantly outperforms SMTApproxMC for a large class of benchmarks. We observe that the running time of SMTApproxMC is closely related to the number of the solutions rather than the number of variables, i.e., the larger number of solutions, the more difficult for SMTApproxMC to handle.

## 8. Concluding Remarks

In contrast to various kinds of decision problems, counting problems have received less attention. We lack practical methods for solving them. This paper studies the counting problem for SMT(LA) constraints. Given a formula/constraint which is a Boolean combination of linear arithmetic inequalities, we would like to know the size of the solution space. Previous exact methods are not scalable.

In this paper, we have described a practical method for estimating the volume of convex polytopes, based on the Multiphase Monte-Carlo method. It employs a new technique to reutilize random points, so that the number of random points can be significantly reduced. We proved that the reutilization technique has no side-effect on the error. We also investigated a simplified version of hit-and-run method: the coordinate directions method. Based on the volume estimation method for polytopes, we presented an approach for estimating the volume of the solution space of SMT(LA) formulas, which is augmented with a heuristic called two round strategy to accelerate the procedure. We also devised some specific techniques for instances that arise from program analysis. The proposed methods have been evaluated on various benchmarks, and the results are promising.

## 9. Acknowledgements

We are very grateful to the anonymous reviewers for their helpful comments and suggestions. This work has been supported by the National 973 Program under grant No. 2014CB340701. Peng Zhang is partly supported by the National Natural Science Foundation of China (61672323), the Natural Science Foundation of Shandong Province (ZR2015FM008), and the Fundamental Research Funds of Shandong University (2015JC006).

- C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and C. Tinelli. CVC4. In CAV 2011. Proceedings, pages 171–177, 2011.
- [2] C. J. P. Bélisle, H. E. Romeijn, and R. L. Smith. Hit-and-run algorithms for generating multivariate distributions. *Math. Oper. Res.*, 18(2):255–266, 1993.
- [3] H. C. P. Berbee, C. G. E. Boender, A. H. G. Rinnooy Kan, C. L. Scheffer, R. L. Smith, and J. Telgen. Hit-and-run algorithms for the identification of nonredundant linear inequalities. *Math. Program.*, 37(2):184–207, 1987.
- [4] B. Büeler, A. Enge, and K. Fukuda. Exact Volume Computation for Polytopes: A Practical Study, pages 131–154. 2000.
- [5] J. Cai, S. Huang, and P. Lu. From holant to #CSP and back: Dichotomy for holant c problems. *Algorithmica*, 64(3):511–533, 2012.
- [6] J. Cai, P. Lu, and M. Xia. The complexity of complex weighted boolean #CSP. J. Comput. Syst. Sci., 80(1):217–236, 2014.
- [7] S. Chakraborty, K. S. Meel, R. Mistry, and M. Y. Vardi. Approximate probabilistic inference via word-level counting. In AAAI 2016. Proceedings, pages 3218–3224, 2016.
- [8] M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting. Artif. Intell., 172(6-7):772–799, 2008.

- [9] D. Chistikov, R. Dimitrova, and R. Majumdar. Approximate counting in SMT and value estimation for probabilistic programs. In *TACAS 2015. Proceedings*, pages 320–334, 2015.
- [10] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS 2008. Proceedings, pages 337–340, 2008.
- [11] B. Dutertre. Yices 2.2. In CAV 2014. Proceedings, pages 737–744, 2014.
- [12] M. E. Dyer and A. M. Frieze. On the complexity of computing the volume of a polyhedron. SIAM J. Comput., 17(5):967–974, 1988.
- [13] M. E. Dyer, A. M. Frieze, and R. Kannan. A random polynomial time algorithm for approximating the volume of convex bodies. In *Proceedings* of the 21st Annual ACM Symposium on Theory of Computing, 1989, pages 375–381, 1989.
- [14] M. Fredrikson and S. Jha. Satisfiability modulo counting: a new approach for analyzing privacy properties. In CSL-LICS 2014. Proceedings, pages 42:1–42:10, 2014.
- [15] C. Ge and F. Ma. A fast and practical method to estimate volumes of convex polytopes. In FAW 2015. Proceedings, pages 52–65, 2015.
- [16] J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic execution. In *ISSTA 2012. Proceedings*, pages 166–176, 2012.
- [17] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization. *Combinatorica*, 1988.
- [18] C. A. R. Hoare. Proof of a program: FIND. Commun. ACM, 14(1):39–45, 1971.
- [19] R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O<sup>\*</sup>(n<sup>5</sup>) volume algorithm for convex bodies. *Random Struct. Algorithms*, 11(1):1–50, 1997.
- [20] B. W. Kernighan and D. M. Ritchie. The C programming language. 1978.
- [21] L. G. Khachiyan. On the complexity of computing the volume of a polytope. Izvestia Akad. Nauk SSSR, Engineering Cybernetics, 3:216–217, 1988.
- [22] L. G. Khachiyan. The problem of computing the volume of polytopes is np-hard. Uspekhi Mat. Nauk, 44(3):199–200, 1989.
- [23] S. Liu and J. Zhang. Program analysis: from qualitative analysis to quantitative analysis. In ICSE 2011. Proceedings, pages 956–959, 2011.
- [24] S. Liu, J. Zhang, and B. Zhu. Volume computation using a direct monte carlo method. In COCOON 2007. Proceedings, pages 198–209, 2007.

- [25] J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. Effective lattice point counting in rational convex polytopes. J. Symb. Comput., 38(4):1273– 1302, 2004.
- [26] L. Lovász. Hit-and-run mixes fast. Math. Program., 86(3):443-461, 1999.
- [27] L. Lovász and I. Deák. Computational results of an  $O^*(n^4)$  volume algorithm. European Journal of Operational Research, 216(1):152–161, 2012.
- [28] L. Lovász and M. Simonovits. The mixing rate of markov chains, an isoperimetric inequality, and computing the volume. In 31st Annual Symposium on Foundations of Computer Science, 1990, Volume I, pages 346–354, 1990.
- [29] L. Lovász and S. Vempala. Where to start a geometric random walk, 2003.
- [30] L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM J. Comput., 35(4):985–1005, 2006.
- [31] L. Lovász and S. Vempala. Simulated annealing in convex bodies and an  $O^*(n^4)$  volume algorithm. J. Comput. Syst. Sci., 72(2):392–417, 2006.
- [32] F. Ma, S. Liu, and J. Zhang. Volume computation for boolean combination of linear arithmetic constraints. In *CADE-22, 2009. Proceedings*, pages 453–468, 2009.
- [33] D. Roth. On the hardness of approximate reasoning. Artif. Intell., 82(1-2):273-302, 1996.
- [34] R. L. Smith. Efficient monte carlo procedures for generating points uniformly distributed over bounded regions. *Operations Research*, 32(6):1296–1308, 1984.
- [35] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160, 1972.
- [36] M. Zhou, F. He, X. Song, S. He, G. Chen, and M. Gu. Estimating the volume of solution space for satisfiability modulo linear real arithmetic. *Theory Comput. Syst.*, 56(2):347–371, 2015.