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Abstract In this paper, we present SharpSMT, a toolkit for
measuring solution spaces of SMT(LA) formulas which are
Boolean combinations of linear arithmetic constraints, i.e.,
#SMT(LA) problems. It integrates SMT satisfiability solving
algorithm with various polytope subroutines: volume com-
putation, volume estimation, lattice counting, and approxi-
mate lattice counting. We propose a series of new polytope
preprocessing techniques which have been implemented in
SharpSMT. Experimental results show that the new polytope
preprocessing techniques are very effective, especially on ap-
plication instances. We believe that SharpSMT will be useful
in a number of areas.

Keywords #SMT(LA) Problems, DPLL(T) Algorithm, Poly-
tope Preprocessing Techniques, Volume Computation, Lat-
tice Counting

1 Introduction
The satisfiability (SAT) problem in the propositional logic is
a fundamental problem in computer science. But in practice,
many problems cannot be expressed by propositional formu-
las directly or naturally. In recent years, there have been a
lot of works on solving the Satisfiability Modulo Theories
(SMT) problem, which try to decide the satisfiability of log-
ical formulas with respect to combinations of background
theories (like reals, integers, arrays, bit-vectors). SMT can
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be regarded as an extension to SAT, as well as a kind of
constraint satisfaction problem (CSP). Quite efficient SMT
solvers have been developed, such as CVC5 [1, 2], Math-
SAT5 [3], Yices [4] and Z3 [5].

Restricted to linear arithmetic (LA) theory, they are SMT(LA)
formulas. They have been widely used and thoroughly stud-
ied in many areas. In this paper, we focus on the counting
version of the SMT(LA) problems, i.e., the #SMT(LA) prob-
lems. They have many applications, such as probabilistic in-
ference [6, 7], counting-based search [8, 9], simple temporal
planning [10], probabilistic program analysis [11, 12], etc.

Intuitively, the solution space of an SMT(LA) formula can
be viewed as the union of many polytopes, since a set of
linear constraints corresponds to a polytope. Ma and Ge et
al. [13, 14] proposed an algorithm for #SMT(LA) problems.
It first enumerates polytopes, and then handling polytopes
with subroutines. Finally, they would sum up the volume,
or integer point counts of polytopes. They also implemented
a prototype tool called VolCE. The performance of lattice
counting tool LattE limited the capability of integer solu-
tion counting of VolCE. In practice, it often has difficulties
when the number of variables is greater than 10 (preventing
many applications). Since then, some new methods for ap-
proximating integer solution counts were proposed by Ge et
al. [15–17], which could solve problems with dozens of di-
mensions. Naturally, we would like to integrate those new
methods with VolCE together.
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In this paper, we present the tool SharpSMT 1) for #SMT(LA)
problems. It supports inputs in SMT-LIB (v2.0) format which
is a common language to describe SMT formulas. SharpSMT
is an integration of SMT solving and polytope subroutines,
such as, volume computation, volume estimation, lattice count-
ing and approximate lattice counting for convex polytopes.
To reduce the computations of polytope subroutines, we pro-
pose some preprocessing techniques for polytopes, such as,
factorization techniques, variable elimination, cache strategy,
etc. Experimental results show that the new polytope pre-
processing techniques are very effective, especially on appli-
cation instances. We also find that SharpSMT significantly
outperforms the hashing-based counter SMTApproxMC [18]
by further comparison experiments.

The rest of the paper is organized as follows: We first
present background in Section 2. Next, we present the ar-
chitecture of SharpSMT with new techniques in Section 3.
Then, we discuss the experimental results in Section 4. Fi-
nally, we conclude in Section 5.

2 Background

2.1 Preliminaries and Notations

A Linear Constraint (LC) h can be written in the form h ≡∑n
i=1 aixi op b = a⃗x⃗ op b, where xis are numeric variables, ais

and b are real coefficients, and op ∈ {<,≤, >,≥,=}. Note that
a⃗x⃗ = b can be represented by a⃗x⃗ ≤ b ∧ a⃗x⃗ ≥ b. In addition,
a⃗x⃗ ≥ b and a⃗x⃗ > b can be represented by −a⃗x⃗ ≤ −b and
−a⃗x⃗ < −b respectively. So it is sufficient to use op ∈ {<,≤}
to represent a LC.

An SMT(LA) formula ϕwith l Boolean variables and n nu-
meric variables can be formally represented by PSϕ and Hϕ,
where PSϕ(b1, . . . , bm+l) is a Boolean formula, Hϕ = {h1, . . . , hm}

is a set of LCs. The Boolean formula PSϕ is also called the
propositional skeleton of ϕ. The propositional skeleton con-
tains logical operators, like AND, OR, NOT. A simple exam-
ple of an SMT(LA) formula ϕ is

ϕ ≡ (x + y < 1 OR x ≥ y) AND (x + y < 1 OR x < y OR b).

Let the Boolean variables b1 and b2 represent the linear in-
equalities h1 ≡ x + y < 1 and h2 ≡ x < y respectively. Then
we obtain the propositional skeleton

PS ϕ ≡ (b1 OR (NOT b2)) AND (b1 OR b2 OR b).
1)Our tool SharpSMT and experimental data including benchmarks can

be found at http://www.github.com/bearben/sharpsmt

Definition 1. Let bi correspond to hi, for each 1 ≤ i ≤ m. Let
bool(α⃗) represent (bm+1, . . . , bm+l) which are pure Boolean
variables of ϕ.

Definition 2. A (partial) assignment α⃗ of PSϕ is a vector
(α1, . . . , αm+l) ∈ Bm+l, where αi is either 1 or 0 (or not as-
signed). It corresponds to Hα⃗ =

⋃
1≤i≤m Hα⃗,i, where

Hα⃗,i =


{hi} if αi = 1,

{¬hi} if αi = 0,

∅ if αi is not assigned.

Definition 3. An assignment m⃗ of ϕ is in the form (x⃗, bool(α⃗)) ∈
Rn × Bl or Zn × Bl, where α⃗ is an assignment of PSϕ and x⃗ is
a point in Rn or Zn.

The solution space of ϕ is then the union of sets, formally:

M(ϕ) =
⋃

α⃗∈M(PSϕ)

M(Hα⃗) × bool(α⃗). (1)

Note that Hα⃗ can be regarded as a convex polytope. In-
tuitively, the solution space of an SMT(LA) formula can be
viewed as a union of many polytopes.

Definition 4. Given a formula F and a polytope P,
• Let vol(F) and vol(P) denote the volume of solution

space of F and the volume of P respectively.
• Let #F and #P denote the number of integer solutions

of F and lattice points in P respectively.

2.2 DPLL(T)-based Enumeration Scheme

A well-known framework for finding models of SMT(LA)
formulas is called DPLL(T) algorithm. Based on it, we present
a scheme to find a set of (partial) assignments A ⊂ M(PSϕ),
s.t.,

M(ϕ) =
⋃
α⃗∈A

M(Hα⃗) × bool(α⃗)

andM(Hα⃗) × bool(α⃗) ∩M(Hβ⃗) × bool(β⃗) = ∅,

∀α⃗, β⃗ ∈ A, α⃗ , β⃗. (2)

• Step 1. Find a model m⃗ of ϕ by DPLL(T) algorithm.
• Step 2. From Equation 1, there exists a (partial) assign-

ment α⃗ ∈ M(PSϕ), s.t., m⃗ ∈ M(Hα⃗) × bool(α⃗).
• Step 3. Construct a new formula ϕ′ ≡ ϕ∧NC(α⃗) which

is the conjunction of ϕ and the negation clause NC(α⃗)
of α⃗, The negation clause would prevent the DPLL(T)

http://www.github.com/bearben/sharpsmt
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Vinci [19] PolyVest [14, 20] LattE [21] Barvinok [22] ApproxLatCount [17] Vol2Lat [15]
Input P P, ϵ, δ P P P, ϵ, δ P

Output vol(P) ṽol(P) #P #P #̃P #̃P, lb, ub
Guarantee Exact (ϵ, δ)-bound Exact Exact (ϵ, δ)-bound lb ≤ #̃P ≤ ub

Table 1 A summary of polytope subroutines. Note that ṽol(P) and #̃P are approximate results of vol(P) and #P respectively. The (ϵ, δ)-bound of ṽol(P)
guarantees the output lie in the interval [(1 + ϵ)−1vol(P), (1 + ϵ)vol(P)] with probability at least 1 − δ. The (ϵ, δ)-bound of #̃P is similar.

algorithm finding models inM(Hα⃗) × bool(α⃗) again.
In detail, NC(α⃗) =

∨
li, where lis are literals that li ≡ bi

if αi = 0, and li ≡ ¬bi if αi = 1.
• Step 4. Find the next model m⃗′ ∈ M(ϕ′) and a (partial)

assignment α⃗′, s.t., m⃗′ ∈ M(Hα⃗′ ) × bool(α⃗). Repeat
above steps untilM(ϕ′) = ∅, i.e., unsatisfiable.

In this way, we obtain a set A = {α⃗, α⃗′, . . . } satisfying
Equation 2. Note that such assignment α⃗ ∈ A can be partial
assignments.

2.3 Polytope Subroutines

From Equation 2, {M(Hα⃗) × bool(α⃗),∀α⃗ ∈ A} is mutually
non-overlapping. Then the size of solution space is:

|M(ϕ)| =
∑
α⃗∈A

|M(Hα⃗) × bool(α⃗)|

=
∑
α⃗∈A

|M(Hα⃗)| · 2dα⃗ , (3)

where dα⃗ is the number of αis which are not assigned, m + 1
≤ i ≤ l. For real cases x⃗ ∈ Rn, |M(Hα⃗)| is the volume of a
polytope Pα⃗ = {x⃗ ∈ Rn : Hα⃗(x⃗)}, i.e,

|M(ϕ)| =
∑
α⃗∈A

vol(Pα⃗) · 2dα⃗ . (4)

For integer cases x⃗ ∈ Zn, |M(Hα⃗)| = Pα⃗ ∩ Zn = #Pα⃗ is the
number of lattice points that lie in Pα⃗, i.e.,

|M(ϕ)| =
∑
α⃗∈A

#Pα⃗ · 2dα⃗ . (5)

Therefore, we employ the various tools for computing integer
solution points or volume with respect to a polytope, which
are also called polytope subroutines. Table 1 gives the sum-
mary of all subroutines invoked by SharpSMT.

Vinci [19] and PolyVest [14, 20] are tools for comput-
ing or estimating the volume of a polytope, which will be in-
voked by SharpSMT for volume computation or estimation
problems of SMT(LA) formulas. Since the algorithm of vol-
ume estimation is polynomial-time, thus PolyVest is able to
solve larger cases (more variables) than Vinci. In practice,
Vinci would solve a case in a few seconds, otherwise, it usu-
ally runs out of memory or eventually timeout. Naturally, it is

wise to call Vinci first, if Vinci is not able to solve in seconds
or runs out of memory, then SharpSMT calls PolyVest.

LattE [21], Barvinok [22], ApproxLatCount (ALC) [17]
and Vol2Lat (V2L) [15] are tools for computing or estimat-
ing the count of lattices in a polytope. They will be em-
ployed for the integer solution counting of SMT(LA) formu-
las. LattE and Barvinok are both the implementations of
Barvinok’s algorithm. The tool Barvinok was released after
LattE, which has an in general better performance. ALC and
V2L are both approximate lattice counters, and are able to
solve larger cases (more variables) than Barvinok. But their
approximation methods are essentially different. ALC returns
the approximation with an (ϵ, δ)-bound, which is similar with
the volume estimation method PolyVest. V2L gives an exact
bound of vol(P) and #P, if the bound is tight, then vol(P) ≈
#P, which means #P can be approximated by vol(P). Note
that it usually takes less than 0.1s to compute the bound by
V2L, which is very efficient. Therefore, we have the follow-
ing strategy: SharpSMT calls Barvinok first. If Barvinok
is not able to solve in seconds, then it calls V2L to obtain
a bound of vol(P) and #P. If the bound is tight, SharpSMT
calls volume computation or estimation methods to approxi-
mate the integer solution count, otherwise, it calls ALC.

3 Architecture

Based on Equation 4 and 5, the brief idea of SharpSMT is
enumerating feasible assignments by solving the SMT(LA)
formula and then accumulating the volumes or lattice counts
of polytopes corresponding to these assignments. A schematic
overview of the architecture is presented in Fig. 1. A regular
run of SharpSMT has four stages: parsing and rewriting, fea-
sible assignments enumeration, polytope preprocessing and
polytope subroutines.

3.1 Parsing and Rewritting

SharpSMT reads the input and recursively builds an abstract
syntax DAG (directed acyclic graph). Like most SMT solvers,
basic rewriting rules are applied to simplify the DAG during
the parsing process.
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Fig. 1 Schematic overview of the architecture of SharpSMT.

• Inequality Extraction.

Recall that polytope subroutines only take linear inequali-
ties as inputs, so SharpSMT has to extract inequalities from
SMT(LA) formulas. The inequality extractor is a component
to rewrite the SMT(LA) expression into a combination of
Boolean skeletons and normalized linear inequalities. Parser
calls extractor whenever it has parsed a comparison operator
(=, <,≤, >,≥, distinct) which is the root of a DAG of inequal-
ities. Note that such a DAG may consist of more than one
inequality if it contains if-then-else (ite) operators. For
a DAG with ite operators, the extractor recursively traverses
the DAG, records the conditions of each ite and then recon-
structs a syntax tree with Boolean variables which represents
those extracted inequalities. Each time an inequality is ex-
tracted, SharpSMT creates a Boolean variable to substitute
this inequality in the DAG and adds a constraint to link the
variable with the inequality.

Fig. 2 is an example of the inequality extraction. Red
nodes represent the roots of DAGs. The left-hand-side is a
DAG of an input expression in SMT-LIB language: (= (+
(ite a (ite b x y) (+ x y)) z) (- x)). The right-
hand-side are three syntax trees reconstructed by our inequal-
ity extractor. Note that ieq1, ieq2 and ieq3 represent the
inequalities 2x + z = 0, x + y + z = 0 and 2x + y + z = 0
respectively. Then such syntax trees are Boolean skeletons.

Moreover, the conjunction of these three trees is equivalent
to the original expression.
• Inequality Normalization.
The inequality extraction also normalizes inequalities. With
Boolean operations, one can represent <,≤, > and ≥ simply
by ≤, e.g., x + y < 0 ⇔ not (x + y ≥ 0) ⇔ not (−x −
y ≤ 0). Thus a normalized inequality is of the form a0 +

a1x1 + · · · + anxn = (≤) 0, where ais are constants, xis are
variables, and a0 ≥ 0. Note that one can obtain a unique
normalized inequality by keeping first non-zero multiplier to
be one. SharpSMT does not normalize inequalities by this
way, because it may cause rounding errors when SharpSMT
calls polytope subroutines.

Example 1. Consider the following SMT(LRA) formula:

((p ⊕ q ⊕ x − y < 1) ∧ z ≤ 0) ∨ (x − y ≥ 1 ∧ z > 1),

where p, q are Boolean variables, and x, y, z ∈ [−2, 2] are real
variables. With the inequality extraction and normalization,
SharpSMT transforms this formula into a Boolean skeleton
((p ⊕ q ⊕ ¬b1) ∧ b2) ∨ (b1 ∧ ¬b3)) with inequalities b1 ≡

1 − x + y ≤ 0, b2 ≡ z ≤ 0, and b3 ≡ −1 + z ≤ 0.

3.2 Feasible Assignments Enumeration

In the second stage, SharpSMT tries to find the set of feasible
assignmentsA in Equation 4 and 5. It employs the enumera-
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=

(= (+ (ite a (ite b x y) (+ x y))  z) (- x))

+

-

ite

a

ite

+

x

y

z

b

I. a=true, b=true => 2x+z=0
II. a=true, b=false => x+y+z=0
III. a=false => 2x+y+z=0

or

a b

not not

ieq1 ieq2 ieq3

or or

Fig. 2 An example of extracting linear inequalities from a formula which contains ite operators.

tion scheme which is shown in Section 2.2. It calls the SMT
solver to obtain a feasible assignment α⃗, then adds a nega-
tion clause NC(α⃗) to rule out the assignment just found, and
so forth. Currently, SharpSMT uses Z3, as the SMT(LA)
solver, through APIs. Note that it is easy to employ other
modern SMT solvers since SharpSMT sees SMT solving as
a black box.

• Merge partial assignments into “bunches”

To reduce |A|, SharpSMT employs a technique for merging
partial assignments called Bunch strategy [13].

• Step 1. Find k s.t., αk in α⃗ is assigned and α⃗′ |= PSϕ,
where α⃗′ = (α1, . . . ,¬αk, . . . , αm+l).
• Step 2. If such k exists, then β⃗ = (β1, . . . , βm+l), where
βi = αi,∀i , k and βk is not assigned. Repeat above
steps on the new partial assignment β⃗.
• Step 3. Otherwise, the method returns a bunch α⃗.

Note thatM(Hβ⃗) =M(Hα⃗) ∪M(Hα⃗′ ). It means β⃗ can be
viewed as a merged result of α⃗ and α⃗′. Then a bunch is a
partial assignment which cannot be further merged.

Example 2. The SMT formula in Example 1 has 7 feasible
assignments as the following:

{p, q, b1,¬b2,¬b3}, {p, q,¬b1, b2, b3}, {p,¬q, b1, b2, b3},

{p,¬q, b1,¬b2,¬b3}, {¬p, q, b1, b2, b3},

{¬p, q, b1,¬b2,¬b3}, {¬p,¬q,¬b1, b2, b3}.

Since {¬p,¬q, b1,¬b2,¬b3} satisfies the Boolean skeleton
and the corresponding set of inequalities is not consistent,
then partial assignment {b1,¬b2,¬b3} is also feasible. In ad-
dition, we have vol({b1,¬b2,¬b3}) = vol({p, q, b1,¬b2,¬b3})+
vol({p,¬q, b1,¬b2,¬b3})+vol({¬p, q, b1,¬b2,¬b3})+vol({¬p,
¬q, b1,¬b2,¬b3}). Therefore, the bunch strategy reduces three

feasible assignments {p, q, b1,¬b2,¬b3}, {p,¬q, b1,¬b2,¬b3}

and {¬p, q, b1,¬b2,¬e3} into {b1,¬b2,¬b3}. Note that ¬z ≤ 1
implies ¬z ≤ 0 and z ≤ 0 implies z ≤ 1. So SharpSMT will
obtain 5 bunches at last:

{b1,¬b3}, {¬p, q, b1, b2}, {p,¬q, b1, b2},

{¬p,¬q,¬b1, b2}, {p, q,¬b1, b2}.

3.3 Polytope Preprocessing

In the third stage, SharpSMT employs some preprocessing
techniques on polytopes to improve the efficiency of polytope
subroutines in the fourth stage. Given a partial assignment
α⃗ ∈ A, it corresponds to a polytope Pα⃗. First, SharpSMT fac-
torizes Pα⃗ into small polytopes Pα⃗,1, . . . Pα⃗,k. Then vol(Pα⃗) =∏k

i=1 vol(Pα⃗,i). After that, for each Pα⃗,i, SharpSMT reduces
variables and obtains P′

α⃗,i. Then it searches in cache to deter-
mine whether vol(P′

α⃗,i) has been computed. If P′
α⃗,i is a new

polytope for subroutines, it calls subroutines and adds the re-
sult into cache. Finally, SharpSMT returns the final result
vol(ϕ) =

∑
α⃗∈A

∏
vol(Pα⃗,i) · 2

dα⃗ by Equation 4. It is similar
for computing #ϕ, according to Equation 5. In the rest of this
section, we give the details of those preprocessing techniques.

• Factorization

The number of variables is a key factor about the difficulty
of polytope subroutines. For example, the state-of-the-art
exact integer counter or volume computation algorithms of-
ten have difficulties when the number of variables is greater
than 15. For the state-of-the-art volume approximations, it
takes minutes to solve problems with around 100 dimensions,
which are still expensive. Therefore, reducing the number of
variables will be beneficial to sharpSMT. Our tool employs
polytope preprocessing techniques for dimension reduction.
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It first factorizes the set of linear inequalities, which corre-
sponds to a given bunch, into mutually independent groups
of inequalities, then applies the polytope subroutine to obtain
the size of solution space of each group of inequalities, and
finally returns the product. SharpSMT also tries to check and
reduce irrelevant variables.

Example 3. Consider a set of linear constraints

x1 + x3 ≤ 10,

x2 + x4 + x5 ≥ 0,

3x4 − 2x5 ≤ 10,

−8 ≤ xi ≤ 7, i ∈ [1, 5].

It can be factorized into two sets of variables {x1, x3} and
{x2, x4, x5} and two sets of constraints

x1 + x3 ≤ 10,

−8 ≤ xi ≤ 7, i ∈ {1, 3},


x2 + x4 + x5 ≥ 0,

3x4 − 2x5 ≤ 10,

−8 ≤ xi ≤ 7, i ∈ {2, 4, 5}.

Then the 5-dimensional polytope is thus factorized into two
polytopes with at most 3 dimensions, which will save the
computation cost of polytope subroutines.

Ge and Biere [16] proposed more sophisticated factoriza-
tion techniques, but they are not integrated in SharpSMT so
far. It will be our future work.

• Variable Elimination

Given a set of inequalities Hα⃗, which corresponds to a feasi-
ble assignment α⃗, it may contains equalities, i.e., a⃗x⃗ ≤ b ∈ Hα⃗
and a⃗x⃗ ≥ b ∈ Hα⃗. In such cases, the corresponding poly-
tope Pα⃗ is degenerate and vol(Pα⃗) = 0. To count the in-
teger solutions #Pα⃗, we can naturally reduce one variable
for an equality constraint by Gauss elimination. For exam-
ple, assume a1 is non-zero, we can eliminate x1 by equation
x1 = (b−a2x2− · · ·−anxn)/a1. Obviously, Gauss elimination
will not change the count of integer solutions.

Specifically, the subroutine V2L, which approximates in-
teger solution counts via polytopes’ volume, relies on Gauss
elimination. Since vol(Pα⃗) = 0, the volume cannot be used to
approximate the integer count when #Pα⃗ > 0. However, it is
probably that vol(P′) ≈ #P′ = #Pα⃗, where P′ is the polytope
generated by Gauss elimination.

• Reusing with Cache

SharpSMT stores the results of calls of polytope subroutines
in a cache, so that it can retrieve the result of a polytope which

has already been calculated from the cache. For example,
{¬p,¬q,¬b1, b2} and {p, q,¬b1, b2} are two different bunches
in Example 2, but both correspond to the polytope {¬b1 ∧

b2, x, y, z ∈ [−2, 2]}. Recall that SharpSMT has extracted and
stored all inequalities, the polytope passed to a subroutine is
essentially a feasible assignment, which corresponds to the
polytope. So we set the feasible assignment to be the key and
bind it to the results returned by the polytope subroutine.

Besides, the factorization technique on polytopes may cre-
ate same sub-polytopes when factorizing different polytopes.
For example, let us consider two bunches {b1,¬b3} and {p,¬q,
b1, b2} in Example 2, which correspond to P1 = {b1 ∧ ¬b3,

x, y, z ∈ [−2, 2]} and P2 = {b1 ∧ b2, x, y, z ∈ [−2, 2]} respec-
tively. P1 can be factorized into P11 = {b1, x, y ∈ [−2, 2]} and
P12 = {¬b3, z ∈ [−2, 2]}, and vol(P1) = vol(P11) × vol(P12).
Similarly, P2 can be factorized into P21 = {b1, x, y ∈ [−2, 2]}
and P22 = {b2, z ∈ [−2, 2]}. Note that P11 = P21, so the result
of P11 can be reused when handling P2.

• Interval Computation

One-dimensional problems are trivial, but all polytope sub-
routines do not have special treatments for this. So SharpSMT
will handle such cases directly. The one-dimensional poly-
tope is an interval, so we only have to calculate the upper and
lower bounds by checking the corresponding inequalities.

• Two-round Strategy [14]

For PolyVest and ALC, as the number of samplings increases,
the accuracy of estimation improves, and the estimation pro-
cess also takes more time. It is important to balance the ac-
curacy and the running time since the subroutines are usually
called many times. Therefore, SharpSMT employs a two-
round strategy [14] that can dynamically determine a proper
weight for sampling. At the first round of estimation, each
feasible assignment is generated with a fixed small weight to
get a quick and rough estimation. Since the volumes (or lat-
tice counts) of polytopes may vary a lot. Intuitively, a feasible
assignment with relatively larger volume should be estimated
with higher accuracy. Hence in the second round, the weight
for each assignment is determined according to its estimated
volume from the first round.

Example 4. Recall the bunches listed in Example 2: {b1,¬b3},

{¬p, q, b1, b2}, {p,¬q, b1, b2}, {¬p,¬q,¬b1, b2}, {p, q,¬b1, b2}.
Consider the volume of the first bunch {b1,¬b3}. SharpSMT
factorizes the corresponding polytope P1 = {b1∧¬b3, x, y, z ∈
[−2, 2]} into P11 = {b1, x, y ∈ [−2, 2]} and P12 = {¬b3, z ∈
[−2, 2]}, where vol(P1) = vol(P11) × vol(P12). Then it calls
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Fig. 3 Performance comparisons among subroutines of SharpSMT on random instances (real variables).

Fig. 4 Performance comparisons among subroutines of SharpSMT on random instances (integer variables).

polytope subroutines on P11 and computes the interval of P12

directly. Finally, SharpSMT obtains the volume vol(P1) =
4.5, and vol({b1,¬b3}) = 4 × vol(P1) = 18 as there are 4 pos-
sible assignments for pair (a, b). Now let us consider the sec-
ond bunch {¬p, q, b1, b2}. The corresponding polytope P2 =

{b1∧b2, x, y, z ∈ [−2, 2]} can also be factorized into two poly-
topes P21 = {b1, x, y ∈ [−2, 2]} and P22 = {b2, z ∈ [−2, 2]}.
Since P21 = P11, SharpSMT reuses the result of vol(P11).
At last, SharpSMT obtains the result vol({¬p, q, b1, b2}) =
4.5 × vol(P22) = 9. Similarly, SharpSMT computes the re-
sults of the rest bunches {p,¬q, b1, b2}, {¬p,¬q,¬b1, b2} and
{p, q,¬b1, b2}, and sums up. So the total volume of this for-
mula is 18 + 9 + 9 + 23 + 23 = 82.

4 Evaluation

In this section, we report experimental results about the per-
formance of SharpSMT. SharpSMT provides a command-
line parameter -w to quickly set bounds to numeric variables.
Specifically, with such word-length parameter w, SharpSMT
add the bound xi ∈ [−2w−1, 2w−1 − 1] for each variable xi.
We chose w = 8, i.e., xi ∈ [−128, 127], for all unbounded
SMT(LA) formulas. For (ϵ, δ)-counters, PolyVest and ALC,
we chose ϵ = 0.2 and δ = 0.1. Experiments were conducted
on Intel(R) Xeon(R) Gold 6248 @ 2.50GHz CPUs with a
time limit of 1800 seconds and memory limit of 4 GB per
benchmark. The benchmark set consists of:

• Random instances: We generated 126 SMT(LRA) and
SMT(LIA) formulas by randomly choosing coefficients
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Fig. 5 Performance comparisons among subroutines of SharpSMT on application instances.

of inequalities and literals of clauses. They are named
as lra b n l or lia b n l, which have b Boolean vari-
ables, n real variables and l inequalities.

• Application instances: We adopted 4131 benchmarks
[16, 17] from program analysis and simple temporal
planning (STN).

• Bit-vector formulas: We translated some small-scale
random and application instances from SMT(LIA) for-
mulas into SMT(BV) formulas for comparing SharpSMT
with hashing-based #SMT(BV) counters.

We conducted experimental on random and application in-
stances with different polytopes subroutines. We also com-
pared the performance of SharpSMT with and without poly-
tope preprocessing techniques. Fig. 3 and 4 present the re-
sults on random instances. Fig. 5 presents the results on ap-
plication instances. In these figures, the x-axis means the run-
ning time and presented in logarithmic. Note that “X+PP” are
the results of SharpSMT calls the single subroutine “X” with
polytope preprocessing (PP) techniques.

From Fig. 3 and 4, we observe that the polytope prepro-
cessing techniques could improve the performance of poly-
tope subroutines a bit. The exact volume computation tool
Vinci works better on relative small instances than volume
approximation tool PolyVest, on the other hand, PolyVest
can solve more larger instances. By comparing lattice counter
ALC, Barvinok, LattE and V2L in Fig. 4, we find that ALC
is outperforms all other tools, and V2L is the second, and
Barvinok is slightly better than LattE. It is reasonable as
ALC and V2L are approximate counters.

From Fig. 5, it is obvious that the polytope preprocessing

(PP) techniques are very effective. With PP techniques, all
subroutines could handle more than 3800 instances (4131 in
total) in one second. Moreover, all subroutines with PP could
more cases in 1800s timeout. On these application bench-
marks, we find that Barvinok is overall the best and then V2L
and ALC.

• Comparing with Hashing-based Counters

We compared SharpSMT with SMTApproxMC [18] which
is a hashing-based approximate counter for SMT(BV) formu-
las. For comparison, we translated SMT(LIA) formulas into
SMT(BV) formulas semi-manually by replacing integer vari-
ables with fixed-length variables, bit-vector constants and bit
operations. We experimented SMTApproxMC with param-
eters ϵ = 0.8 and δ = 0.2. It guarantees the output lying
in interval [1.8−1#F, 1.8#F] with probability at least 80%,
where #F is the exact solution count of a given formula F.
Table 2 presents the result of comparing the performance of
SharpSMT with SMTApproxMC on a subset of our bench-
marks. In these experiments, SharpSMT calls LattE for in-
teger solution counting inside a polytope, so our tool returns
the exact counts instead of estimations. Table 2 shows that
our approach significantly outperforms SMTApproxMC. We
observe that the running time of SMTApproxMC is closely
related to the number of the solutions rather than the num-
ber of variables, i.e., the larger number of solutions, the more
difficult for SMTApproxMC to handle. Note that Ge [17]
also compared Barvinok and ALC with more hashing-based
model counters, ApproxMC4 [23], Cachet [24], and Ganak
[25]. The experimental results show that Barvinok and ALC
are more suitable for counting integer solutions on linear con-
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SharpSMT(ALC) SharpSMT(Barvinok) SMTApproxMC
Instance #var #ineq result #̃ϕ t (s) result #ϕ t (s) result #̃ϕ t (s)

getopPath 1 1 10 242 0.01 242 0.01 242 2.57
getopPath 2 3 20 8085 0.01 8085 0.01 8.38E+03 14.96
findmiddle 4 3 6 5.76e+06 0.02 5.53e+06 0.02 —— ——
findmiddle 6 3 6 1.31e+05 0.03 1.31e+05 0.02 1.33e+05 151.5
findmiddle 8 3 6 6.63e+04 0.01 6.53e+04 0.02 6.21e+04 207.9

Space manage 38 7 15 6.31e+14 0.02 5.41e+14 0.02 —— ——
Space manage 49 13 20 1.94e+27 0.05 2.51e+27 0.05 —— ——

tcas 1201 7 18 1.10e+12 0.01 1.10e+12 0.01 —— ——
tcas 1214 7 18 4.28e+09 0.01 4.28e+09 0.01 —— ——

lia 10 10 5 10 5 1.20e+23 0.03 1.19e+23 22.16 —— ——
lia 7 7 3 7 3 2.77e+16 0.02 2.48e+16 2.25 —— ——
lia 6 6 3 6 3 9.23e+13 0.02 9.79e+13 8.08 —— ——
lia 5 5 2 5 2 9.82e+10 0.02 9.73e+10 0.04 —— ——
lia 8 4 4 4 4 1.19e+09 0.08 1.14e+09 1.04 —— ——
lia 6 3 3 3 3 1.33e+06 0.01 1.28e+06 0.02 1.12e+06 878.01
lia 3 3 3 3 3 2.97e+06 0.03 2.97e+06 0.02 2.91e+06 909.15
lia 2 2 2 2 2 9.52e+04 0.02 9.43e+04 0.02 8.74e+04 21.86
lia 2 2 1 2 1 6.70e+04 0.02 6.55e+04 0.02 6.50e+04 22.41

Table 2 Comparison results of SharpSMT and SMTApproxMC on small-scale instances.

straints. And hashing-based counters only gains upper hand
on cases with very small domains, such as, xi ∈ {−1, 0, 1}.

5 Conclusion and Future Work

In this paper, we introduced our tool SharpSMT for comput-
ing the volume of the solution space (or counting the num-
ber of integer solutions), given an SMT(LA) formula which
is a Boolean combination of linear arithmetic inequalities.
SharpSMT employs the DPLL(T) algorithm for feasible as-
signment enumeration, then it calls various polytope subrou-
tines for different tasks. We also proposed a series of new
polytope preprocessing techniques and implemented them in
SharpSMT. Experimental results show that the new polytope
preprocessing techniques are very effective, especially on ap-
plication instances. We believe that the tool will be useful in
a number of domains, such as program analysis and proba-
bilistic verification.

Ge and Biere [16] proposed more sophisticated factoriza-
tion techniques, but we only implement a direct factoriza-
tion method in SharpSMT so far. It will be our future work.
The two-round strategy [14] has been shown effective with
volume approximation method PolyVest. Intuitively, this
technique may also work with approximate lattice counting
method, such as, ALC and V2L. But SharpSMT only em-
ploys two-round strategy with PolyVest so far. We will con-
sider this in the future.
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