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Abstract

The satisfiability modulo theories (SMT) problem is a decision problem, i.e.,
deciding the satisfiability of logical formulas with respect to combinations of
background theories (like reals, integers, arrays, bit-vectors). In this paper, we
study the counting version of SMT with respect to linear arithmetic – SMT(LA),
which generalizes both model counting and volume computation of convex poly-
topes. We describe a method for estimating the volume of convex polytopes
based on the Multiphase Monte-Carlo method. It employs a new technique to
reutilize random points, so that the number of random points can be signifi-
cantly reduced. We prove that the reutilization technique has no side-effect on
the error. We also investigate a simplified version of hit-and-run method: the
coordinate directions method. Based on volume estimation method for poly-
topes, we present an approach to estimating the volume of the solution space
of SMT(LA) formulas. It employs a heuristic strategy to accelerate the vol-
ume estimation procedure. In addition, we devise some specific techniques for
instances that arise from program analysis.

Keywords: SMT, Volume, Counting, Convex Polytope

1. Introduction

The satisfiability (SAT) problem in the propositional logic is a fundamental
problem in computer science. But in practice, many problems cannot be ex-
pressed by propositional formulas directly or naturally. In recent years, there
have been a lot of works on solving the Satisfiability Modulo Theories (SMT)
problem, which try to decide the satisfiability of logical formulas with respect
to combinations of background theories (like reals, integers, arrays, bit-vectors).
SMT can be regarded as an extension to SAT, as well as a kind of constraint
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satisfaction problem (CSP). Quite efficient SMT solvers have been developed,
such as CVC3/CVC4, Z3 and Yices [1, 10, 11].

The counting version of CSP, i.e., #CSP, has been studied by various re-
searchers [5, 6]. There has also been much work on the model counting problem
in the propositional logic, i.e., counting the number of models of a propositional
formula. It is closely related to approximate reasoning [33, 8].

On the other hand, the counting version of SMT, i.e., #SMT, has not been
studied much. In this paper, we focus on the #SMT problem with respect to the
theory of linear arithmetic – #SMT(LA). Given a set of SMT(LA) constraints,
we would like to know how many solutions there are. Or, in other words, how
large the solution space is. The problem can be regarded as an extension to
SMT solving, and also a generalization of both the model counting problem in
the propositional logic and volume computation of convex polytopes. It has
recently gained some attention in the software engineering community [23, 16].

An SMT(LA) formula is satisfiable if and only if there exists a Boolean as-
signment to its linear inequalities such that the SMT formula is evaluated to
true in Boolean level, and the conjunction of inequalities is also consistent. Such
Boolean assignment is called feasible assignment. The linear system correspond-
ing to a feasible assignment forms a convex polytope. Ma et al. [32] proposed
an exact approach for #SMT(LA) problem which integrates SMT solving with
volume computation for convex polytopes. However, exact volume computation
in general is a difficult problem. It has been proved to be #P-hard, even for
explicitly described polytopes [12, 21, 22]. Yet, in many applications, it suffices
to have an approximate value of the volume of the solution space. Therefore, it
is desirable to study highly efficient methods for estimating the volume of the
solution space.

Volume computation for convex polytopes is a classical problem in mathe-
matics. The high complexity of exact volume computation procedure for convex
polytopes is the bottleneck of the approach in [32]. On the other hand, volume
estimation methods for convex bodies have been extensively studied in theory.
The Monte-Carlo method is a straightforward way to estimate the volume of a
convex body. However, it suffers from the curse of dimensionality, which means
the possibility of sampling inside a certain space in the target object decreases
very quickly while the dimension increases. As a result, the sample size has to
grow exponentially to achieve a reasonable estimation. To avoid the curse of
dimensionality, Dyer et al. proposed a polynomial time randomized approxima-
tion algorithm (called Multiphase Monte-Carlo Algorithm) [13]. At first, the
theoretical complexity of this algorithm is O∗(n23)2, it was reduced to O∗(n4)
at last by Lovász, Kannan et al. [28, 19, 26, 31]. Despite the polynomial time
results and reduced complexity, there is still a lack of practical implementation.

In this paper, we first describe an algorithm for estimating the volume of
convex polytopes which is based on the Multiphase Monte-Carlo method. The

2The “soft-O” notation O∗ indicates that we suppress factors of logn as well as factors
depending on other parameters like the error bound.
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algorithm is augmented with a new technique to reutilize random points, so
that the number of random points can be significantly reduced. We prove that
the reutilization technique has no side-effect on the error. We also investigate
a simplified version of hit-and-run method: the coordinate directions method,
which has never been employed in volume estimation before. Then we inte-
grate our volume estimation method for convex polytopes into the framework
of solving #SMT(LA) problems. We propose a heuristic improvement called
two-round strategy, which automatically adjusts the number of random points
for each invocation of polytope volume estimation. Besides, for instances arise
from program analysis, we also introduce some effective techniques.

The rest of this paper is organized as follows. We first describe some basic
concepts and notations, as well as some essential techniques and tools in Sec-
tion 2. Then Section 3 reviews some related works. In Section 4, we present
our volume estimation method for convex polytopes, with theoretical analy-
sis. Section 5 presents our approach to volume computation and estimation
for SMT(LA) formulas. In Section 6, we further discuss how to improve our
approach for the instances generated from program analysis. Section 7 presents
some experimental results. Finally, we conclude in Section 8.

This article is an extension of a conference paper [15] presented at the 9th
International Workshop of Frontiers in Algorithmics.

2. Preliminaries

This section describes some basic concepts and notations. We also mention
some existing techniques and tools that will be used later.

2.1. SMT(LA) Formulas

Definition 1. A linear arithmetic (LA) constraint is an expression that may
be written in the form a1x1 + a2x2 + · · ·+ anxn op a0. Here x1, x2, . . . , xn are
numeric variables, a0, a1, a2, . . . , an are constant coefficients, and op ∈ {<,≤, >
,≥,=, 6=} .

Definition 2. An SMT formula φ over LA constraints, i.e., an SMT(LA)
formula, can be represented as a Boolean formula PSφ(b1, . . . , bn) together
with definitions in the form: bi ≡ ci. Here cis are LA constraints. PSφ is the
propositional skeleton of the formula φ.

The propositional skeleton contains logical operators, like AND, OR, NOT.
A simple example of SMT(LA) formulas is

(x+ y < 1 OR x ≥ y) AND (x+ y < 1 OR x < y OR b).

Let the Boolean variables b1 and b2 represent the linear inequalities x + y < 1
and x < y respectively. Then we obtain the propositional skeleton

(b1 OR (NOT b2)) AND (b1 OR b2 OR b).
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Definition 3. An SMT(LA) formula φ is satisfiable if there is an assignment
α to the Boolean variables in PSφ such that:

1. α propositionally satisfies φ, or formally α |= PSφ;

2. The conjunction of LA constraints under the assignment α is consistent.

The assignment α is called a feasible assignment. We denote the set of all
feasible assignments of φ by Model(φ).

Let us consider two specific types of numeric variables, the integers and reals.

Definition 4. A linear integer arithmetic (LIA) constraint is an LA con-
straint with integer type variables. Analogously, we define the linear real
arithmetic (LRA) constraint for real type variables.

Accordingly, there are SMT(LIA) formulas and SMT(LRA) formulas.
For an SMT(LIA) formula, we count the number of solutions. For an SMT(LRA)
formula, we compute the volume of the solution space instead.

2.2. Convex Polytopes

The assignment of the propositional skeleton of the SMT(LA) formula corre-
sponds to a conjunction of linear constraints which can be regarded as a convex
polytope.

Definition 5. A convex polytope P is a bounded subset of Rd which is the
intersection of a finite set of half spaces (inequalities).

Formally, it is usually described using the H-representation {x|Ax ≤ b},
where A is a matrix of dimension m × d and b is a vector of dimension m.
aij represents the element at the i-th row and the j-th column of A, and ai
represents the i-th row vector of A.

There are already some tools available to compute the exact volume of a
convex polytope. For example, Vinci [4] is such a tool, whose input is a set
of linear inequalities. Sometimes we are interested in the number of integer
points in the solution space for LIA constraints. LattE [25] is a tool dedicated
to the counting of lattice points inside convex polytopes and the solution of
integer programs. But all the parameters in the matrix A and vector b should
be integers.

In this paper, we use vol(K) to denote the volume of a body K. For an
assignment α of an SMT(LA) formula φ, we use vol(α) to denote the volume
of the corresponding polytope. The volume of φ, denoted by vol(φ), is formally
defined as follows:

vol(φ) =
∑

α∈Model(φ)

vol(α)
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3. Related Works

3.1. Volume Approximation for Convex Bodies

Liu et al. [24] developed a tool to estimate the volume of a convex body with
a direct Monte-Carlo method. It can also deal with non-convex cases. Suffered
from the curse of dimensionality, it can hardly solve high-dimensional problem
instances. A more recent work [27] is an implementation of the O∗(n4) volume
algorithm in [31]. This algorithm is designed for convex bodies. However, there
are no experimental results except cubes within 10 dimensions, because the
oracle describing the convex bodies takes too long to run. Furthermore, it takes
hours to approximate the volume of an 8-dimension cube. In Section 7.1.1, we
present the experimental results about comparison between our approach and
the method used in [27].

3.2. Model Counting for SMT Formulas

There was little work on the counting of SMT solutions, until quite recently.
Fredrikson and Jha [14] relate a set of privacy and confidentiality verification

problems to the so-called model-counting satisfiability problem, and present an
abstract decision procedure for it. They implemented this procedure for linear-
integer arithmetic. Their tool is called countersat.

Zhou et al. [36] propose a BDD-based search algorithm which reduces the
number of conjunctions. For each conjunction, they propose a Monte-Carlo
integration with a ray-based sampling strategy, which approximates the volume.
Their tool is named RVC. It can handle formulas with up to 18 variables. But
the running time is dozens of minutes.

A different approach is described in [9]. It is a bit-level hashing-based model
counter. Their approach propositionalizes the solution space and uses XOR-
based bit-level hash functions to obtain a randomized subset of the solution
space. Then it calls an SMT solver repeatedly to count the subset and estimates
the volume of the whole solution space. Note that this approach does not
need to modify existing SMT solvers. Their work focuses on the problem of
approximate model counting for a space projected from the solution space of a
mixed integer SMT(LA) formula. For continuous problems, though [9] proposed
a discretization procedure, it is not so practical, since it introduces too many
discrete variables that may be even beyond the limit of Z3’s XOR reasoning.

More recently, Chakraborty et al. [7] proposed a hashing-based approximate
model counter. It benefits from state-of-the-art word-level SMT solvers. It also
approximates the volume of the whole solution space instead of a projection
space. For discrete problems without projection, [7] outperforms the previous
approximate counter that employs XOR-based hash functions [9], especially,
over benchmarks with word-level constraints (e.g., arithmetic constraints). In
Section 7.2.3, we present the comparison between our approach and [7].
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4. Volume Estimation for Convex Polytopes

In this section, we present our algorithm for estimating the volume of con-
vex polytopes which is based on the Multiphase Monte-Carlo method [13]. We
propose two improvements over the original Multiphase Monte-Carlo method.
Firstly, we develop a new technique to reutilize random points, so that the num-
ber of random points can be significantly reduced. Secondly, we use the coordi-
nate directions hit-and-run method instead of hypersphere directions method.
We implemented the new method in a tool called PolyVest [15] (Polytope Vol-
ume Estimation).

We assume that P is a full-dimensional and nonempty convex polytope. We
use B(x,R) to denote the ball with radius R and center x. And we define
ellipsoid E = E(A, a) = {x ∈ Rn|(x − a)TA−1(x − a) ≤ 1}, where A is a
symmetric positive definite matrix, i.e., for every non-zero column vector z, the
scalar zTAz is positive.

Figure 1: Multiphase Monte-Carlo Figure 2: Hit-and-run

The basic procedure of PolyVest consists of the following three steps: round-
ing, subdivision and random point generation.

4.1. Rounding

Given a convex polytope Q, the rounding procedure is to find an affine
transformation T on Q such that B(0, 1) ⊆ T (Q) ⊆ B(0, r), with a constant γ =
vol(Q)

vol(T (Q)) . If r > n, T can be found by the Shallow-β-Cut Ellipsoid Method [17]

(Chapter 3), where β = 1
r . It is an iterative method that generates a series

of ellipsoids {Ei = E(Ti, oi)} s.t. Q ⊆ Ei, until we find an Ek such that
E(β2Tk, ok) ⊆ Q. Then we transform the ellipsoid Ek into B(0, r). Intuitively,
rounding can transform a very “thin” polytope, which cannot be subdivided
directly, into a well-bounded one.

This procedure could take much time when r is close to n, e.g. r = n + 1.
There is a tradeoff between rounding procedure and random point generation,
since the smaller r is, the more iterations for rounding and the fewer points have
to be generated. We used r = 2n in our implementation, so that the overhead
of rounding is usually negligible compared to the whole estimation method for
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polytopes. In the sequel, we use P to represent the new polytope T (Q), and we
only consider the polytope P instead of Q.

4.2. Subdivision

Then we divide P into a sequence of convex bodies. The high-level idea of
the subdivision step is illustrated in Figure 1. We place l concentric balls {Bi}
between B(0, 1) and B(0, r). Set Ki = Bi ∩ P , then K0 = B(0, 1), Kl = P and

vol(P ) = vol(K0)

l−1∏
i=0

vol(Ki+1)

vol(Ki)
.

Let αi denote the ratio vol(Ki+1)/vol(Ki), then

vol(P ) = vol(K0)

l−1∏
i=0

αi. (1)

Hence the volume of the polytope P is transformed to the product of a series
of ratios and the volume of K0. Note that K0 = B(0, 1), whose volume can be
easily computed. So, we only have to estimate the value of αi.

Of course, one would like to choose the number of concentric balls, l, to be
small. However, from Theorem 5, one needs about O(l2) random points to get
a sufficiently good approximation for αi. It follows that the αi must not be too
large. In PolyVest, we set l = dn log2 re and Bi = B(0, 2i/n) to construct the
convex bodies {Ki}.

Proposition 1. If l = dn log2 re and Bi = B(0, 2i/n), then 1 ≤ αi ≤ 2.

Proof. Let ri denote the radius of ball B(0, 2i/n), i.e., ri = 2i/n. Since Ki =
Bi ∩P ⊆ Bi+1 ∩P = Ki+1, we get αi ≥ 1. On the other hand, since P contains
the origin after rounding procedure, Kis also contain the origin. Note that Kis
are convex bodies, so

Ki+1 ⊆
ri+1

ri
Ki = 21/nKi,

we have

αi =
vol(Ki+1)

vol(Ki)
≤ 2.

That is, 1 ≤ αi ≤ 2.

4.3. Hit-and-run

To approximate αi, we generate step size random points in Ki+1 and count
the number of points ci in Ki. The value of the parameter step size will be
discussed in Section 4.7. Then there is

αi ≈
step size

ci
.
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It is easy to generate points in uniform distributions on cubes or ellipsoids but
not easy on Kis. So we consider the random walk method. Hit-and-run method
is a random walk which has been studied for a long time [34, 3, 2]. There are
two versions: the hypersphere directions method (HDHR), and the coordinate
directions method (CDHR). HDHR starts from a point x in a convex body K,
and generates the next point x′ in K by two steps: (i) select a line L through
x uniformly on a hypersphere, and (ii) then choose a point x′ uniformly on the
segment of line L in K. The CDHR is similar to HDHR, but it chooses directions
with equal probability from the coordinate direction vectors and their opposites.
Berbee et al. [3] proved the following theorems.

Theorem 1. The HDHR algorithm generates a sequence of interior points
whose limiting distribution is uniform.

Theorem 2. The CDHR algorithm generates a sequence of interior points
whose limiting distribution is uniform.

Note that coordinate directions are special cases of directions generated on
a hypersphere, hence the previous theoretical research about volume approxi-
mation algorithm with hit-and-run methods mainly focuses on HDHR. In this
paper, we investigate CDHR and apply it to the volume approximation algo-
rithm. In our algorithm, CDHR starts from a point x in Kk+1, and generates
the next point x′ in Kk+1 by two steps:

Step 1. Select a line L through x uniformly over n coordinate directions,
e1, . . . en.

Step 2. Choose a point x′ uniformly on the segment of line L in Kk+1.

More specifically, we randomly select the dth component xd of point x and get
xd’s bound [u, v] that satisfies

x|xd=t ∈ Kk+1, ∀t ∈ [u, v] (2)

x|xd=u, x|xd=v ∈ ∂Kk+1 (3)

(“∂” denotes the boundary of a set). Then we choose x′d ∈ [u, v] with uniform
distribution and generate the next point x′ = x|xd=x′d ∈ Kk+1.

Since ri = 2i/n is the radius of Bi and Kk+1 = Bk+1 ∩ P , so x′ ∈ Bk+1 and
x′ ∈ P , we have

x′ ∈ Bk+1 ⇔ |x′| ≤ rk+1 ⇔ x′2d ≤ r2k+1 −
∑
i 6=d

x2i

x′ ∈ P ⇔ aix
′ ≤ bi ⇔ aidx

′
d ≤ bi −

∑
j 6=d

aijxj = µi, ∀i
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Let

u = max
∀i s.t. aid<0

max

−
√
r2k+1 −

∑
i 6=d

x2i ,
µi
aid




v = min
∀i s.t. aid>0

min


√
r2k+1 −

∑
i6=d

x2i ,
µi
aid




then interval [u, v] is the range of x′d that satisfies Formula (2) and Formula (3).

4.4. Reutilization of Random Points

In the original description of the Multiphase Monte Carlo method, it is
indicated that the ratios αi are estimated in natural order, from the first ratio
α0 to the last one αl−1. The method starts generating from the origin. At
the kth phase, it generates a certain number of random independent points in
Kk+1 and counts the number of points ck in Kk to estimate αk. However, our
algorithm performs in the opposite way: Random points are generated from the
outermost convex body Kl to the innermost convex body K0, and ratios are
estimated accordingly in reverse order.

The advantage of approximation in reverse order is that it is possible to
fully exploit the random points generated in previous phases. Suppose that we
have already generated a set of points S by random walk with almost uniform
distribution in Ki+1, and some of them also hit the convex body Ki, denoted

by S ′. The ratio αi is thus estimated with |S|
|S′| . However, these random points

can reveal more information than just the ratio αi. Since Ki is a sub-region of
Ki+1, the points in S ′ are also almost uniformly distributed in Ki. Therefore,
S ′ can serve as part of the random points in Ki. Furthermore, for any Kj

(0 ≤ j ≤ i) inside Ki+1, the points in Ki+1 that hit Kj can serve as random
points to approximate αj as well.

Based on this insight, we devise a different direction, i.e., generate from
outside to inside. At the i-th phase which approximates ratio αi, the algorithm
first calculates the number count of the former points that are also in Ki+1, then
generates the rest (step size − count) points by random walk. The framework
of our volume estimation algorithm with reutilization technique is presented in
Algotihm 1. The parameter w is the number of sufficient steps for hit-and-run
algorithm mixing. We discuss the value of w in Section 4.5.

Unlike generating random points in natural order, choosing the starting point
for each phase in reverse order is a bit complex. The whole generating process
in reverse order also starts from the origin. At the end of the i-th phase, we
select a point x in Ki+1 and employ x′ = 2−

1
nx as the starting point of the next

phase (the (i − 1)-th phase) since 2−
1
nx ∈ Ki. It is easy to find out that the

expected number of saved random points with our algorithm is

l−1∑
i=1

(
step size× 1

αi

)
. (4)
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Algorithm 1 Volume Estimation Algorithm With Reutilization Technique

1: function EstimateVol(step size)
2: γ ← Rounding( )
3: x← Origin
4: l← dn log2 re
5: count, t0, . . . , tl−1 ← 0
6: for i← l − 1 downto 0 do
7: for j ← count to step size do
8: x←Walk(x, i, w) /* perform w steps of random walk in Ki+1*/
9: if x ∈ Ki then

10: calculate a value m such that x ∈ Km and x 6∈ Km−1
11: tm ← tm + 1
12: end if
13: end for
14: count←

∑i
i′=0 ti′

15: αi ← step size/count

16: x← 2−
1
nx

17: end for
18: return γ · unit ball(n) ·

∏l−1
i=0 αi

19: end function

Since αi ≤ 2, we only have to generate less than half random points with this
technique. Actually, it can save over 70% time consumption on a large set of
benchmarks (see Section 7.1.4). In addition, we shall prove that the reutilization
technique has no effect on the error of the estimation result (see Section 4.6).

4.5. About the Mixing Time

When generating the next point x′ with the previous random point x, we
have to make some steps from x to achieve stationarity and make x′ independent
of x. However, the number of sufficient steps w for hit-and-run algorithm mixing
is hard to decide. The previous theoretical research [30, 29] presented the upper
bounds on w in the Markov chain which are of the form:

w = O(n2) for a random initial point, and

w = O(n3) for a fixed initial point.

Note that the hiding constant factors in O(n2) and O(n3) are 1030 and 1011

respectively. Lovász et al. [27] reported that the upper bound for HDHR method
is much higher than actually required according to the numerical experiences.
And they used to set w = n + 1. They also tried w = 2(n + 1) and w = n lnn
without visible improvement. We investigate the value of w for the CDHR
method in a similar way, since obtaining the theoretical upper bound is hard.
We conducted experiments with linear size of w, i.e., w = n, w = 2n, and
w = 3n. Based on the observation in Section 7.1.2, we choose w = n.
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Ki + 1

Ki + 2

Ki

Figure 3: An illustration of the i-th phase, which aims to estimate αi =
ki+1

ki
. The black

round points are generated in and before the (i+ 1)-th phase. The white triangle points are
generated in the i-th phase.

4.6. Analysis of the Reutilization Technique

In the following analysis, we assume that our algorithm generates points
in uniform distribution. For simplicity, we use ki to represent vol(Ki) in this
section. Let f(k;n, p) represent the probability mass function of the binomial
distribution B(n, p), i.e., f(k;n, p) =

(
n
k

)
pk(1− p)n−k.

Recall that in our volume estimation procedure, there are l phases in total.
With the reutilization technique, in each phase i (0 ≤ i ≤ l−1), to estimate the

value of αi = ki+1

ki
, we reuse all points in Ki+1 generated in the earlier phases,

and generate enough new points in Ki+1, so that the total number of already
existing points and newly generated points in Ki+1 is equal to step size. See
Figure 3 for an illustration.

We introduce some new notations for the analysis.
For every 0 ≤ i ≤ l − 1, define

Gi = {the points newly generated in the i-th phase}

and
Ci = {the points dropped in Ki at the end of the i-th phase}.

Note that Ci ⊆ Ki and Gi ⊆ Ki+1 for every 0 ≤ i ≤ l − 1. Let ci = |Ci| and
gi = |Gi|.

At the end of the i-th phase, Algorithm 1 counts the number of points lying
in Ki, and use

# of random points in Ki+1

# of random points in Ki
=
step size

ci

as the estimation of αi (0 ≤ i ≤ l − 1).
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Recall that the first phase of Algorithm 1 is the (l − 1)-th phase. We addi-
tionally define Cl = ∅ (and thus cl = 0) to indicate the fact that at the beginning
of the algorithm, there is no random point in Kl.

By definition, we have

Lemma 1. For every 0 ≤ i ≤ l − 1,

ci+1 + gi = step size.

Lemma 1 says that for every phase i, the sum of the number of random points
that are generated in and before the (i+ 1)-th phase (in Figure 3, these points
are the black round points in Ki+1), and the number of random points newly
generated in the i-th (this) phase (in Figure 3, these points are the triangle
points in Ki+1), is equal to step size.

Furthermore, we define

Ci,j = Ci ∩Kj , 0 ≤ i ≤ l − 1, 0 ≤ j ≤ i,
Gi,j = Gi ∩Kj , 0 ≤ i ≤ l − 1, 0 ≤ j ≤ i+ 1.

By definition, we have Ci,i = Ci and Gi,i+1 = Gi.
Let ci,j = |Ci,j | and gi,j = |Gi,j |.

Lemma 2. For each i = 0, . . . , l − 1, we have

1. Ci = Ci+1,i ∪Gi,i, and

2. ci = ci+1,i + gi,i.

Proof. By definition, Ci is the set of random points that lie in Ki at the end of
the i-th phase of Algorithm 1. These points consist of two parts as illustrated in
Figure 3. One part is the set of random points that lie in Ki and are generated
before the i-th phase. This set can be denoted by Ci+1 ∩Ki = Ci+1,i using our
notation. In Figure 3, Ci+1,i is the set of black round points in Ki. The other
part is the set of random points that lie in Ki and are newly generated in the
i-th phase. This set can be denoted by Gi ∩Ki = Gi,i using our notation. In
Figure 3, Gi,i is the set of triangle points in Ki.

The above analysis shows that

Ci = (Ci+1 ∩Ki) ∪ (Gi ∩Ki)

= Ci+1,i ∪Gi,i.

Since Ci+1,i and Gi,i are disjoint, we naturally have ci = ci+1,i + gi,i. The
lemma follows.

Lemma 3. ci+1,i and gi,i are conditionally independent given ci+1 or gi (i =
0, . . . , l − 1).

Proof. Lemma 1 indicates that the value of gi is determined by ci+1, and vice
versa. So, we only need to show that ci+1,i and gi,i are conditionally independent
given one of ci+1 and gi, say, gi.
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By definition, ci+1,1 = |Ci+1 ∩ Ki|, and gi,i = |Gi ∩ Ki|. See Figure 3 for
example. In Figure 3, ci+1,i is the number of black round points in Ki, and gi,i
is the number of triangle points in Ki. Although the total number of random
points in Ki+1 is equal to step size (which contains both ci+1,i and gi,i), given
the value gi = |Gi|, the value gi,i is only related to the shape of Ki, since all the
points in Gi are distributed uniformly at random in Ki+1, which is a superset
of Ki. Therefore, ci+1,i and gi,i are conditionally independent given the value
gi.

Lemma 3 is an important observation of our algorithm with reutilization
technique. Then, with this observation, we introduce the following theorem
which concerns the correctness of our algorithm.

Theorem 3. For each i = 0, . . . , l − 1, ci ∼ B(step size, ki
ki+1

).

Proof. For simplicity, let

p =
ki
ki+1

and
s = step size.

We consider the probability Pr(ci = x) for arbitrary 0 ≤ x ≤ s. We have

Pr(ci = x) =

s∑
y=0

Pr(ci = x, ci+1 = y)

=

s∑
y=0

Pr(ci = x | ci+1 = y) Pr(ci+1 = y). (5)

The conditional probability Pr(ci = x | ci+1 = y) can be calculated as

Pr(ci = x | ci+1 = y)

=
LM2

Pr(ci+1,i + gi,i = x | ci+1 = y)

=

x∑
a=0

Pr(ci+1,i = a, gi,i = x− a | ci+1 = y)

=
LM3

x∑
a=0

[Pr(ci+1,i = a | ci+1 = y) ·

Pr(gi,i = x− a | gi = s− y)]. (6)

Since the points in Ci+1 are generated uniformly at random in Ki+1, and
Ci+1,i = Ci+1 ∩Ki (that is, Ci+1,i is the set of points in Ci+1 that are dropped
in Ki), we have

Pr(ci+1,i = a | ci+1 = y) = f(a; y, ki
ki+1

) = f(a; y, p), (7)
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Similarly, since the points in Gi are generated uniformly at random in Ki+1,
and Gi,i = Gi ∩Ki, we have

Pr(gi,i = x− a | gi = s− y) = f(x− a; s− y, p). (8)

Combining Equations (6), (7) and (8), we have

Pr(ci = x | ci+1 = y) =

x∑
a=0

f(a; y, p)f(x− a; s− y, p)

=

x∑
a=0

(
y

a

)(
s− y
x− a

)
px(1− p)s−x

= px(1− p)s−x
x∑
a=0

(
y

a

)(
s− y
x− a

)
= px(1− p)s−x

(
s

x

)
= f(x; s, p). (9)

Finally, combining Equations (5) and (9), we have

Pr(ci = x) =

s∑
y=0

Pr(ci+1 = y)f(x; s, p) = f(x; s, p). (10)

The proof of Theorem 3 also shows that ci and ci+1 are independent (see
Equations (9) and (10)). Actually, we have stronger statement, which says that
c0, . . . , cl−1 are mutually independent.

Theorem 4. The random variables c0, . . . , cl−1 are mutually independent.

Proof. We prove the theorem by induction on the indices of ci’s, from l−2 down
to 0.

Basic Step: When i = l− 2, we have already proved that cl−2 and cl−1 are
independent in the proof of Theorem 3 (see Equations (9) and (10)).

Induction Hypothesis: Suppose that ci+1, ci+2, . . . , cl−1 are mutually in-
dependent, i.e.,

Pr(ci+1 = xi+1, . . . , cl−1 = xl−1) =

l−1∏
j=i+1

Pr(cj = xj). (11)

Induction Step: In the following we show that ci, ci+1, . . . , cl−1 are mutu-
ally independent. For arbitrary 0 ≤ xi, . . . , xl−1 ≤ step size, we consider the
probability

Pr(ci = xi, ci+1 = xi+1, . . . , cl−1 = xl−1)

= Pr(ci = xi | ci+1 = xi+1, . . . , cl−1 = xl−1) ·
Pr(ci+1 = xi+1, . . . , cl−1 = xl−1). (12)
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By definition, the set Ci consists of points in Ci+1 and Gi which also lie in
Ki. Though the set Ci+1 consists of points generated in and before the (i+ 1)-

phase (i.e., Ci+1 =
⋃l−1
j=i+1(Gj ∩Ki+1)), the points in Ci+1 are still distributed

uniformly in Ki+1. In addition, although gi is determined by ci+1, the points in
Gi are generated independently with the points in Cj ’s (j ≥ i+1). Therefore, ci
is only affected by the shape of Ki for any value of ci+1, since in the i-th phase,
Algorithm 1 must generate step size uniformly distributed random points in
Ki+1. In other words, the procedure to count ci in the i-th phase of Algorithm
1 is equivalent to generating step size random points in Ki+1 uniformly at
random from scratch and then counting the number of random points dropped
in Ki. Furthermore, when generating random points in Ki+1, Algorithm 1 does
not check or count the points in Ci+2, . . . , Cl−1. So, we have

Pr(ci = xi | ci+1 = xi+1, . . . , cl−1 = xl−1) = Pr(ci = xi | ci+1 = xi+1)

= Pr(ci = xi). (13)

Finally, combining Equations (11), (12) and (13), we have

Pr(ci = xi, ci+1 = xi+1, . . . , cl−1 = xl−1) =

l−1∏
j=i

Pr(cj = xj).

4.7. Analysis on the Number of Random Points

In this section, we provide some analysis about the number of random points
for estimating each αi.

Theorem 5. Given ε > 0, δ ∈ (0, 1), if we let step size =
⌈
(
z1−δ/2·l
ln(1+ε) + z)2

⌉
,

then the estimation result of Algorithm 1 lies in [(1 + ε)−1vol(P ), (1 + ε)vol(P )]
with probability at least 1− δ, where z1−δ/2 is the 1− δ/2 quantile of a standard
normal distribution.

Proof. For simplicity, let
s = step size

and
z = z1−δ/2.

We use v to represent the output estimation of Algorithm 1. Let pi repre-
sent ci

s . From Theorem 3, the value of pi is the proportion of successes in a

Bernoulli trail process which follows binomial distribution B(s, vol(Ki+1)
vol(Ki+2)

). So,

we apply the approximate formula of a binomial proportion confidence interval

pi ± z
√

pi(1−pi)
s , i.e.,

Pr

(
pi − z

√
pi(1− pi)

s
≤ vol(Ki+1)

vol(Ki+2)
≤ pi + z

√
pi(1− pi)

s

)
≥ 1− δ.
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Recall that Algorithm 1 uses s
ci

to estimate αi. There is v = vol(K0)
∏l−1
i=0

1
pi

.
Then the 1− δ confidence interval of v shall be vol(K0)∏l−1

i=0

(
pi + z

√
pi(1−pi)

s

) , vol(K0)∏l−1
i=0

(
pi − z

√
pi(1−pi)

s

)
 .

To prove this theorem, it suffices to prove exact volume vol(P ) lies in interval
[(1 + ε)−1v, (1 + ε)v] with probability at least 1− δ. Therefore, we only have to
prove the following two inequalities,

vol(K0)∏l−1
i=0

(
pi + z

√
pi(1−pi)

s

) ≥ (1 + ε)−1v, (14)

vol(K0)∏l−1
i=0

(
pi − z

√
pi(1−pi)

s

) ≤ (1 + ε)v. (15)

Consider Equation (14), it is equivalent to

l−1∏
i=0

(
1 + z

√
(1− pi)
s · pi

)
≤ 1 + ε.

Since Proposition 1 indicates 1
2 ≤ pi ≤ 1, it is easy to see that (1− pi)/pi ≤ 1.

That is, we only have to prove(
1 +

z√
s

)l
≤ 1 + ε. (16)

Note that for arbitrary constant β, (1 + β/l)l is monotonically increasing with
respect to l, and liml→∞(1 + β/l)l = eβ , where e is the base of the natural
lograithm. So, s = ( z·l

ln(1+ε) + z)2 ≥ ( z·l
ln(1+ε) )

2 guarantees Equation (16).

In a similar way, we prove Equation (15). It is equivalent to

l−1∏
i=0

1

1− z
√

(1−pi)
s·pi

≤ 1 + ε. (17)

Consider the left-hand-side of Equation (17), there is

LHS ≤

(
1

1− z√
s

)l
=

(
1 +

z√
s− z

)l
.

Note that (1 + ln(1+ε)
l )l ≤ 1 + ε. So, it is easy to see that s ≥ ( z·l

ln(1+ε) + z)2

guarantees (1 + z√
s−z )l ≤ 1 + ε.
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5. Integrating Polytope Volume Estimation into #SMT(LA) Solving

In this section, we first review the exact volume computation approach for
SMT(LA) formulas in [32], then describle how to extend it to volume estimation
of SMT(LA) Formulas. We also propose a two-round strategy to accelerate the
volume estimation procedure.

5.1. From Computation to Estimation for #SMT(LRA) Problems

Given an SMT(LA) formula, the sum of volumes of all feasible assignments
is the volume of the whole formula. Ma et al. [32] presented an exact ap-
proach to solving #SMT(LA) problem which integrates SMT solving with vol-
ume computation for convex polytopes. The basic idea is to enumerate feasible
assignments by solving the SMT(LA) formula and accumulate the volumes of
these assignments. Polytope volume computation serves as a subroutine which
produces the volume of each feasible assignment. To reduce the number of
calls of polytope volume computation, we also proposed a strategy that com-
bines the feasible assignments into “bunches”. Each time a feasible assignment
is obtained, we search the neighbourhood of this assignment by negating it-
s literals. We can combine the original assignment with one of its feasible
neighbour assignments. Then we obtain a partial assignment that still propo-
sitionally satisfies the formula. The resulting assignment may cover a bunch
of feasible assignments, hence is called a “bunch”. For example, given a fea-
sible assignment {b1,¬b2,¬b3, b4} of formula PSφ(b1, b2, b3, b4), we search its
neighbourhood. Assume {b1,¬b2,¬b3,¬b4} is also feasible, then we could ob-
tain a partial feasible assignment {b1,¬b2,¬b3} such that vol({b1,¬b2,¬b3}) =
vol({b1,¬b2,¬b3, b4}) + vol({b1,¬b2,¬b3,¬b4}). And the volume computation
subroutine is called for the polytope corresponding to each bunch rather than
each feasible assignment, so that the number of calls is reduced.

Although the number of calls of polytope volume computation is consider-
ably reduced by the “bunch” strategy, polytope volume computation is still the
bottleneck of our previous approach because of its high complexity. To overcome
this obstacle, we can substitute the polytope volume computation subroutine
with the volume estimation method in Section 4, thereby generalize our previous
approach to estimate the volume of the solution space of SMT(LRA) formulas.
The basic procedure is quite similar to that of volume computation as described
in [32]. Each time we obtain a bunch of feasible (partial) assignments, we call
PolyVest to estimate the volume of the polytope corresponding to this bunch.
The sum of the estimated volumes of all bunches is approximately the volume
for the whole formula.

5.2. Two-round Strategy

In the Multiphase Monte-Carlo method, the number of random points at
each phase, i.e., step size, is a key parameter. To control parameter step size
easily, we introduce a weight S for step size so that the weighted version is

step size = S ·
⌈
z1−δ/2·l2

ln(1+ε)

⌉
.
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As the number of random points increases, the accuracy of estimation im-
proves, and the estimation process also takes more time. It is important to
balance the accuracy and the running time since the estimation subroutine is
usually called many times. Therefore, we employ a two-round strategy that
can dynamically determine a proper weight for each feasible (partial) assignmen-
t. At the first round of estimation, each feasible assignment is generated with
a fixed small weight to get a quick and rough estimation. Since the volumes
of feasible assignments may vary a lot, intuitively a feasible assignment with
relatively larger volume should be estimated with higher accuracy. Hence at
the second round, the weight for each assignment is determined according to its
estimated volume from the first round. More specifically, we use the following
rule to decide the weights in the second round:

• Suppose the fixed small weight in the first round is Smin, and the largest
weight in the second round is set to Smax. Let Vmax denote the largest
estimated volume in the first round, and Vi denote the volume of the ith
feasible assignment estimated in the first round. Then the weight Si for
the ith feasible assignment in the second round is:

Si =
2× Smax × Vi

Vmax
.

If Si ≤ Smin, the ith feasible assignment is neglected at the second round,
and we use the result from the first round as its estimated volume. If
Si > Smax, then set Si to Smax.

We choose Smin = 0.01 and Smax = 1 in practice. It usually saves more
than 95% points for random instances. The experimental results and further
discussions are presented at Section 7.2.1.

6. Handling Practical Instances from Program Analysis

SMT solvers are the core engine of many tools for program analysis, testing,
and verification. These tools may generate a large number of SMT(LA) formu-
las. It is important to improve the efficiency of our approach in these scenarios,
especially when handling large instances.

6.1. The Difficulties
There almost always exist integer variables in the SMT(LA) formulas gener-

ated from program analysis. For such formulas, lattice counting with LattE can
only handle instances with about 10 variables within a reasonable amount of
time. However, even when analyzing just one function in a program, we might
obtain problem instances with dozens of integer variables. Yet it is risky to use
volume estimation (as described in the previous section) to approximate the
number of lattice points, since there is no bound of the relative error of such
an approximation. For example, volume estimation or computation will return
zero directly if it encounters an equality constraint. But there may be many
lattice points for such cases. In the following we present divide-and-conquer
methods to deal with some large formulas.
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6.2. Several Observations

We have made several observations on instances generated from program
analysis.

• Usually there are just a few variables in each linear inequality.

• There exist groups of independent variables in the set of linear inequalities.
So variables in different groups do not appear in the same inequality.

• In particular, there may exist some linear inequalities with only one vari-
able.

• Due to the bunch technique, it is common that the inequalities in a bunch
only contain part of variables.

The following SMT(LA) formula is generated from the analysis of a space
management program:

(a > 0) AND (t >= a) AND (t <= a + 16) AND

(NOT (b < c)) AND (NOT (d + 0 >= r)) AND

((e = 0) OR (e = 3) OR (e = 5) OR (e = 10) OR (e = 15)) AND

((y > p) OR (z > p) OR (x > q)) AND (f = 1)

It contains 13 variables and 14 linear inequalities. There are at most two
variables in each inequality (our first observation). Then we consider one of the
bunches:

(a > 0) AND (t >= a) AND (t <= a + 16) AND (b >= c) AND

(d + 0 < r) AND (e != 0) AND (e != 3) AND (e != 5) AND

(e != 10) AND (e = 15) AND (y <= p) AND (z > p) AND (f = 1)

There are 11 variables and 13 linear inequalities in this bunch (assume x >

q is reduced by bunch techniques).
We can manually subdivide this bunch into 6 mutually independent groups

of variables, as well as the inequalities:

G1. (a > 0) AND (t >= a) AND (t <= a + 16)

G2. (b >= c)

G3. (d + 0 < r)

G4. (e != 0) AND (e != 3) AND (e != 5) AND (e != 10) AND (e = 15)

G5. (y <= p) AND (z > p)

G6. (f = 1)

There are at most three different variables in each group. Specifically, there
are only single-variable inequalities in group 4 and 6. We can compute their
solution space easily. And the number of lattice points equals to the multipli-
cation of the number of lattice points of each group. So we reduce this bunch
into several one to two dimensional problems which are much easier to solve.
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6.3. Reduction and Division for Linear Inequalities

Based on the aforementioned observations, we propose several preprocessing
techniques to reduce and divide the set of inequalities and variables. In our
implementation, we use m × n matrix A and vector b to represent the set of
linear inequalities Ax ≤ b, where m is the number of inequalities and n is the
number of variables. For convenience, we use vol(Ax ≤ b) to denote the volume
of solution space of constraints Ax ≤ b.

6.3.1. Variable Reduction

We call a variable active if it appears in at least one inequality in Ax ≤ b.
Due to the bunch technique, some variables are not always active in the in-
equalities of the bunch. So it is necessary to identify active variables and reduce
the number of inactive variables. We observe that such reduction procedure is
quite useful. This will be discussed in the evaluation section. In the example of
Section 6.2, the bunch eliminates the inequality (x > q) and variables x and q.
So we could shrink the matrix A by deleting columns corresponding to x and q.

6.3.2. Graph-based Division

We introduce the Inequality Relation Graph (IRG) to divide a bunch
into mutually independent groups of inequalities. It is constructed by two rules:
(i) map each inequality into a vertex v ∈ V , (ii) add an edge e = (u, v) in-
to E if and only if there exists a variable in both inequalities represented by
u and v. The time complexity of the direct construction for IRG is O(m2n).
Because there is no edge between vertices in different strongly connected compo-
nents (SCC), the inequalities represented by these vertices are also independent.
So each SCC in the IRG can represent a group. To obtain SCCs, one can use
Tarjan’s algorithm [35] which is linear time. The overhead of this division pro-
cedure is negligible compared to other parts of our approach for #SMT solving.
Note that different groups don’t share inequalities or variables, so we have the
following proposition.

Proposition 2. vol(Ax ≤ b) =
∏
i vol(Aix ≤ b), where Aix ≤ b represents the

ith SCC.

Consider the example in Section 6.2. The IRG of the bunch is illustrated in
Fig. 4. There are 6 SCCs in the graph which correspond to the groups listed in
Section 6.2.

Figure 4: IRG of the Example in Section 6.2
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6.3.3. Special Case of One Dimension

LattE is based on the Barvinok’s algorithm which is very sophisticated. For
quite simple circumstances, such as one-dimensional problems, there is not any
special treatment for them in LattE. The initialization takes so much time that
division procedure becomes almost useless on small problems. And so does
Vinci. Therefore, we handle one-dimensional problems directly and do not call
LattE or Vinci. For a one-dimensional problem, it is an interval. So we only
have to calculate the upper and lower bounds by checking the corresponding
linear constraints.

7. Experimental Results

In this section, we first present the evaluation of PolyVest3 in section 7.1.
We then present the results of our approach for #SMT(LA) problems in sec-
tion 7.2. By default, we used ε = 0.45, δ = 0.1, and a timeout of 1 hour. Every
experiment was conducted on a workstation with 3.40GHz Intel Core i7-2600
CPU and 8GB memory. In the following tables, “—” means that the instance
takes more than one hour to solve (or the tool runs out of memory).

7.1. Evaluation of PolyVest

In this subsection, we first compare our approach with the Lovasz-Vempala
method [27] and Vinci. Next we present evaluations of the accuracy of our
approach. Then we discuss the size of w. After that we compare CDHR and
HDHR methods. Finally, we show the effectiveness of reutilization technique.
Our test cases include:

• “cube n”: Hypercubes with side length 2. The volume of “cube n” is 2n.

• “cube n(S)”: Apply 10 times random shear mappings on “cube n”. The

random shear mapping can be represented as PQP , with Q =

(
I M
0 I

)
,

where the elements of matrix M are randomly chosen and P is the product
of permutation matrices {Pi} that put rows and columns of Q in random
orders. This mapping preserves the volume.

• “rh n m”: An n-dimentional polytope constructed by randomly choosing
m hyperplanes tangent to sphere.

• “cuboid n(S)”: Scaling “cube n” by 100 in one dimension, and then apply
random shear mapping to it once. We use this instance to approximate a
“thin stick” which is not parallel to any axis.

3The tool and benchmarks are available at http://lcs.ios.ac.cn/~zj/polyvest.html
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7.1.1. The Performance of PolyVest

Table 1 presents the result of comparing the performance of PolyVest vis-a-
vis Lovasz-Vempala Method (LVM), which is also a volume estimation algorithm
based on the Multiphase Monte-Carlo method. We only conducted experiments
on cubes as the implementation of LVM presented in [27] could not handle
instances other than cubes. In Table 1, column 1 gives the instance name,
column 2 gives the number of dimensions n, and column 3 gives the exact
volume v. The running times and estimating results for LVM are presented in
columns 4 and 5. Column 6 gives the total error e which is estimated by LVM.
It indicates that the estimating result lies in the interval [v− e, v+ e] with high
probability4. Column 7 gives the ratio e/v which is the relative error estimated
by LVM. Column 8 gives the settings of parameter a0 of LVM. In [27], the authors
used a0 = 6n for cube 2 and cube 5, and a0 = 2n for cube 8. Column 9 gives
the parameter ε of our approach. The running times and estimating results for
PolyVest are presented in columns 10 and 11. In these experiments, we specify
the value of ε exactly the same as e/v. It means that LVM estimates with similar
size of error to PolyVest. The results show that our approach is significantly
faster LVM. For the 8-dimensional cube, LVM could not solve in one hour. We
could not obtain the value of e/v as well. So, we used the value of parameter ε
by default.

Table 1: Comparison between PolyVest and LVM

LVM PolyVest

Instance n v Time(s) Result Err. e e/v a0 ε Time (s) Result
cube 2 2 4 643.4 4.013 0.051 0.013 6n 0.013 0.134 4.006
cube 3 3 8 1008 8.109 0.279 0.035 6n 0.035 0.128 8.071
cube 4 4 16 1419 15.48 0.452 0.028 6n 0.028 0.984 16.11
cube 5 5 32 1910 31.70 3.250 0.102 6n 0.102 0.291 32.43
cube 6 6 64 2583 62.34 2.8 0.044 2n 0.044 3.913 64.42
cube 7 7 128 3210 128.7 11.6 0.091 2n 0.091 2.442 129.2
cube 8 8 256 — — — — 2n 0.45 0.413 245.8

Table 2 presents the result of comparing the performance of PolyVest vis-a-
vis Vinci. Vinci is a well-known package which implements the state-of-the-art
algorithms for exact volume computation of convex polytopes. It consisted of
several methods. In Table 2, Trlass, Thot and Tlawnd represent the running times
of three methods in Vinci respectively. The “rlass” uses Lasserre’s method,
which needs input of H-representation. The “hot” uses a Cohen&Hikey-like
face enumeration scheme, which needs input of V-representation. The “lawnd”
uses Lawrence’s formula, which is the fastest method in Vinci and both de-
scriptions are needed. In Table 2, the running times of Vinci do not contain
transformation from H-representation to V-representation. Observe that the
“rlass” and “hot” methods of Vinci usually take much more time and space as
the scale of the problem grows a bit, e.g. “cube n(n ≥ 15)” and “rh 10 30”.

4Note that the authors of [27] did not specify the probability, but only reported it with
“high” probability.
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Given H- and V- representations, the “lawnd” method is very fast for instances
smaller than 20 dimensions. However, enumerating all vertices of polytopes is
non-trivial, as it is the dual problem of constructing the convex hull by the ver-
tices. This process is both time-consuming and space-consuming. On the other
hand, the running times of PolyVest appear to be more ‘stable’.

Table 2: Comparison between PolyVest and Vinci

PolyVest Vinci

Instance n m Result Time(s) Result Trlass(s) Thot(s) Tlawnd(s)
cube 10 10 20 1037.9 2.063 1024 0.004 0.044 0.008

cube 10(S) 10 20 990.5 0.939 1023.86 0.008 0.124 0.024
cube 15 15 30 32729.3 22.583 3.28e+4 0.300 212.8 0.156
cube 20 20 40 1.04e+6 126.1 1.05e+6 — — 8.085
cube 30 30 60 1.08e+9 1672.6 — — ### ###
rh 8 25 8 25 815.5 0.460 785.989 0.864 0.160 0.016
rh 10 20 10 20 14002 1.327 13882.7 0.284 0.340 0.012
rh 10 25 10 25 5705.48 1.434 5729.52 5.100 1.932 0.072
rh 10 30 10 30 2016.57 1.420 2015.58 660.4* 5.772 0.144

rh 8 25(S) 8 25 796.329 0.452 785.984 1.268 0.156 0.032
rh 10 20(S) 10 20 14062.9 1.278 13883.8 0.832 0.284 0.032
rh 10 25(S) 10 25 5507.95 1.443 5729.18 11.949 1.960 0.104
rh 10 30(S) 10 30 2043.33 1.489 2015.87 1251.1* 6.356 0.248

*: Enable the Vinci option to restrict memory storage, so as to avoid running out of memory.
###: We did not test “cube 30” by “hot” and “lawnd”, because there are too many
vertices in these polytopes.

Recall that there are O(l) phases, O(l2) random points in each phase, and
O(w) steps for one random point. Since l = n log2 2n and w = n, our algorith-
m generates O(n4(log2 2n)3) steps of random walk. Note that 104(log2 20)3 :
204(log2 40)3 : 304(log2 60)3 ≈ 1 : 30 : 207. Consider the running time growth
of a walk with respect to n (for details, see Table 5), the overall running times
of instances “cube 10”, “cube 20” and “cube 30” accord with the complexity.
Besides, there are two factors which are also related to the running time: (i)
the reutilizing ratio and (ii) the shape of the polytope after rounding proce-
dure. These lead to the differences of running times for instances with the same
scale, e.g., “cube 10” and “cube 10(S)”. It is difficult to predict these factors.
However, our analysis covers the worst cases.

We did more tests on our approach to see how accurate it is. We exe-
cuted PolyVest 100 times for each instance. In Table 3, column 1 gives the
instance name, column 2 gives the exact volume v, column 3 gives the interval
[1.45−1v, 1.45v], column 4 gives the minimum value vmin and maximum value
vmax over 100 times of experiment, column 5 and column 6 give the average val-
ues and standard deviations respectively. Since we used ε = 0.45 and δ = 0.1,
from Theorem 5, the estimating result should lie in interval [1.45−1v, 1.45v] with
probability at least 90%. Table 3 shows that [vmin, vmax] ⊂ [1.45−1v, 1.45v]
for each instance. In other words, it means that the frequency on interval
[1.45−1v, 1.45v] is 100 over 100 times of experiments, which follows our analy-
sis. In addition, we observe that the interval [vmin, vmax] is significantly smaller
than [1.45−1v, 1.45v]. Actually, there is [vmin, vmax] ⊂ [1.1−1v, 1.1v] for most
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Table 3: More statistical results of PolyVest

Instance v [1.45−1v, 1.45v] [vmin, vmax] Avg. Std Dev.
cube 5 32 [22.07, 46.4] [28.99, 33.86] 31.93 1.05
cube 10 1024 [953.6, 1485] [953.6, 1089] 1019 25.98

cube 10(S) 1024 [953.6, 1485] [980.4, 1064] 1023 15.20
cube 15 32768 [22598, 47513] [31169, 34508] 32866 588.5
cube 20 1.05e+6 [7.23e+5, 1.52e+6] [1.00e+6, 1.09e+6] 1.05e+6 16889

cube 20(S) 1.05e+6 [7.23e+5, 1.52e+6] [1.02e+6, 1.08e+6] 1.05e+6 10739
cuboid 10(S) 1.02e+5 [7.06e+4, 1.48e+5] [9.83e+4, 1.07e+5] 1.02e+5 1626
cuboid 20(S) 1.05e+8 [7.23e+7, 1.52e+8] [1.02e+8, 1.07e+8] 1.05e+8 1.14e+6

rh 8 25 786.0 [542.1, 1139.7] [751.0, 822.9] 784.8 16.78
rh 10 20 13883 [9574.3, 20130] [13220, 14535] 13817 275.0
rh 10 25 5730 [3951, 8308] [5422, 5980] 5714 109.8
rh 10 30 2016 [1390, 2922] [1937, 2104] 2016 32.19

instances.

7.1.2. The Experiments on Mixing Time

To achieve a proper mixing time, we experimented different sizes of w: w = 1,
w = n, w = 2n and w = 3n. We executed PolyVest 100 times for each
instance. In Table 4, “Avg.” and “Std Dev.” represent the average values and
the standard deviations respectively.

Table 4: Comparison about different sizes of w

w = 1 w = n w = 2n w = 3n
Instance Avg. Std Dev. Avg. Std Dev. Avg. Std Dev. Avg. Std Dev.
cube 2 3.96 0.258 3.97 0.205 4.01 0.166 4.01 0.163
cube 5 32.07 2.51 32.08 1.28 32.18 1.09 32.05 1.10
cube 10 1027 63.03 1025 28.97 1022 23.36 1024 24.85
cube 15 32658 1520 32809 680.9 32685 605.2 32800 643.6
cube 20 1.05e+6 42703 1.05e+6 17080 1.05e+6 18516 1.05e+6 17108
rh 8 25 785.1 39.60 785.5 17.66 789.3 17.52 785.8 17.23
rh 10 20 13790 676.1 13882 298.4 13849 271.8 13881 247.6
rh 10 25 5724 272.3 5734 99.07 5731 92.26 5729 95.59
rh 10 30 2030 82.29 2015 37.73 2013 37.20 2017 34.60
rh 20 40 107.9 4.34 108.4 1.38 108.2 1.39 108.0 1.48

Theorem 2 indicates that the standard deviation converges as w increases.
In intuition, with sufficiently many times of experiments, the variance should be
monotonically decreasing as w increases. The results in Table 4 also show such
tendencies. Since we could only experiment with finite times (100 times), there
exist errors, e.g., some standard deviations for w = 3n are larger than the ones
for w = 2n or the ones for w = n. This phenomenon also indicates that the
standard deviations are close to the convergence. There is a tradeoff of speed
and accuracy, since the larger w, the smaller variance but larger number of
steps. We observe that the overall differences between the standard deviations
for w = n and w = 3n are small. So, we choose w = n at last.
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7.1.3. The Comparison of Two Hit-and-run Methods

Table 5 illustrates the running times of 10 million steps of CDHR and HDHR
in the intersection of a cube and a ball. This experiment is irrelevant to the
procedure of volume estimation. Table 5 shows that CDHR is faster than its
rival. The reason is that HDHR has to do more vector multiplications to find
intersection points and m× n more divisions during each step of walk.

Table 5: Comparison about speed between CDHR and HDHR

n m CDHR (s) HDHR (s)
10 20 3.572 13.761
20 40 7.095 24.502
30 60 13.85 40.455
40 80 22.13 61.484

In addition, we also compare the two hit-and-run methods on accuracy. We
set w = n for both methods and executed 100 times for each instance. The
results are listed in Table 6. The column of “ERR.” gives the ratios of standard
deviations and average values. It clearly shows that the standard deviations of
the volume estimated by CDHR method are smaller than HDHR method.

Table 6: Comparison about accuracy between CDHR and HDHR

CDHR HDHR
Instance Exact. Avg. Std Dev. ERR. Avg. Std Dev. ERR.
cube 5 32 31.93 1.05 3.28% 31.88 1.51 4.73%
cube 10 1024 1019 25.98 2.55% 1032 32.04 3.10%
cube 15 3.28e+4 32866 588.5 1.79% 32973 766.4 2.32%
cube 20 1.05e+6 1.05e+6 16889 1.61% 1.05e+6 22240 2.12%

cuboid 10(S) 1.02e+5 1.02e+5 1626 1.59% 1.03e+5 2161 2.10%
cuboid 20(S) 1.05e+8 1.05e+8 1.14e+6 1.02% 1.05e+8 1.27e+6 1.21%

rh 8 25 785.99 784.8 16.78 2.14% 786.4 26.06 3.31%
rh 10 20 13883 13817 275.0 1.99% 14051 378.5 2.69%
rh 10 30 2016 2016 32.19 1.60% 2006 61.04 3.04%

7.1.4. The Advantage of Reutilization of Random Points

We conducted experiments to demonstrate the effectiveness of the reuti-
lization technique. We executed PolyVest 100 times for each instance. n1 (n2)
represents the average number of newly generated random points without (with)
this technique. Table 7 shows that the reutilization technique can save 60% to
70% random points, yet it has no visible effect on the average value and the
variance.

7.2. Evaluation of VolCE

We implement our volume estimation algorithm and preprocessing tech-
niques in a tool called VolCE5, which is described in [32]. It has the following
three functions:

5The tool and benchmarks are available at http://lcs.ios.ac.cn/~zj/vc.html
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Table 7: Effectiveness of reutilizing random points

Without Reusing With Reusing
Instance n1 Avg. Std Dev. n2 Avg. Std Dev. n2/n1

cube 5 95324 32.18 1.19 33617 31.93 1.05 35.27%
cube 10 1.57e+6 1021 24.99 5.83e+5 1019 25.98 37.08%
cube 15 7.48e+6 32806 625.8 2.87e+6 32886 588.5 38.41%
cube 20 2.24e+7 1.05e+6 19388 8.84e+6 1.05e+6 16889 39.39%

cuboid 10 8.07e+5 1.03e+5 1488 2.52e+5 1.02e+5 1626 31.19%
cuboid 20 1.06e+7 1.05e+8 1.23e+6 3.66e+6 1.05e+8 1.14e+6 34.87%

rh 8 25 4.79e+5 786.0 16.90 1.43e+5 784.8 16.78 29.74%
rh 10 20 1.22e+6 13876 280.9 3.44e+5 13817 275.0 28.19%
rh 10 30 1.04e+6 2014 34.67 3.25e+5 2016 32.19 31.15%

• Estimate volume for SMT(LRA) formulas with PolyVest.

• Compute volume for SMT(LRA) formulas with Vinci [4].

• Count the number of lattice points for SMT(LIA) formulas with LattE [25].

For all experiments in this subsection, we used Smin = 0.01 and Smax = 1.
The test cases include:

• Random instances ran n l c: which have n numeric variables, l LACs and
c clauses. They are generated by randomly choosing coefficients of LACs
and literals of clauses. The length of each clause is between 3 and 5.

• Instances generated from static program analysis. We analyzed the fol-
lowing programs: (i) abs: a function which calculates absolute values; (ii)
findmiddle: a function which finds the middle number among 3 num-
bers; (iii) Space manage: a program related to space technology; (iv)
tritype: a program which determines the type of a triangle; (v) calDate:
a function which converts the special date into a Julian date; (vi) tcas:
a program about the traffic collision avoidance system; (vii) FINDpath: a
selection program FIND [18]; (viii) getopPath: a program function called
getop() [20].

• Instances from SMT-Lib, including the QF LIA benchmarks: CAV 2009,

bignum, int incompleteness, pigeon-hole, fischer, prime cone.

The QF LIA benchmark set is a huge and broad collection of benchmarks,
which can be found in the SMT-LIB and is also part of the SMT Competition. It
is the standard reference for measuring the performance of linear integer arith-
metic solvers. Since VolCE is a counter instead of a solver, these benchmarks
are usually too difficult for VolCE. We scanned this benchmark set and filtered
out the complicated instances which cannot be handled by VolCE in one hour.
At last, we selected 6 families and 112 instances from this benchmark set.

7.2.1. Volume Estimation for SMT(LRA) Formulas

In this subsection, we experimented our tool VolCE on randomly generated
SMT(LRA) formulas to evaluate the capability of our volume estimation routine,
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i.e., VolCE with PolyVest. Note that the linear constraints in random instances
contain almost all variables, the reduction and division preprocessing techniques
are not effective for these instances.

Table 8: Comparison between estimation and computation methods for #SMT(LRA)

Estimation Computation
Instance NV. BC. Result Time(s) Result Time(s)

ran 7 15 45 7 116 1.79e+15 2.817 1.84e+15 10.4
ran 7 20 60 7 253 6.85e+14 4.015 6.74e+14 73.2
ran 7 30 90 7 385 4.78e+13 7.994 4.58e+13 872
ran 8 15 45 8 220 3.49e+17 4.311 3.50e+17 71.8
ran 8 20 60 8 456 1.07e+17 11.07 1.09e+17 327
ran 8 30 90 8 1209 6.95e+16 28.69 — —
ran 9 20 60 9 439 1.21e+19 24.79 — —
ran 10 20 60 10 949 2.57e+22 58.44 — —

Table 8 presents the result of comparing the performance of volume estima-
tion method (VolCE with PolyVest) and volume computation method (VolCE
with Vinci). In Table 8, column 1 gives the name of instances, column 2 and
3 give the number of numeric variables and partial feasible assignments respec-
tively. The outputs and running times for estimation routine and computation
routine are presented in column 4 to column 7. The results show that the
volume estimation method for #SMT(LRA) is very efficient and the relative
errors of approximation are small. When the dimension of instance grows to
8 or larger, volume computation method often fails to give an answer in one
hour or depletes memory. Though Vinci has an option to restrict its memory
storage, as a tradeoff it will take much more time to solve, and still cannot solve
instances within the time limit.

Table 9: Effectiveness of the two-round strategy

Original Two-Round
Instance BC. Result Time(s) n1 Result Time(s) n2 n2/n1

ran 7 15 45 116 1.86e+15 26.63 1.03e+7 1.79e+15 2.817 9.34e+5 9.07%
ran 7 20 60 253 6.65e+14 59.68 2.09e+7 6.85e+14 4.015 8.70e+5 4.17%
ran 7 30 90 385 4.53e+13 111.4 3.49e+7 4.78e+13 7.994 1.07e+6 3.06%
ran 8 15 45 220 3.56e+17 108.0 3.36e+7 3.49e+17 4.311 1.09e+6 3.23%
ran 8 20 60 456 1.09e+17 236.4 7.04e+7 1.07e+17 11.07 2.63e+6 3.73%
ran 8 30 90 1209 6.96e+16 723.6 1.91e+8 6.95e+16 28.69 3.58e+6 1.89%
ran 10 15 45 228 1.18e+23 399.4 8.41e+7 1.19e+23 11.77 2.28e+6 2.71%
ran 10 20 60 949 2.55e+22 1801 3.49e+8 2.57e+22 58.44 1.02e+7 2.92%
ran 10 30 90 8039 — — — 1.35e+21 361.6 4.56e+7 —
ran 15 40 200 1726 — — — 7.88e+27 619.2 3.88e+7 —
ran 15 50 250 495 — — — 1.25e+23 217.1 1.18e+7 —
ran 20 60 400 700 — — — 6.62e+32 1666 5.19e+7 —

Table 9 presents the results about the effectiveness of our two-round strategy.
Columns “n1” and “n2” present the number of total random points generated
by volume estimation method without and with the two-round strategy respec-
tively. Table 9 shows that the two-round strategy saves 90% to 98% random
points and more than 90% of running time. At the same time, the difference of
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the output results between the original and the two-round strategy is usually
less than 5%.

7.2.2. Reduction and Division Techniques

We experimented our reduction and division techniques over instances gener-
ated from program analysis and QF LIA benchmarks that are both SMT(LIA)
formulas. Table 10 shows the experimental results about the comparison of
the tool with and without the improvements introduced in Section 6. Column
“Scale” presents the average scale of the instances in the instance family. Col-
umn “Original” presents the results of the original tool. Column “Reduction”
presents the results of our tool with the reduction technique. Column “Re-
duc&Div” presents the results of the improved tool with both of the techniques.
For each configuration, the experimental results consist of the number of solved
instances and the running times.

Table 10: Comparison of the tool with and without preprocessing techniques
Scale Original Reduction Reduc&Div

Instance NV. Ineq.
Solved
(Total)

Time (s)
Solved
(Total)

Time (s)
Solved
(Total)

Time(s)

abs 1 1 2 (2) 0.061 2 (2) 0.011 2 (2) 0.01
findmiddle 3 6.8 10 (10) 0.998 10 (10) 0.632 10 (10) 0.622
getopPath 2 15 2 (2) 0.392 2 (2) 0.199 2 (2) 0.063

tritype 4 15.0 54 (54) 9.93 54 (54) 5.27 54 (54) 5.39
calDate 6 6.67 21 (21) 1.18 21 (21) 0.378 21 (21) 0.379

FINDpath 8 15.5 2 (2) 0.139 2 (2) 0.115 2 (2) 0.123
Space manage 17 12.5 56 (56) — 56 (56) 190 56 (56) 14.8

tcas 24 24.2
0

(1801)
—

1801
(1801)

70.45
1801

(1801)
42.3

CAV 2009 9.17 17.5 2 (6) 0.138 2 (6) 0.753 2 (6) 0.752
bignum 6 13 2 (2) 0.095 2 (2) 0.061 2 (2) 0.059

int
incompletness

3.33 4.67 3 (3) 0.091 3 (3) 0.014 3 (3) 0.014

pigeon-hole 162 347 19 (19) 0.56 19 (19) 1.38 19 (19) 1.38
fischer 28.0 184 47 (49) 1605 47 (49) 1786 47 (49) 1747

prime cone 11.2 24.7 15 (37) — 13 (37) 1103 14 (37) —

Table 10 shows that our preprocessing techniques work well for the instances
generated from program analysis. There is no significant improvements for
the QF LIA benchmarks, which is not surprising. In some circumstances, our
tool is even slower with preprocessing techniques, since the division may cause
overhead. For example, a set of 6-dimensional constraints is divided into three
groups of 2-dimensional problems. Then the lattice counting has to be initialized
three times for these subproblems.

7.2.3. Performance Comparison for SMT(LIA) Formulas

To further evaluate the performance of VolCE for solution counting, we com-
pare it with SMTApproxMC [7] which is a hashing-based approximate counter
for SMT(BV) formulas. For comparison, we transformed SMT(LIA) formulas
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into SMT(BV) formulas manually by replacing integer variables with fixed-
length variables, bit-vector constants and bit operations. We experimented
SMTApproxMC with parameters ε = 0.8 and δ = 0.2. It guarantees the output
lying in interval [1.8−1RF , 1.8RF ] with probability at least 80%, where RF is
the real count of a given formula F .

Table 11: Comparison between VolCE and SMTApproxMC over SMT(LIA) formulas

VolCE SMTApproxMC
Instance NV. BV. BC. Result Time(s) TB. Result Time(s)

FINDpath 1 8 0 1 4.08e+6 0.07 32 3.98e+6 1021
FINDpath 2 8 0 1 87516 0.05 32 90000 116.8
getopPath 1 1 0 6 242 0.02 8 245 2.568
getopPath 2 3 0 18 8085 0.06 24 8381 14.96
findmiddle 4 3 0 2 5527040 0.02 24 — —
findmiddle 6 3 0 4 130560 0.04 24 1.33e+5 151.5
findmiddle 8 3 0 2 65280 0.02 24 62135 207.9

Space manage 38 7 0 7 5.41e+14 0.11 56 — —
Space manage 49 13 0 7 2.51e+27 0.85 104 — —

tcas 1200 5 0 6 2.81e+14 0.02 80 — —
tcas 1201 7 0 34 1.21e+24 0.05 112 — —
tcas 1214 7 0 10 1.84e+19 0.02 112 — —

prime cone sat 2 2 0 1 4159 0.02 32 3855 5.950
prime cone sat 3 3 0 1 25777 0.02 48 24672 284.3
prime cone sat 4 4 0 1 75662 0.12 64 65535 1134
prime cone sat 5 5 0 1 48505 1.23 80 — —
prime cone sat 6 6 0 1 55143 6.85 96 — —
prime cone sat 7 7 0 1 17823 76.37 112 — —
FISCHER1-1-fair 4 20 1 256 0.03 40 253 5.825
FISCHER2-7-fair 24 193 35 30135 4.94 240 28749 2463
FISCHER3-8-fair 36 320 565 120540 243.11 360 — —

Table 11 presents the result of comparing the performance of VolCE with
SMTApproxMC on a subset of our benchmarks. In these experiments, VolCE calls
LattE for integer solution counting inside a polytope, so our tool returns the
exact counts instead of approximations. Table 11 shows that our approach
significantly outperforms SMTApproxMC for a large class of benchmarks. We
observe that the running time of SMTApproxMC is closely related to the number
of the solutions rather than the number of variables, i.e., the larger number of
solutions, the more difficult for SMTApproxMC to handle.

8. Concluding Remarks

In contrast to various kinds of decision problems, counting problems have
received less attention. We lack practical methods for solving them. This pa-
per studies the counting problem for SMT(LA) constraints. Given a formu-
la/constraint which is a Boolean combination of linear arithmetic inequalities,
we would like to know the size of the solution space. Previous exact methods
are not scalable.

In this paper, we have described a practical method for estimating the vol-
ume of convex polytopes, based on the Multiphase Monte-Carlo method. It

29



employs a new technique to reutilize random points, so that the number of
random points can be significantly reduced. We proved that the reutilization
technique has no side-effect on the error. We also investigated a simplified ver-
sion of hit-and-run method: the coordinate directions method. Based on the
volume estimation method for polytopes, we presented an approach for estimat-
ing the volume of the solution space of SMT(LA) formulas, which is augmented
with a heuristic called two round strategy to accelerate the procedure. We also
devised some specific techniques for instances that arise from program analysis.
The proposed methods have been evaluated on various benchmarks, and the
results are promising.
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