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Abstract
Solution counting or solution space quantification
(means volume computation and volume estima-
tion) for linear constraints (LCs) has found inter-
esting applications in various fields. Experimental
data shows that integer solution counting is usually
more expensive than quantifying volume of solu-
tion space while their output values are close. So it
is helpful to approximate the number of integer so-
lutions by the volume if the error is acceptable. In
this paper, we present and prove a bound of such er-
ror for LCs. It is the first bound that can be used to
approximate the integer solution counts. Based on
this result, an approximate integer solution count-
ing method for LCs is proposed. Experiments show
that our approach is over 20x faster than the state-
of-the-art integer solution counters. Moreover, such
advantage increases with the problem scale.

1 Introduction
Solution Counting, the problem of computing the number
of solutions for given constraints, is an important problem
with various applications in artificial intelligence including
probabilistic inference [Roth, 1996; Chavira and Darwiche,
2008], probabilistic logic programming [Aziz et al., 2015],
planning [Domshlak and Hoffmann, 2007], knowledge rep-
resentation [Lee and Wang, 2018] and privacy/confidentiality
verification [Fredrikson and Jha, 2014].

For propositional formulas, the counting problem is known
as model counting or #SAT, to which probabilistic inference
is easily reducible. #SAT is the canonical #P-complete prob-
lem, thus exact counting is intractable for large instances. Re-
cently, the hash-based approximate counters [Chakraborty et
al., 2016b; Ge et al., 2018a] attract much attention for im-
proving scalability and providing rigorous guarantees. For
Satisfiability Modulo Theories (SMT) formulas, the count-
ing problem is known as #SMT [Chistikov et al., 2015;
Chakraborty et al., 2016a; Ge et al., 2018b], which is also
an emerging topic in this realm.

As the fundamental constraints that are used in many ar-
eas, linear constraints (LCs) have been studied thoroughly.
∗Corresponding Authors

The integer solution counting over LCs is also an important
problem and has many applications, such as counting-based
search [Zanarini and Pesant, 2007; Pesant, 2016], simple tem-
poral planning [Huang et al., 2018] and probabilistic program
analysis [Geldenhuys et al., 2012; Luckow et al., 2014]. This
problem is proved to be #P-hard [Valiant, 1979]. In practice,
state-of-the-art tools for counting integer solutions on LCs,
like LattE [Loera et al., 2004], often have difficulty when
the number of dimensions is greater than 10 (i.e., when there
are more than 10 numeric variables). As a result, they are usu-
ally not sufficient for practical applications.

To overcome such problem, we would like to investigate
the relation between the integer solution count and the vol-
ume of the solution space. Consider the following set of LCs:

(a+ b > c) ∧ (a+ c > b) ∧ (b+ c > a) ∧
(1 ≤ a ≤ 32) ∧ (1 ≤ b ≤ 32) ∧ (1 ≤ c ≤ 32).

The volume of its solution space is 16291 which is close to
the number of integer solutions, 16400. From more experi-
ments, we observe that the execution time of space quantifi-
cation (means volume computation and volume estimation)
tools is usually much smaller than the counters, while their
output values are close (for details, see Section 5). Naturally
we wonder if there exists a relation between the space volume
and the solution count, so that space quantification tools can
be used to approximate integer solution counts.

In this paper, the first theoretical bound of approximating
integer counts via space quantification for LCs is proposed
and also proved. Based on these theoretical analysis, we
present an approximate counting algorithm for LCs, which
can give results with rigorous guarantees. This technique is
orthogonal with respect to the current design of model coun-
ters and also space quantification tools. As a result, it is easy
to apply. We evaluated our approach over random and struc-
tural cases generated from various applications. Experiments
show that our approach achieves more than 20x speedup com-
pared with state-of-the-art integer solution counters. More-
over, the advantage increases with the number of dimensions.
The results also show that our approach could serve as a basis
for many applications.

2 Background
The state-of-the-art tools for integer solution counting and
space quantification are listed in Table 1. LattE [Lo-



Tool Algorithm counting vol. comput. vol. est. guarantee linear non-linear P-time

LattE Barvinok’s Algorithm X × × — X × ×
qCORAL direct Monte-Carlo × × X × X X ×
PolyVest Multiphase Monte-Carlo × × X X X × X

Vinci Lassere’s Method × X × — X × ×

Table 1: The state-of-the-art integer solution counter and space quantification tools for numeric constraints

era et al., 2004] is an implementation of Barvinok’s algo-
rithm [Barvinok, 1993] dedicated to the counting of integer
solutions for LCs. For solving space quantification problems,
there are more candidates: qCORAL [Borges et al., 2014;
2015], PolyVest [Ge and Ma, 2015] and Vinci [Büeler
et al., 2000]. qCORAL is a volume estimation tool, based
on direct Monte-Carlo sampling. It can handle arbitrary con-
straints with real domain, such as non-linear polynomial con-
straints, trigonometric constraints, etc. PolyVest is also a
volume estimation tool. It only handles LCs, but provides
rigorous guarantees. It is an implementation of Multiphase
Monte-Carlo algorithm [Dyer et al., 1991; Lovász and Deák,
2012] with various improvements, whose time complexity is
O∗(n4) (O∗ indicates that we suppress factors of log n). Dif-
ferent from previous two tools, Vinci is a tool to compute
the exact volume of solution space. It consists of several al-
gorithms, but only Lasserre’s method is called in this paper as
others require inputs of convex hull.

Our experiments on LattE, Vinci and PolyVest show
that the integer solution counts are usually very close to the
volume for LCs (for details, see Section 5). Similar to a nu-
meric integration procedure, it is trivial to estimate the vol-
ume of space with an algorithm based on integer solution
counting. The estimation can be arbitrarily precise as we keep
differentiating the space. On the contrary, there is no guaran-
tee to approximate the number of integer solutions with space
quantification. For example, a very ‘thin’ rectangle whose
both sides are parallel to the coordinates and the short side
lies in interval (0, 1). There is no integer point in it, but its
volume can be arbitrarily large as the long side stretches. The
theoretical result in [Kannan and Vempala, 1997] also shows
such phenomenon. So it is necessary to find a bound to quan-
tify the quality of an approximation.

3 Analysis
In this section, we propose and prove our main theoretical
results, Theorem 1, 2 and Corollary 1, which provide bounds
for approximating counts via volume, on LCs.

3.1 Preliminaries
We first provide the formal definitions of the approximation
problem considered in this paper.
Definition 1. A LC can be written in the form a1x1 +a2x2 +
· · · + anxn op a0, where xi are numeric variables, ai are
constant coefficients, and op ∈ {<,≤, >,≥,=}.

Given a set of LCs F with real variables.
• Let #F denote the number of integer solutions of F .
• Let vol(F ) denote the volume (Lebesgue measure) of

solution space of F .

Figure 1: An example about integer cubes.

Problem 1. Given a set of LCs with real variables, we would
like to obtain a bound c such that |vol(F )−#F | ≤ c.

When variables take values from integer domains, the
definition of our approximation problem is slightly differ-
ent. We consider the relaxed formula relaxed(F ), where
relaxed(F ) is F whose variables take real values.
Problem 2. Given a set of LCs with integer variables, we
would like to obtain a bound c such that |vol(relaxed(F ))−
#F | ≤ c.

A set of LCs also represents a convex polytope P . Simi-
larly, let #P and vol(P ) denote the number of integer points
in P and the volume, respectively.
Problem 3. Given a convex polytope P , we would like to
obtain a bound c that |vol(P )−#P | ≤ c.

Note that Problem 1, 2 and 3 are all equivalent. Without
loss of generality, in this paper, we only use the definitions of
problems on LCs with real variables and convex polytopes.
In this section, we mainly discuss on convex polytopes. There
are several more notations about polytopes.

• Let B(P ) denote the boundary (facets) of P .
• Let mi(P ) denote dmin{xi|x ∈ P}− 1e. For example,
min{xi|x ∈ P} = 1, then mi(P ) = 0.
• Let Mi(P ) denote bmax{xi|x ∈ P}+ 1c similarly.
• Let Ph denote the intersection of P with a hyperplane
h. For example, Px1=0 represents the cross-section of P
with x1 = 0, i.e., Px1=0 = {Ax ≤ b, x1 = 0}.
• Let projh(P ) denote the projection from P onto a hy-

perplane h.

Definition 2. An integer-cube is a unique unit-cube all of
whose corners are integer points.

• Given an integer point α, we use c(α) to denote the
integer-cube, where c(α) = {xi ∈ [αi, αi + 1], i =
1, . . . , n}.



• We use C(P ) to denote the set of integer-cubes which
intersects with P . For example, C(P ) is the set of or-
ange squares and grey squares in Figure 1. Similarly,
we use C(B(P )) and C(projh(P )) to denote sets of
integer-cubes that intersect withB(P ) and projh(P ) re-
spectively.

3.2 Main Results
The difference between vol(P ) and #P is intuitively caused
by points that are close to the boundary of P . Moreover, these
“controversial” points can be covered by integer-cubes that
intersect with B(P ), e.g., orange squares in Figure 1. So we
draw the following theorem by this intuition.

Theorem 1. |vol(P )−#P | ≤
∣∣C(B(P ))

∣∣.1
Proof. Given an integer-cube c ∈ C(P ) \ C(B(P )). Since
c ∈ C(P ), c has intersection with P . On the other hand,
since c 6∈ C(B(P )), c does not has intersection with
the boundary B(P ). So we know c ⊂ P , i.e., C(P ) \
C(B(P )) is a set of integer-cubes inside P . Note that integer-
cubes only share points on their boundaries and the volume
of an integer-cube is 1. We have

∣∣C(P ) \ C(B(P ))
∣∣ =∑

c∈C(P )\C(B(P )) vol(c) ≤ vol(P ). We can map cubes in
C(P ) \ C(B(P )) to different integer points in P , e.g., pick
a specific corner point of a cube. Therefore, the number of
cubes

∣∣C(P ) \ C(B(P ))
∣∣ is less or equal to #P . Note that∣∣C(P ) \C(B(P ))

∣∣ = |C(P )| −
∣∣C(B(P ))

∣∣. Then we obtain{
|C(P )| −

∣∣C(B(P ))
∣∣ ≤ vol(P ) ≤ |C(P )|,

|C(P )| −
∣∣C(B(P ))

∣∣ ≤ #P ≤ |C(P )|.

As a result, vol(P )−
∣∣C(B(P ))

∣∣ ≤ |C(P )| −
∣∣C(B(P ))

∣∣ ≤
#P ≤ |C(P )| ≤ vol(P ) +

∣∣C(B(P ))
∣∣.

In Figure 1, the size of the orange area is equal to∣∣C(B(P ))
∣∣, which consists of integer-cubes in C(B(P )).

Theorem 1 is the basis of theoretical guarantees, but lacks
the bound of

∣∣C(B(P ))
∣∣. So it is our goal in the following

analysis.

Definition 3. We call c(α){xn=αn}, which is a cross-
section, the bottom of the integer-cube c(α), denoted as
bottom(c(α)).

Definition 4. We call a polytope P cuts an integer-cube c
if B(P ) ∩ c 6= ∅ and B(P ) ∩ bottom(c) = ∅, i.e., B(P )
intersects with c but does not intersects with bottom(c).

Lemma 1. Consider a set of integer-cubes Sn(α) = {c(αγ)|
αγ = (α1, . . . , αn−1, γ), γ = bmnc, . . . , dMne}. Then P
can cut at most two integer-cubes in Sn(α).

Proof. Assume there are three integer-cubes c1, c2, c3 ∈
Sn(α) such thatB(P )∩ci 6= ∅ andB(P )∩bottom(ci) = ∅.

Let α1, α2 and α3 denote the points such that c(αi) =
ci, i = 1, 2, 3. Note αis are same except the nth elements.
Let vi represent the value of nth element in αi, i.e., αi =

1Note that
∣∣C(B(P ))

∣∣ represents the cardinality of the set
C(B(P )).

(α1, ..., αn−1, vi). Without loss of generality, let v1 < v2 <
v3. Then c1 is above c2 and c2 is above c3.

Since B(P ) ∩ c1 6= ∅ and B(P ) ∩ c2 6= ∅, we can pick
two points a ∈ B(P ) ∩ c1 and b ∈ B(P ) ∩ c2. The segment
ab is inside P due to the convexity of P . In addition, ab ∩
bottom(c1) 6= ∅ as c1 is above c2. So bottom(c1) ∩ P 6=
∅. Furthermore, we have bottom(c1) ⊂ P , otherwise, there
exists a point in bottom(c1) that also lies in B(P ), which
contradicts with B(P ) ∩ bottom(c1) = ∅. Similarly, we can
prove bottom(c2) ⊂ P , becauseB(P )∩c2 6= ∅,B(P )∩c3 6=
∅, and c2 is above c3.

From the assumption c2 ∩B(P ) 6= ∅, one can pick a point
p ∈ c2∩B(P ), where p = (p1, . . . , pn). Consider two points
p′ = (p1, . . . , pn−1, v1) and p′′ = (p1, . . . , pn−1, v2), obvi-
ously, p′ ∈ bottom(c1) and p′′ ∈ bottom(c2). Moreover,
bottom(c1) ⊂ P and B(P ) ∩ bottom(c1) = ∅, so we have
p′ ∈ P \B(P ). Similarly, we have p′′ ∈ P \B(P ). From the
convexity, the segment p′p′′ ⊂ P \B(P ). We know that p is
on segment p′p′′, then p is not in the boundary of P , which
is a contradiction.

Intuitively, we could obtain the bound of
∣∣C(B(P ))

∣∣ by
mapping integer-cubes in C(B(P )) to integer-cubes which
intersect with a bounding cuboid of P . For example, orange
squares can be mapped to green squares in Figure 1. In detail,
we prove the following theorem.

Theorem 2.∣∣C(B(P ))
∣∣ ≤ 2

n∑
i=1

∣∣C(proj{xi=0}(P ))
∣∣. (1)

Proof. (Mathematical Induction)
Basis: Show that the Equation (1) holds for 1-dimensional

problems. A 1-dimensional polytope is an interval. Its
boundaries are the two end-points of this interval. Then∣∣C(B(P ))

∣∣ ≤ 2 and
∣∣C(proj{x=0}(P ))

∣∣ = 1.
Inductive Step: Show that if Equation (1) holds for

1, 2, . . . , n − 1 dimensions, then it also holds for n dimen-
sions.

Given a polytope P , we have the length of xi, i.e.,
[mi,Mi]. Then we subdivide P by constraints Xn(w) =
{w ≤ xn ≤ w + 1}, where w = bmnc, . . . , dMne − 1 are
integers. It is easy to see that

∣∣C(B(P ))
∣∣ =

dMne−1∑
w=bmnc

∣∣∣C(B(P ) ∩Xn(w)
)∣∣∣, (2)

∣∣C( proj
{xi=0}

(P ))
∣∣ =

dMne−1∑
w=bmnc

∣∣∣C( proj
{xi=0}

(P ) ∩Xn(w)
)∣∣∣,

(3)

where i = 1, . . . , n− 1.
Note that P{xn=w} is an (n − 1)-dimensional polytope.

According to the induction hypothesis, there is

∣∣C(B(P{xn=w}))
∣∣ ≤ 2

n−1∑
i=1

∣∣∣C( proj
{xi=0}

(P{xn=w})
)∣∣∣. (4)



Figure 2: Consider a 3D example of polyhedron P = ABCD. We
have P ∩ Z(w) is the red polyhedron EFGHIJ and P{z=w} =
4EFG, where Z(w) = {w ≤ z ≤ w + 1}. Then consider the
projections onto plane x = 0. We have proj{x=0}(P ∩ Z(w)) =
E′G′J ′H ′ and proj{x=0}(P{z=w}) = E′G′. We observe that the
trapezoid E′G′J ′H ′ can be covered by 4 integer-cubes (squares)
and E′G′ can be covered by 4 integer-cubes (line segments).

Since P{xn=w} ⊆ P ∩Xn(w), it is easy to see that∣∣∣C( proj
{xi=0}

(P{xn=w})
)∣∣∣ ≤ ∣∣∣C( proj

{xi=0}
(P ∩Xn(w))

)∣∣∣.
We know that projh(A ∩ B) ⊆ projh(A) ∩ projh(B) and
proj{xi=0}(P ) ∩ proj{xi=0}(Xn(w)) = proj{xi=0}(P ) ∩
Xn(w), so we have∣∣∣C( proj

{xi=0}
(P ∩Xn(w))

)∣∣∣ ≤ C∣∣∣( proj
{xi=0}

(P ) ∩Xn(w)
)∣∣∣.

Then Equation (4) becomes

∣∣C(B(P{xn=w}))
∣∣ ≤ 2

n−1∑
i=1

∣∣∣C( proj
{xi=0}

(P ) ∩Xn(w)
)∣∣∣. (5)

In order to have a better understanding of this proof, we also
present a simple 3-dimensional example in Figure 2.

Let Fw =
∣∣∣C(B(P ) ∩ Xn(w)

)∣∣∣ − ∣∣C(B(P{xn=w}))
∣∣.

Then Fw is the number of integer-cubes that B(P ) has in-
tersections with, but no intersection with their bottoms, in
C
(
B(P ) ∩ Xn(w)

)
. For example, in Figure 2, B(P{z=w})

are the 3 sides of4EFG and B(P ) ∩ Z(w) are the 3 quad-
rangles EFIH , FGJI and EGJH . It is easy to see that an
integer-square s ∈ C

(
B(P{z=w})

)
corresponds to a unique

integer-cube c ∈ C
(
B(P ) ∩ Z(w)

)
that s = (c ∩ (z = w)).

Then s = bottom(c) and (s ∩ B(P )) 6= ∅. It implies that
bottom(c) intersects with B(P ). On the other hand, we can
also find that each integer-cube in C

(
B(P ) ∩ Z(w)

)
, whose

bottom intersects withB(P ), corresponds to a unique integer-
square in C

(
B(P{z=w})

)
. So

∣∣C(B(P{z=w})
)∣∣ is equal to

the number of integer-cubes in
∣∣∣C(B(P ) ∩ Z(w)

)∣∣∣ whose
bottoms have intersection with B(P ).

Combining Equation (2), (3) and (5), we have∣∣C(B(P ))
∣∣ =

dMne−1∑
w=bmnc

(∣∣C(B(P{xn=w}))
∣∣+ Fw

)

≤ 2

n−1∑
i=1

dMne−1∑
w=bmnc

∣∣∣C( proj
{xi=0}

(P ) ∩Xn(w)
)∣∣∣+

dMne−1∑
w=bmnc

Fw,

≤ 2

n−1∑
i=1

∣∣C(proj{xi=0}(P ))
∣∣+

dMne−1∑
w=bmnc

Fw.

From Lemma 1, we can map each integer-cube, which B(P )
has intersections with, but no intersection with their bottoms,
to a cube in C(proj{xn=0}(P )) by at most two times. So

dMne−1∑
w=bmnc

Fw ≤ 2
∣∣C(proj{xn=0}(P ))

∣∣.
Since computing the projection is not an easier problem,

we would like to consider a simpler and practical version of
Theorem 2, which is the following corollary.
Corollary 1.∣∣C(B(P ))

∣∣ ≤ 2

n∑
i=1

∏
i6=j

(
Mj(P )−mj(P )

)
. (6)

We omit the proof of Corollary 1 which is plain, due to the
limited space. This corollary provides a bound for

∣∣C(B(P ))
∣∣

by volumes of surfaces of a bounding cuboid for P . To obtain
the values of Mi(P ) and mi(P ), it requires at most 2n times
of linear programming. In practice, the overhead is negligible
compared with the cost of volume computation or estimation.

4 Algorithm
Based on Theorem 1 and Corollary 1, we present an approx-
imation algorithm for integer solution counting with rigor-
ous guarantees on LCs. The pseudo-code of our approach
Vol2Lat is presented in Algorithm 1. The input is a con-
vex polytope P (or a set of LCs) and the output is a triple that
consists of the value, the lower bound and the upper bound of
approximation.

We first apply Gaussian Elimination to reduce equalities,
as they usually cause degeneration and lead to zero volume.
Then we compute Mi and mi for Pk by linear programming
and errk via the formula in Corollary 1. Since there are vol-
ume computation tools and volume estimation tools for con-
vex polytopes, whose outputs are different, we present two
procedures for them. For the volume v obtained by compu-
tation, the lower and upper bound are v − err and v + err
respectively. Different from volume computation, the estima-
tion routine, e.g., PolyVest, returns results in (ε, δ)-bound.
It means that the estimation ṽ of vol(P ) lies in the interval
[(1 + ε)−1vol(P ), (1 + ε)vol(P )] with at least probability
(1 − δ). Such interval is also called the confidence interval.
Let [Il, Iu] denote such (1− δ) confidence interval. Then the
bound is thus equal to [Il− errk, Iu+ errk], which is also an
(1− δ) confidence interval.



Algorithm 1 Approximate Counting via Volume
Function Vol2Lat(P )

Apply Gaussian Elimination;
Compute Mi(P ) and mi(P ), i = 1, . . . , n;

err ← 2
n∑
i=1

∏
i 6=j

(
dMj(P )e − bmj(P )c

)
;

if enable volume computation then
Call the volume computation routine to obtain

the exact volume v of P ;
return (v, v − err, v + err);

else
Call the volume estimation routine to obtain

the estimation ṽ with the confidence interval
[Il, Iu];

return (ṽ, Il − err, Iu + err);

5 Evaluation
In order to evaluate our approach, we implemented a tool
called Vol2Lat2. in C++ based on Algorithm 1 and a
#SMT(LA) solver, which can handle LCs combined with
propositional logic and also disequalities ( 6=). We used a
timeout of half an hour, and chose ε = 0.2 and δ = 0.1
for PolyVest (volume estimation). Experiments were con-
ducted on a laptop workstation with 2.40GHz Intel Core i7-
4700MQ CPU and 8GB memory. The suite of benchmarks
consists of three families:

• Random Polytopes: For each LC, we first randomly
pick a number l. Then we select l variables and generate
coefficients (from −1000 to 1000) in uniform distribu-
tion. We filter out unsat cases and obtain 96 polytopes
ranging from 2 to 15 dimensions at last.

• Multiple Knapsack: We generated 100 instances from
the classic multiple knapsack problem [Abı́o and
Stuckey, 2014]. The coefficients belong to [0, 10], the
domain size is 64 and m = n, n ∈ {3, 4, 5}.
• Simple Temporal Planning: We randomly generated

150 instances based on the structure of Simple Temporal
Networks (STNs) [Huang et al., 2018].

• Instances from program analysis: We analyzed 7 pro-
grams (‘cubature’, ‘gjk’, ‘http-parser’, ‘muFFT’, ‘Sim-
pleXML’, ‘tcas’ and ‘timeout’) ranging from 0.4k to
7.7k lines of source code via a symbolic execution bug-
finding tool called CAnalyze [Xu et al., 2014]3 and
generated 3803 instances in total.

Experimental Results
Figure 3 presents the average running time of three tools for
each dimension. Note that the y-axis is in logarithmic coor-
dinate. Table 2 presents more details, but only part of results,

2Our tool and benchmarks are available at: https://github.com/
bearben/VOL2LAT

3In order to analyze practical programs, bug-finding tools em-
ploy simplifications. For example, they unwind a loop by once (or
several times), do not instantiate every element in an array, etc.

due to the limited space. #dims is the number of dimensions.
L(F ) and U(F ) are the lower and upper bound computed by
our approach. ‘TIMEOUT’ and ‘MEMOUT’ represent run-
ning out of time and memory (8GB) respectively.

0.03

0.3

3

30

300

2 3 4 5 6 7 8 9 10 11 12 13 14 15

LattE Vinci PolyVest

Figure 3: Average running times of LattE, Vinci and PolyVest
on random polytopes, for each dimension.

The results show that PolyVest and Vinci significantly
outperform LattE. The running time of LattE exponen-
tially increases as dimension increases. Vinci is very fast
but suffers from tremendous memory consumption. However,
the running time of PolyVest increases mildly. Due to the
properties of the algorithms of LattE and Vinci, their run-
ning times are heavily affected by the structure of LCs. On
some structural cases, LattE and Vinci can handle LCs
with more dimensions and usually outperform PolyVest.
However, since PolyVest employs a polynomial-time al-
gorithm, it will eventually gain the upper hand. Besides the
time-consumption, we can also observe that the values of
vol(F ) and ˜vol(F ) are very close to #F from Table 2. It is
the key observation that motivates us to approximate integer
counts via space volume. In addition, the bounds are usually
close to #F . Recall that in Theorem 1, we compute bounds
by subtracting or adding |C(B(P ))| from #P . So, the lower
bounds are worse and sometimes may be equal to zero.

To evaluate the quality of approximation bounds in applica-
tions, we conducted more experiments over constraints gen-
erated from multiple knapsack problems, STNs and program
analysis. The average results for each family of benchmarks
are listed in Table 3. Note that ē, ēl and ēu are the average
values of e = |#F−vol(F )|

#F , el = L(F )
#F and eu = U(F )

#F re-
spectively. In general, the relative errors of approximations
via volume are smaller than 10% and the bounds are often
close to the exact counts #F, which are useful in many appli-
cations, such as counting-based search, knowledge represen-
tation, program analysis, etc. Since in these cases, we usually
only need to find the polytope which has larger solution count
instead of obtaining the exact count. For example, comparing
the solution counts of branches to guide decision procedure
during the search.

6 Related Works
Kannan and Vempala [Kannan and Vempala, 1997] proposed
an algorithm for sampling integer points in a convex polytope.



#dims Exact Counting (LattE) Approx via Volume Computation (Vinci) Approx via Volume Estimation (PolyVest)

#F t (s) vol(F ) L(F ) U(F ) t (s) ṽol(F ) L̃(F ) Ũ(F ) t (s)

2 1.59e+9 0.030 1.59e+9 1.59e+9 1.59e+9 0.032 1.58e+9 1.32e+9 1.90e+9 0.029
3 2.07e+13 0.040 2.07e+13 2.07e+13 2.07e+13 0.027 2.11e+13 1.76e+13 2.54e+13 0.025
4 5.29e+17 0.134 5.29e+17 5.29e+17 5.30e+17 0.031 5.27e+17 4.39e+17 6.33e+17 0.052
5 4.63e+19 2.059 4.63e+19 4.50e+19 4.76e+19 0.025 4.60e+19 3.70e+19 5.65e+19 0.146
6 1.05e+26 704.7 1.05e+26 1.03e+26 1.08e+26 0.027 1.06e+26 8.59e+25 1.29e+26 0.444
7 —— TIMEOUT 4.29e+31 4.24e+31 4.35e+31 0.028 4.26e+31 3.49e+31 5.17e+31 0.894
8 —— TIMEOUT 1.08e+35 9.47e+34 1.21e+35 0.061 1.09e+35 7.75e+34 1.43e+35 1.881
9 —— TIMEOUT 1.28e+41 1.27e+41 1.29e+41 0.050 1.27e+41 1.05e+41 1.53e+41 4.451
10 —— TIMEOUT 2.66e+44 1.70e+44 3.62e+44 0.479 2.69e+44 1.29e+44 4.19e+44 6.721
11 —— TIMEOUT 1.29e+48 0 3.18e+48 0.354 1.28e+48 0 3.42e+48 11.3
12 —— TIMEOUT 4.39e+53 2.80e+53 5.97e+53 4.944 4.38e+53 2.07e+53 6.83e+53 21.4
13 —— TIMEOUT —— —— —— MEMOUT 1.28e+58 1.96e+57 2.41e+58 35.4
14 —— TIMEOUT —— —— —— MEMOUT 4.50e+63 2.02e+62 8.96e+63 56.8
15 —– TIMEOUT —— —— —— MEMOUT 2.73e+64 0 4.73e+66 70.1

Table 2: Running times and approximation results over random polytopes with different dimensions

Name #dims Exact Counting Approximating via Volume Computation

avg max #solved t̄ (s) #solved t̄ (s) ē (≥ 0%) ēl (≤ 100%) ēu (≥ 100%)

Knapsack 5 7 100 (100) 80.8 100 (100) 0.04 7.7% 35.9% 150.6%

STN 8.71 14 150 (150) 16.4 148 (150) 0.73 3.8% 77.9% 114.9%

cubature 7.50 14 1094 (1099) 52.3 1099 (1099) 1.28 5.9% 14.1% 336.0%
gjk 6.83 10 58 (58) 2.46 58 (58) 0.09 < 0.1% 0% 806.9%
http-parser 5.36 16 1660 (1710) 64.1 1710 (1710) 2.48 1.4% 90.5% 117.7%
muFFT 5.04 10 593 (593) 0.67 593 (593) 0.05 0.5% 45.6% 500.6%
SimpleXML 4.87 8 113 (113) 2.54 113 (113) 0.10 3.4% 87.2% 160.4%
tcas 7.15 13 107 (107) 7.83 107 (107) 0.35 < 0.1% > 99.9% < 100.1%
timeout 7.97 13 122 (123) 171.3 123 (123) 3.08 4.0% 92.9% 118.7%

Table 3: Statistic results of time-consumption and errors of approximation and bounds on structural instances.

The proof of this algorithm shows that if a convex polytope
P contains within it a ball of radius n

√
logm, then there is a

constant c such that c · #P < vol(P ) < 1
c#P . Intuitively,

the bound of c can be possibly approximated by inverting this
sampling algorithm. However, there is no expression nor al-
gorithm proposed to compute the constant c.

The Ehrhart Polynomial, to our best knowledge, is the re-
sult that is closest to our bounds. It says that #P can be ex-
pressed as a linear combination of the volume of the faces
of P, i.e., #P =

∑
F (vol(F ) ∗ e(cone(P, F )), where F is

a face of P , cone(P, F ) is the supporting cone of P at F .
Barvinok [Barvinok, 1994] proved that for integer polytopes,
the coefficient e(cone(P, F )) can be computed using O(mk)
calls for the volume computation oracle, wherem is the num-
ber of faces and F is k-dimensional. For rational polytopes,
coefficients are considered to be more difficult to compute.

Dyer [Dyer et al., 1991] introduced a FPRAS algorithm
for estimating the volume of convex bodies which is called
Multiphase Monte-Carlo by its follow-up works. PolyVest
is an implementation of such algorithm, which is restricted
to polytopes for efficiency. But the goal of our work is dif-
ferent since we consider the integer solution counts instead
of volume. Recall the discussion in Section 2, discretization
will not work on integer counting as the length of grids can-

not be arbitrarily small, although it is a natural way to handle
continuous problems like volume.

7 Conclusion
Linear constraints appear frequently in many areas. Yet the
associated counting problem has not received enough atten-
tion. We introduced an approximate counting algorithm via
space quantification for LCs. It provides approximation with
theoretical guarantees which are useful for users to make de-
cisions of keeping or discarding approximations. Evaluation
shows the scalability and high-efficiency of our approach. We
also observe that the theoretical bounds are sometimes too
loose compared with the practical errors. Therefore, improv-
ing bounds, especially the lower bound, is an interesting and
also challenging direction of future research.
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[Loera et al., 2004] Jesús A. De Loera, Raymond Hem-
mecke, Jeremiah Tauzer, and Ruriko Yoshida. Effective
lattice point counting in rational convex polytopes. J.
Symb. Comput., 38(4):1273–1302, 2004.

[Lovász and Deák, 2012] László Lovász and István Deák.
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