
Checking Activity Transition Systems with Back
Transitions against Assertions

Cunjing Ge1,3, Jiwei Yan2(�), Jun Yan1,2,3, and Jian Zhang1,3(�)

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

{gecj, yanjw, yanjun, zj}@ios.ac.cn
2 Technology Center of Software Engineering,

Institute of Software, Chinese Academy of Sciences
3 University of Chinese Academy of Sciences

Abstract. The Android system is in widespread use currently, and An-
droid apps play an important role in our daily life. How to specify and
verify apps is a challenging problem. In this paper, we study a formalism
for abstracting the behaviour of Android apps, called Activity Transition
Systems (ATS), which includes back transitions, value assignments and
assertions. Given such a transition system with a corresponding Activity
Transition Graph (ATG), it is interesting to know whether it violates
some value assertions. We first prove some theoretical properties of tran-
sitions and propose a state-merging strategy. Then we further introduce
a post-reachability graph technique. Based on this technique, we design
an algorithm to traverse an ATG that avoids path cycles. Lastly, we
also extend our model and our algorithm to handle more complicated
problems.

1 Introduction

The Android system, which provides rich and flexible features to ease the de-
velopment of applications (apps), is one of the most popular mobile operating
systems currently. Various Android apps are developed and released to the app
market, which attracts high downloads due to the convenient interaction, user-
friendly windows, and event-driven nature.

In Android system, the major component, Activity, is a container which con-
sists of various GUI widgets (e.g., button). Users can interact with widgets on an
activity and trigger transitions between activities to perform a certain job. Thus
activity transition model for event-driven callbacks is a fundamental model for
analysis of Android apps. This serves as a cornerstone for many clients, such as
vulnerability detection [6,9,12,13,14,15,19,20], malware detection and mitigation
[10,11,19], GUI model generation [22,23], and GUI testing [3,4,5,16,17].

All launched activities are arranged in the back stack in the order in which
each activity is opened. Take a short message (SMS) manager app as an example,
which may have an activity to show the list of contacts. When the user selects
a contact person, a new activity is opened to view all the messages from or to



2 Cunjing Ge, Jiwei Yan, Jun Yan, Jian Zhang

the person. At the same time, the system will add the new activity to the back
stack. Then if the user presses the back button on the bottom of the screen,
that new activity is finished and popped off the stack. By default, activities in
the stack can only be rearranged by push and pop operations. This back-stack
mechanism is so flexible that a developer has to carefully inspect the status of
the back stack when developing the transitions between activities. An Activity
with different back stack may lead to different program behaviors, which brings
the difficulty to the modeling of apps. When the launch-mode of activities is
involved, the task will be more complicated.

Recent works [3,23,24,21] construct transition models of apps and traverse the
model to generate transition paths or even sequences to guide the GUI testing,
some of them discuss the influences brought by the stack mechanism. These
works adopt the same assumption that when the back operation is triggered,
e.g., the model will roll back to the previous state. However, the assignments
of global variables will not roll back. For example, the operations in the setting
activity are also impossible to be rollback. As shown in Figure 1, when the app

TippyTipper are transit in the order of main
OpenSetting−−−−−−−−→ setting1

ClickCheckbox−−−−−−−−−−→
setting2

Back−−−→ main, the global variables that are changed in setting2 will not
roll back by simply pressing the back button.

(a) main (b) setting1 (c) setting2

Fig. 1. Tippy Tipper Application

Because the back transition will lead to state change, in this paper, we con-
sider a problem of determining if there exists a path that violates one of the
assertions in the ATG with back transitions.

The main contributions of this work are summarized as follows:

– We propose an Activity Transition Graph (ATG) model with back transi-
tions, value assignments and assertions, to describe the activity relations of
Android apps in detail.



Title Suppressed Due to Excessive Length 3

– We introduce a post-reachability graph and design algorithms to traverse an
ATG that avoids path cycles.

– We extend our model and our algorithm to handle more complicated and
also more interesting tasks.

The rest of this paper is organized as follows. Background and preliminary
material is in Section 2, the algorithm in Section 3, several extensions of our mod-
el and approach in Section 4, related works in Section 5, and finally, concluding
remarks in Section 6.

2 Background

Definition 1. An Activity Transition System (ATS) (X,V, V0,A, A0, T )
consists of a set X of Boolean-valued variables, a set V of domain of variables
in X, an initial assignment V0, a set A of activities, an initial activity A0 ∈ A
and a set T of transitions.

Each transition τ ∈ T is a tuple (A,A′) where A and A′ are activities. Each
activity or transition corresponds to a set of statements such as assignment
statements like x := 0 and assertions like x = 1→ y = 0.

Definition 2. Given an Activity Transition System (X,V, V0,A, A0, T ), the Ac-
tivity Transition Graph (ATG) is a digraph which is constructed in the fol-
lowing way:

1. For each activity in A, introduce a vertex Ai.

2. For each transition τ = (Ai, Aj), introduce an edge from Ai to Aj.

We introduce a special back transition τb which transits from the latest
visited activity Ak to Ak−1. The statements of activity Ak−1 will not be executed
after back transition. Back transition not only rolls back activity, but also the
part of assignments.

Definition 3. A variable is global if it does not roll back its assignment during
back transitions. Otherwise, it is a local variable.

Assume X consists of n global variables XG = {xG1 , . . . , xGn } and m local
variablesXL = {xL1 , . . . , xLm}. We use V G and V L to represent the assignments of
XG and XL respectively. So back transition generates the k+1 step 〈Vk+1, Ak+1〉
that V Gk+1 = V Gk , V Lk+1 = V Lk−1 and Ak+1 = Ak−1. We extend the ATS and ATG
with such back transitions.

In this paper, we consider a problem of determining if there exists a path
that violates one of the assertions in the ATG with back transitions.



4 Cunjing Ge, Jiwei Yan, Jun Yan, Jian Zhang

A3

Assert xG
 = 1 -> y

L
 = 0

x
G
 := 1

A0

xG
 := 0

y
L
 := 0

T1
yL

 := 0

T2
xG

 := 0

y
L
 := 1

A1

yL
 := 1

Assert x
G
 = 0

T3

A4

xG
 := 1

y
L
 := 0

T5
xG

 := 1

T6
yL

 := 0

A5

yL
 := 1

T7
xG

 := 1

A6

xG
 := 0

y
L
 := 0

T9

T4

T8
xG := 0

Fig. 2. An example of an ATG

Path:
〈A0, (0, 0)〉 T1−−→ 〈A3, (1, 0)〉 back−−−→
〈A0, (1, 0)〉 T3−−→ 〈A1, (1, 1)〉

Statements:

A0 x := 0

A0 y := 0

T1 y := 0

A3 Assert x = 1 -> y = 0

A3 x := 1

BACK y roll back 0

A1 y := 1

A1 Assert x = 0

Fig. 3. Statements of a path

Example. Figure 2 presents an example of the ATG with back transitions. It has
6 activities, 9 forward transitions and 2 boolean variables (one of them is global
and another one is local). The initial values for variable x and y are both zero.
Activity A1 and A3 contain assertions. It starts from activity A0. Then there

exists a path that violates the assertion in A1: 〈A0, (0, 0)〉 T1−−→ 〈A3, (1, 0)〉 back−−−→
〈A0, (1, 0)〉 T3−−→ 〈A1, (1, 1)〉. Concatenate the blocks of statements in transitions
and activities, this path can be represented as Figure 3. So a path can be con-
sidered as a sequence of statements. Since the initial assignment is determined,
the assignment of variables on each statement is determined.

Relation with pushdown automata. There is a straightforward way to transform
the assertion violation problem of an ATG with back transitions into a reacha-
bility problem of a pushdown automata:

– Let Q denote the set of states and Γ denote the stack alphabet. Since the
assignments at an activity are finite, Q and Γ are also finite. We introduce
an input symbol Iτ for the forward transition τ and an additional symbol
BACK to represent back transitions.

– Consider a pair (A, V ) where A is an activity and V is an assignment. For
(A, V ), we introduce a state q(A,V ) ∈ Q and a symbol S(A,V ).

– We introduce a transition from q(A1,V1) to q(A2,V2) for a transition τ from
activity A1 to A2 in the original ATG, where V2 is the assignment result
after executing statements of τ and A2 with input V1. This transition can
be simulated by (q(A1,V1), Iτ , S

∗, q(A2,V2), S(A1,V1)S
∗), where S∗ represents

an arbitrary stack symbol in Γ and S(A1,V1)S
∗ indicates that this transition

pushes symbol S(A1,V1) into stack.
– Consider a back transition from (A2, V2) to the last state (A1, V1) in the

stack. Let V0 represent the assignment after the back transition. We first



Title Suppressed Due to Excessive Length 5

introduce two states q(A2,V2) and q(A1,V0). Then we introduce a transition
(q(A2,V2), BACK,S(A1,V1)S

∗, q(A1,V0), S
∗) to simulate this back transition,

where S∗ ∈ Γ and S(A1,V0)S
∗ indicates that this transition pops S(A1,V1).

3 Approach

We use a 3-tuple (A, V, S) to represent a state, where A is an activity, V is an
assignment of variables and S is a stack that stores history information. Note
that the stack S is a set of states which are previously visited, instead of a set
of pairs like (A, V ). Therefore, states containing different stacks are considered
to be different in our model. A state contains necessary information for forward
and back transitions. We can transit forward from one state to another and can
also transit back to the previous state with the stack S.

3.1 A Straightforward Method

Algorithm 1: Straightforward Version

1 function
2 Q← {(A0, V0, Φ)};
3 while Q not all visited do
4 pick an unvisited element q = (A, V, S) in Q;
5 for each τ = (A,Anext) start from A do
6 execute statements on τ and Anext and obtain Vnext;
7 if assertions on τ or Anext violated then return false;
8 Snext ← S, Snext.push(q);
9 Q← Q ∪ {(Anext, Vnext, Snext)};

10 if S 6= Φ then
11 (Aback, Vback, Sback)← S.pop();

12 V G
back ← V G;

13 Q← Q ∪ {(Aback, Vback, Sback)};
14 set q visited;

Algorithm 1 is the basic framework of breadth-first-search over the given
ATG. It employs a queue Q to store states in this BFS algorithm. At the be-
ginning, it adds the initial state (A0, V0, Φ) into Q. Then it visits every state
in Q. For an unvisited element q = (A, V, S) in Q, it enumerates each forward
transition τ = (A,Anext) from A. After that it executes statements and checks
assertions on τ and the next activity Anext to obtain the new assignment Vnext.
Copy stack S to Snext and push state q into stack Snext. Then it adds the new
state (Anext, Vnext, Snext) into Q. After forward transitions, we consider the back
transition at state q. The algorithm pops the stack S to obtain the previous state



6 Cunjing Ge, Jiwei Yan, Jun Yan, Jian Zhang

(Aback, Vback, Sback). Since the assignment of global variables remains, assign V G

to V Gback. Then the algorithm adds the new state (Aback, Vback, Sback) into Q. At
last, it visits another unvisited state in Q.

3.2 Post-reachability Graphs

The straightforward method may not terminate since it cannot handle cycle.
Consider the example in Figure 2, assume we have already obtained a sequence of

states: 7 : (A0, (1, 0), Φ)
T1−−→ 15 : (A3, (1, 0), {7}) T6−−→ S1 : (A4, (1, 0), {7, 15}) T4−−→

S2 : (A0, (0, 0), {7, 15, S1}). It is a sequence starting from state 7 to state S2
(state 7 and 15 are obtained in real execution of our algorithm while S1 and S2
are not, for details, see Figure 6). Since the assignments of state 7 and state S2
are different, it is not a cycle. However, if we start from state S2 through transi-
tion T2 and a back transition, we obtain a new state S4 : (A0, (1, 0), {7, 15, S1}).
Then we find a cycle from state 7 to S4. The straightforward method will keep
visiting activities starting from state S4, since S4 is different with state 7 in the
perspective of stacks. In this example, it is also not sufficient to avoid cycles by
only checking the existence of the pair (A0, (1, 0)), since it lacks path informa-
tion. So, in this section, we introduce a post-reachability graph for each activity
to store sufficient history information for cycle avoidance.

Consider two states (A, V, S) and (A, V, S′) on same activity A. They contain
same variable assignment V , but different stacks S and S′. Intuitively, the for-
ward transitions starting from these two states will lead to similar results, since
in this case, stacks of history states only affect back transitions. So we could
merge these two states into a virtual state with variable assignment V for the
exploration of forward transitions. In other words, given a new state (A, V, S′′),
it is unnecessary to explore forward transitions starting from it. However, we
have to store S, S′ and S′′ as they represent different path traces which are
useful for the exploration of back transitions. To precisely describe the previous
strategy, we introduce following lemmas and Theorem 1.

Lemma 1. Given two states (A, V, S) and (A,U,R) on the same activity A.
Consider a transition τ = (A,Anext), let (Anext, Vnext, Snext) and (Anext, Unext,
Rnext) denote the states after transition τ . Then V = U ⇒ Vnext = Unext.

Lemma 2. Given two states (A, V, S) and (A,U,R) on the same activity A.
Let (Alast, Vlast, Slast) and (Alast, Ulast, Rlast) denote the last element of S and
R respectively. Consider two states (Alast, Vback, Slast) and (Alast, Uback, Rlast)
after a back transition. Then V = U, Vlast = Ulast ⇒ Vback = Uback.

Proof. Recall the definition of roll back operation on variable assignments, we
know that V Gback = V G, V Lback = V Llast, U

G
back = UG and ULback = ULlast. Since

V = U and Vlast = Ulast, it is obvious that V G = UG and V Llast = ULlast. As a
result, Vback = Uback. ut

Theorem 1. Given two states (A0, V0, S0) and (A0, U0, R0) on the same activ-
ity A0 and a sequence of normal and back transitions τ1 . . . τk. There are two



Title Suppressed Due to Excessive Length 7

sequence of states (A0, V0, S0) . . . (Ak, Vk, Sk) and (A0, U0, R0) . . . (Ak, Uk, Rk).
Then ∀i ∈ {1, . . . , k}, V0 = U0, S0 ⊂ Si, R0 ⊂ Ri ⇒ Vk = Uk.

Proof. (Mathematical Induction)
Basis: τ1 should be a forward transition as S0 ⊂ S1 and R0 ⊂ R1. From

Lemma 1, we obtain V1 = U1 as V0 = U0.
Inductive Step: Show that Vn = Un if V0 = U0, V1 = U1, . . . , Vn−1 = Un−1.
Assume τn is a forward transition. From Lemma 1, we obtain Vn = Un as

Vn−1 = Un−1. Assume τn is a back transition. We observe that stacks Sn−1 and
Rn−1 are parts of sequences (A0, V0, S0) . . . (An−2, Vn−2, Sn−2) and (A0, U0, R0)
. . . (An−2, Un−2, Rn−2). So the last elements of Sn−1 and Rn−1 should be a pair
of states

(
(Al, Vl, Sl), (Al, Ul, Rl)

)
from two sequences, where 0 ≤ l ≤ n − 2.

From induction hypothesis, we know that Vl = Ul. From Lemma 2, we obtain
Vn = Un as Vn−1 = Un−1 and Vl = Ul. ut

Theorem 1 shows that two states with same variable assignments are always
equivalent after a sequence of transitions (the number of forward transitions is
not less than back transitions) in perspective of variable assignments. When the
number of back transitions is more than forward transitions, we only have to con-
sider the stacks of two states respectively. To apply such strategy in algorithm,
we introduce the following concepts of post-reachable state and post-reachability
graph.

Definition 4. Given a state (A0, V0, S0). After a sequence of normal and back
transitions τ1 . . . τk, we obtain a sequence of states (A0, V0, S0) . . . (Ak, Vk, Sk)
that ∀i ∈ {1, . . . , k}, S ⊂ Si. If Ak = A0 and Sk = S0, the state (Ak, Vk, Sk) is
called a post-reachable state of (A0, V0, S0).

Definition 5. Given a set of states S = {(A, V1, S1), . . . , (A, Vn, Sn)} on an
activity A. Then the Post-Reachabilitiy Graph (PRG) over S is a digraph
which is constructed in the following way:

1. For each different variable assignment Vi in S, introduce a vertex vi.
2. For each vertex vi, introduce the set of stacks

⋃
Vi=Vj

{Sj} as its vertex value.

3. If (A, Vj , Sj) is a post-reachable state of (A, Vi, Si), where Vj 6= Vi, introduce
an edge from vi to vj.

In general, the PRG merges states with same variable assignment, and also
stores different stacks for the exploration of back transitions. Figure 4 shows an
example of a PRG over 8 states

S = {(A, (1, 0, 0), {1}), (A, (1, 0, 0), {3}), (A, (1, 0, 1), {3}), (A, (0, 1, 1), {1, 2}),
(A, (0, 1, 1), {3}), (A, (1, 1, 1), {7}), (A, (0, 0, 0), {1, 2}), (A, (0, 0, 0), {7})}.

There are 5 different value assignments in S, so there are 5 vertices in this PRG.
Each vertex corresponds to a set of stacks, e.g., vertex (0, 1, 1) corresponds to
stacks Σ(0,1,1) = {{1, 2}, {3}}. The edges present the post-reachability between
vertices. Besides the state-merging feature, the PRG also has a propagation
property. We present this in the following theorem.



8 Cunjing Ge, Jiwei Yan, Jun Yan, Jian Zhang

activity A

(1, 0, 0)
(1, 1, 1)

{1}, {3}
{7}

(1, 0, 1)

(0, 1, 1) (0, 0, 0)

{1, 2}, {3}

{3}

{1, 2}, {7}

Fig. 4. An example of a PRG over 8
states

activity A

(1, 0, 0)
(1, 1, 1)

{1}, {3}
{7}

(1, 0, 1)

(0, 1, 1) (0, 0, 0)

{1, 2}, {1}, {3}, {7}

{1}, {3}

{1, 2}, {1}, {3}, {7}

Fig. 5. Propagate values of vertices on
the left PRG

Theorem 2. Consider two vertices in an PRG of an activity A, e.g., v1 and
v2. Let Σ1 and Σ2 denote the values of v1 and v2 (i.e., two sets of stacks),
respectively. If there exists an edge from v1 to v2 in this PRG, we have Σ1 ⊂ Σ2.

Proof. Since there exists an edge from v1 to v2, from the property of the post-
reachable state, we could find a sequence of transitions that will transit (A, V1, S)
into (A, V2, S), ∀S ∈ Σ1. Then each stack in Σ1 also belongs to Σ2. ut

Theorem 2 indicates that we could propagate values of vertices on an PRG.
In the example of Figure 4, we find that the stacks in Σ(1,0,0) should also belong
to Σ(1,0,1), i.e., Σ(1,0,1) = {{1}, {3}}, from Theorem 2. As a result, we obtain
the new PRG presented in Figure 5 by such value propagation, which contains
5 more states.

3.3 The Algorithm with PRGs

Based on the PRG technique, we introduce our improved algorithm, which is
also a BFS procedure. The pseudo-code is presented in Algorithm 2. It maintains
a PRG GA for each activity A. The value of the vertex V in GA is denoted as
ΣGA,V . Similar to the straightforward method, the BFS exploration also contains
two parts: the exploration of forward transitions from line 5 to 11 and back
transitions from line 12 to 15. Q is the queue of states to explore.

Algorithm 2 contains two sub-functions InsertState() and AddEdge(). In
the function InsertState(A, V, S), we introduce a new vertex if V is different
with the existing vertices in GA, otherwise, we only have to update ΣGA,V with
new stack S. Then we apply propagation procedure on GA and return new states
which are obtained in InsertState(). In the function AddEdge(A,U, V ), we add
a new edge from vertex U to vertex V (U 6= V ) in GA. Then it also propagates
values on GA and returns these new states.

The algorithm starts from the initial state (A0, V0, Φ). It invokes the function
InsertState() to build the PRG with the initial state and generates the initial
queue Q. Then the algorithm repeatedly enumerates unvisited states in Q.



Title Suppressed Due to Excessive Length 9

Algorithm 2: Improved Version with PRGs

1 function
2 Q← InsertState(A0, V0, Φ);
3 while Q not all visited do
4 pick an unvisited element q = (A, V, S) in Q;
5 if vertex V in GA is not visited then
6 for each τ = (A,Anext) start from A do
7 execute statements on τ and Anext and obtain Vnext;
8 if assertions on τ or Anext violated then return false;
9 Snext ← S, Snext.push(q);

10 Q← Q ∪ InsertState(Anext, Vnext, Snext);

11 set V in Ga visited;

12 if s 6= Φ then
13 (Aback, Vlast, Sback)← S.pop();

14 V L
back ← V L

last, V
G
back ← V G;

15 Q← Q ∪ InsertState(Aback, Vback, Sback) ∪ AddEdge(Aback, Vlast,
Vback);

16 set q in Q visited;

17 function InsertState(A, V , S)
18 if V is not yet a vertex in GA then
19 add vertex V into GA and set ΣGA,V ← {S};
20 else
21 ΣGA,V ← ΣGA,V ∪ {S};
22 propagate on GA and obtain new states S;
23 return {(A, V, S)} ∪ S;

24 function AddEdge(A, U , V )
25 add an edge 〈U, V 〉 into GA;
26 propagate on GA and obtain new states S;
27 return S;

For an unvisited state q = (A, V, S), we first explore forward transitions
starting from q. Recall the state-merging strategy over PRGs, we only have to
explore the forward transition once for each variable assignment. So at line 5, the
algorithm checks whether vertex V in GA is already considered. Then it explores
each forward transition τ = (A,Anext). After that it executes statements and
checks assertions on τ and the next activity Anext to obtain the new assignment
Vnext. Then it copies stack S to Snext and pushes state q into stack Snext. At
last, it obtains the new state (Anext, Vnext, Snext) and invokes InsertState()

for it.

After the forward transitions, we consider the back transition at state q. Note
that different with the forward transitions, the back transition is always explored.
At first, our approach pops S to obtain the last state (Aback, Vlast, Sback). From
the definition of back transitions, we know that V Lback is equal to V Llast and V Gback



10 Cunjing Ge, Jiwei Yan, Jun Yan, Jian Zhang

is equal to V G. Thus our approach obtains the new state (Aback, Vback, Sback).
Then it invokes InsertState() and AddEdge() to update GA and Q. Recall
the definition of post-reachable state that stacks of two states should be same,
so there is no new edge during the exploration of forward transitions. However,
since the algorithm has already explored a path from (Aback, Vlast, Sback) to
(Aback, Vback, Sback), the new state with Vback is the post-reachable state of the
last state Vlast when Vback 6= Vlast. Thus AddEdge() is invoked at line 15. At
last, the algorithm visits another unvisited state in Q.

PRG of A0

PRG of A3

PRG of A1

PRG of A4

PRG of A5

PRG of A6

(0, 0) (1, 0)

(1, 0) (1, 1)

(0, 0) (0, 1)

(0, 1) (1, 1)

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(0, 0)

1: {}
11: {1, 2, 5}

27: {1, 2, 19}

7: {}
12: {1, 2, 5}

28: {1, 2, 19}

2: {1}
15: {7}

3: {1}

16: {7}

30: {1}
31: {7}

32: {1}
33: {7}

4: {1}
34: {7}

17: {7}

18: {1}

5: {1, 2}
8: {1, 3}

10: {1, 4}
25: {7, 17}
35: {1, 30}
39: {1, 32}

19: {1, 2}
20: {1, 3}
21: {1, 4}

26: {7, 17}
36: {1, 30}
40: {1, 32}

6: {1, 2}
9: {1, 3}

37: {1, 30}
41: {1, 32}

13: {1, 2, 5}
23: {1, 2}
24: {1, 3}

29: {1, 2, 19}
38: {1, 30}
42: {1, 32}

14: {1, 2, 6}
22: {1, 2, 5, 13}

Fig. 6. All PRGs for activities in the example in Figure 2

Example. Consider the cycle mentioned in Section 3.2: 7 : (A0, (1, 0), Φ)
T1−−→ 15 :

(A3, (1, 0), {7}) T6−−→ S1 : (A4, (1, 0), {7, 15}) T4−−→ S2 : (A0, (0, 0), {7, 15, S1}) T2−−→
S3 : (A3, (1, 1), {7, 15, S1, S2}) back−−−→ S4 : (A0, (1, 0), {7, 15, S1}). It is a cycle
from A0 to A0. Since the vertex (1, 0) in GA0

has already been visited at state
7, it is easy to see that our algorithm will not explore forward transitions from
S4. In practice, the algorithm stops exploration of forward transitions earlier
at S2, as the vertex (0, 0) in GA0 has already been visited at the initial state
(A0, (0, 0), Φ). Figure 6 presents the PRGs for all activities in the example in
Figure 2, which are generated by Algorithm 2. There are 42 states in total. Note
that 12 of them (states in red) are generated by value propagation in PRGs.



Title Suppressed Due to Excessive Length 11

4 Extensions

The model of ATG with back transitions is sometimes not sufficient for practical
analysis over Android apps. However, our approach is flexible to extend to handle
more complicated problems. In this section, we present several extensions to the
ATG model and also our algorithm. Some extensions are orthogonal to each
other, i.e., they could be employed at the same time.

4.1 Construct Paths for States

Our approach is designed for enumerating all possible different pairs of the ac-
tivity and the variable assignment (A, V ). Each (A, V ) corresponds to a reach-
able state (A, V, S), i.e., there exists a path from the initial state to (A, V, S).
Although Algorithm 2 guarantees that states are reachable, it does not store
sufficient information to construct such path. Note that the path can be repre-
sented by a sequence of transitions. Thus we store the sequence of transitions T
along with the stack, e.g., extend the state (A, V, S) to a 4-tuple (A, V, S, T ).

For states obtained by forward and back transitions, it is simple to update T
for this new state. But there are some states obtained by propagation in PRGs,
whose sequences are not trivial to obtain. We introduce the following technique
to handle such cases. First, for an edge 〈V, V ′〉 in GA, we store a sequence of
transitions T〈V,V ′〉 that will transit state (A, V, S) to (A, V ′, S) for all possible
S. Then, when propagating (A, V, S, T ) to (A, V ′, S, T ′) via edge 〈V, V ′〉 in GA,
we could construct the new sequence T ′ by concatenating T with T〈V,V ′〉.

For example, in PRG of A0 in Figure 6, there is an edge 〈(0, 0) to (1, 0)〉 and
T〈(0,0),(1,0)〉 = {T1, back}. Consider a state (A0, (0, 0), {1, 2, 5}, {T1, T6, T4}) at
vertex (0, 0), where {T1, T6, T4} is the sequence of transitions that forms a
path from the initial state (A0, (0, 0), Φ) to it. So we can obtain a new state
(A0, (1, 0), {1, 2, 5}, {T1, T6, T4, T1, back}) by propagation.

4.2 Enumerated Variables and Arithmetic Expressions

We only consider Boolean-valued variables so far. However, it is easy to extend
our approach to handle enumerated variables. For enumerated variables, our
approach will still terminate in finite steps. Moreover, the results and techniques
presented in previous sections will still work with this modification.

Since our approach only relies on sequential executions over statements in-
stead of the satisfiability checking over constraints, it is easy to extend our
approach to support statements with complex expressions, such as, arithmetic
expressions, comparison between variables, etc. In general, it supports extensions
to expressions that return definite values after substituting values of variables.
For example, x := x+ y, assert x > y, x := (y > 0).

4.3 Conditional Transitions

Transitions in the ATG do not contain any conditions. However, it is common
that transitions between activities contain conditions in practical Android apps,



12 Cunjing Ge, Jiwei Yan, Jun Yan, Jian Zhang

e.g., transit from a Log-in activity to another unless users fill in correct pass-
words. For problems with such conditional transitions, it is sufficient to modify
our approach by checking conditions before exploring transitions.

4.4 Self Loops

The self transition is a forward transition τ = (A,A). It also contains statements,
but the statements of activity A will not be executed after τ . Note that the roll
back operation is also enabled after τ . Self loops are generated by such self
transitions. In practice, there are Android apps contain self loops. For example,
in a video play activity, switching between the horizontal screen and the vertical
screen is a self loop. Exploring a self transition is just like exploring a normal
forward transition, except that the algorithm may have to introduce a new edge
in a PRG during the exploration of a self transition. Based on this observation,
we could extend our approach for self loops.

4.5 Overloading and Disabling Back Transitions

Overloading roll back function is common in practical Android apps, e.g., over-
load a back transition as a program exit. Moreover, overloading is so flexible
that the overloaded transition may be very complicated. It may contain multi-
ple functions. However, after some modifications, our approach still works. For
example, in Figure 7, the back transition on A3 is overloaded by a transition
from A3 to EXIT . In this case, we have to disable the roll back operation at ac-
tivity A3. Then we introduce a forward transition from A3 to EXIT to simulate
this overloading back transition.

A3

Assert xG
 = 1 -> y

L
 = 0

x
G
 := 1

A0

xG
 := 0

y
L
 := 0

T1
yL

 := 0

T2
xG

 := 0

y
L
 := 1

A1

yL
 := 1

Assert x
G
 = 0

T3

A4

xG
 := 1

y
L
 := 0

T5
xG

 := 1

T6
yL

 := 0

A5

yL
 := 0

T7
xG

 := 1

A6

xG
 := 0

y
L
 := 0

T9

T4

T8
xG := 0

EXIT

xG
 := 0

y
L
 := 0

T10

Fig. 7. An example of overloading back transitions

Obviously, disabling a back transition can be viewed as a special case of
overloading a back transition which does not introduce a new transition.



Title Suppressed Due to Excessive Length 13

4.6 Activity Launch Modes

In Android, a parent activity can start a child activity by invoking, e.g., start-
Activity() as a form of an inter-component communication (ICC) call, passing
it an intent that describes the child activity to be launched. In addition, an ac-
tivity instance of a class, say, A can be launched in one of the four launch modes,
standard, singleTask, singleTop and singleInstance, either configured in
AndroidManifest.xml or specified in the intent passed to startActivity().
The first one is the default while the other three are known as special launch
modes. These launch modes affect which activity instances are launched and
their transitions.

standard. For the default launch mode, standard always creates a new activity
instance of A and pushes the new instance into the back-stack. In our model,
the default mechanism of forward transitions is exactly same as standard. Thus
our algorithm naturally supports this mode.

singleTop. If the activity to be started has the same type as the top activity,
then the top activity is reused. Otherwise, we handle it identically as in the case
of standard. It is trivial to prove Theorem 1 for problems with singleTop. It
shows that the state-merging strategy still works. However, the PRG technique
is no longer working since forward transitions may pop element from stack. As
a result, problems with this mode can be handled by Algorithm 1 with state-
merging strategy, which also has termination guarantee.

singleTask. This mode is similar to singleTop, except that the activity in-
stance closest to the top of the back-stack will be reused if it has the same type
as the new activity to be started. Otherwise, we fall back to the case where
standard is handled. For example, consider a forward transition τ = (A,Anext)
with singleTask and a state (A, V, S). Then we tries to find a state on activ-
ity Anext in S. If a state (Anext, Vold, Sold) ∈ S is found, we adopt it as the
next state and pops all state above it in S. Otherwise, we obtain the state
(Anext, Vnext, Snext) like standard. Similar to singleTop, the state-merging s-
trategy still works, but the PRG technique is no longer working. Intuitively,
transitions with singleTask will always generate states no more than standard.
Therefore, Algorithm 1 with state-merging strategy also has termination guar-
antee.

singleInstance. This mode is similar to singleTask, except that only one
instance of its activity class resides in its task. To simulate singleInstance, we
have to maintain more than one stack for each state. Thus it is not trivial to
extend our algorithm to this mode.

5 Related Work

An existing work [18] defines operational semantics for a fragment of Android
that includes its Dalvik bytecode and intercommunication mechanism of the



14 Cunjing Ge, Jiwei Yan, Jun Yan, Jian Zhang

activities. It considers the Android specific activity stack and back operation.
However, this work does not define GUI static models or give any analysis al-
gorithms. Another work [7] proposes a formal model, Android Stack Machine
(ASM), to capture key mechanisms of Android multi-tasking such as activities,
back stacks, launch modes, as well as task affinities.

Aiming to describe real-world apps precisely, some static models are designed
by researchers. Azim et al. [3] extract the Static activity Transfer Graph (SATG)
for a given app, and use dynamic GUI exploration to handle dynamic activities
layouts to complement the SATG. They also implement a tool A3E which can ex-
plore real-world Android apps and construct models for them. S. Yang et al. [23]
design a model called Window Transition Graph (WTG), with comprehensive
behavior analysis for the key aspects of GUI behavior: widgets, event handlers,
callback sequences, and especially the window stack changes. Based on the mod-
eling of window stack, they develop analysis algorithms for WTG construction
and traversal. And a recent work [24] constructs more precise activity Transi-
tion Graph with consideration of the launch-mode of each activity, which is more
precise in capturing activity transitions. With help of the statically constructed
activity Transition Model (ATM), Mirzaei et al. [17] give an approach to reduce
the number of test cases by extracting the dependencies of GUI elements, which
achieves a comparable coverage under exhaustive GUI testing using significantly
fewer test cases.

Some researchers leverage dynamic techniques to construct transition model
for Android apps. Amalfitano et al. [1,2] implemented tool AnroidRipper which
builds model using a depth-first search over the user interface. When visiting a
new state, it keeps a list of events belongs to the current state and systematically
triggers them. And it restarts the exploration from the entry state when no
new state can be detected in the current exploration. SwiftHand [8] builds an
approximate model for the application under test, which could guide the test
execution into unexplored parts of the state space while maximizing the code
coverage and fault revelation. These works do not take into consideration the
Android specific back stack. Yan et al. [21] make use of dynamic techniques to
construct a labeled transition model (LATTE), which considers the information
of activity back stack. They also implement a tool LAND to systematically
explore real-world Android apps and construct the widget-sensitive and back-
stack-aware models.

6 Conclusion

In this paper, ATGs with back transitions, value assignments and assertions,
is introduced, It is a formalism for abstracting the behaviour of Android apps.
Based on the PRG technique, we propose an algorithm for assertion checking
over our formalism model, which has termination guaranteee. Lastly, we study
interesting extensions of our model and our algorithm. In the future, we would
like to apply our algorithm to analyze Android apps with more activities and



Title Suppressed Due to Excessive Length 15

more states. On the other hand, automated modeling technique is also an inter-
esting and challenging direction of our future works.

References

1. D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon.
Using GUI ripping for automated testing of Android applications. In Proc. of ASE,
pages 258–261, 2012.

2. D. Amalfitano, A. R. Fasolino, P. Tramontana, B. Dzung Ta, and A. M. Memo-
n. Mobiguitar: Automated model-based testing of mobile apps. IEEE Software,
32(5):53–59, 2015.

3. T. Azim and I. Neamtiu. Targeted and depth-first exploration for systematic
testing of Android apps. In Proc. of OOPSLA, pages 641–660, 2013.

4. Y. M. Baek and D. Bae. Automated model-based android GUI testing using multi-
level GUI comparison criteria. In Proc. of ASE, pages 238–249, 2016.

5. R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath, R. Wang,
and D. Wetherall. Brahmastra: Driving apps to test the security of third-party
components. In Proc. of USENIX, pages 1021–1036, 2014.

6. Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your app without actually
seeing it: UI state inference and novel android attacks. In Proc. of USENIX, pages
1037–1052, 2014.

7. T. Chen, J. He, F. Song, G. Wang, Z. Wu, and J. Yan. Android stack machine.
CAV 2018 Accepted, 2018.

8. W. Choi, G. C. Necula, and K. Sen. Guided GUI testing of android apps with
minimal restart and approximate learning. In Proc. of OOPSLA, pages 623–640,
2013.

9. L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. R. Murphy-Hill.
Just-in-time static analysis. In Proc. of SIGSOFT, pages 307–317, 2017.

10. Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: semantics-based detection
of android malware through static analysis. In Proc. of FSE, pages 576–587, 2014.

11. Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand. Automated synthesis
of semantic malware signatures using maximum satisfiability. In Proc. of NDSS,
2017.

12. M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard.
Information flow analysis of android applications in droidsafe. In Proc. of NDSS,
2015.

13. W. Huang, Y. Dong, A. Milanova, and J. Dolby. Scalable and precise taint analysis
for android. In Proc. of ISSTA, pages 106–117, 2015.

14. L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, and P. D. McDaniel. Iccta: Detecting inter-component
privacy leaks in android apps. In Proc. of ICSE, pages 280–291, 2015.

15. L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: statically vetting android apps
for component hijacking vulnerabilities. In Proc. of CCS, pages 229–240, 2012.

16. R. Mahmood, N. Mirzaei, and S. Malek. Evodroid: segmented evolutionary testing
of android apps. In Proc. of FSE, pages 599–609, 2014.

17. N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek. Reducing combina-
torics in GUI testing of Android applications. In Proc. of ICSE, pages 559–570,
2016.



16 Cunjing Ge, Jiwei Yan, Jun Yan, Jian Zhang

18. E. Payet and F. Spoto. An operational semantics for android activities. In Proc.
of PEPM, pages 121–132, 2014.

19. Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang. Towards a scalable resource-driven
approach for detecting repackaged android applications. In Proc. of ACSAC, pages
56–65, 2014.

20. F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android apps. In
Proc. of SIGSAC, pages 1329–1341, 2014.

21. J. Yan, T. Wu, J. Yan, and J. Zhang. Widget-sensitive and back-stack-aware GUI
exploration for testing android apps. In Proc. of QRS, pages 42–53, 2017.

22. S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow analysis
of user-driven callbacks in android applications. In Proc. of ICSE, pages 89–99,
2015.

23. S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev. Static window
transition graphs for Android(T). In Proc. of ASE, pages 658–668, 2015.

24. Y. Zhang, Y. Sui, and J. Xue. Launch-mode-aware context-sensitive activity tran-
sition analysis. In ICSE 2018 Accepted.


	Checking Activity Transition Systems with Back Transitions against Assertions

