Frontiers of Computer Science CN 10-1014/TP
https://doi.org/10.1007/s11704-024-40500-z ISSN 2095-2228
RESEARCH ARTICLE

SharpSMT: A Scalable Toolkit for Measuring
Solution Spaces of SMT(LA) Formulas

Cunjing GE'?

1 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023,
China
2 School of Artificial Intelligence, Nanjing University, Nanjing 210023, China

Front. Comput. Sci., Just Accepted Manuscript ¢ 10.1007/s11704-024-40500-z
https://journal.hep.com.cn on August 12, 2024

© Higher Education Press 2024

Just Accepted

This is a “Just Accepted” manuscript, which has been examined by the peer-review process and
has been accepted for publication. A “Just Accepted” manuscript is published online shortly
after its acceptance, which is prior to technical editing and formatting and author proofing.
Higher Education Press (HEP) provides “Just Accepted” as an optional and free service which
allows authors to make their results available to the research community as soon as possible
after acceptance. After a manuscript has been technically edited and formatted, it will be
removed from the “Just Accepted” Web site and published as an Online First article. Please note
that technical editing may introduce minor changes to the manuscript text and/or graphics which
may affect the content, and all legal disclaimers that apply to the journal pertain. In no event
shall HEP be held responsible for errors or consequences arising from the use of any information
contained in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital
Object Identifier (DOI®), which is identical for all formats of publication.”

Front. Comput. Sci.
https://doi.org/10.1007/s11704-024-40500-z

RESEARCH ARTICLE

SharpSMT: A Scalable Toolkit for Measuring Solution Spaces of
SMT(LA) Formulas

Cunjing GE(X)'*

1 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

2 School of Artificial Intelligence, Nanjing University, Nanjing 210023, China

© Higher Education Press 2024

Abstract In this paper, we present SHARPSMT, a toolkit for
measuring solution spaces of SMT(LA) formulas which are
Boolean combinations of linear arithmetic constraints, i.e.,
#SMT(LA) problems. It integrates SMT satisfiability solving
algorithm with various polytope subroutines: volume com-
putation, volume estimation, lattice counting, and approxi-
mate lattice counting. We propose a series of new polytope
preprocessing techniques which have been implemented in
SHARPSMT. Experimental results show that the new polytope
preprocessing techniques are very effective, especially on ap-
plication instances. We believe that SHARPSMT will be useful
in a number of areas.

Keywords #SMT(LA) Problems, DPLL(T) Algorithm, Poly-
tope Preprocessing Techniques, Volume Computation, Lat-

tice Counting

1 Introduction

The satisfiability (SAT) problem in the propositional logic is
a fundamental problem in computer science. But in practice,
many problems cannot be expressed by propositional formu-
las directly or naturally. In recent years, there have been a
lot of works on solving the Satisfiability Modulo Theories
(SMT) problem, which try to decide the satisfiability of log-
ical formulas with respect to combinations of background

theories (like reals, integers, arrays, bit-vectors). SMT can

Received month dd, yyyy; accepted month dd, yyyy

E-mail: gecunjing@nju.edu.cn

be regarded as an extension to SAT, as well as a kind of
constraint satisfaction problem (CSP). Quite efficient SMT
solvers have been developed, such as CVC5 [1, 2], Math-
SATS5 [3], Yices [4] and Z3 [5].

Restricted to linear arithmetic (LA) theory, they are SMT(LA)

formulas. They have been widely used and thoroughly stud-
ied in many areas. In this paper, we focus on the counting
version of the SMT(LA) problems, i.e., the #SMT(LA) prob-
lems. They have many applications, such as probabilistic in-
ference [6,7], counting-based search [8,9], simple temporal
planning [10], probabilistic program analysis [1, 12], etc.
Intuitively, the solution space of an SMT(LA) formula can
be viewed as the union of many polytopes, since a set of
linear constraints corresponds to a polytope. Ma and Ge et
al. [13,

It first enumerates polytopes, and then handling polytopes

] proposed an algorithm for #SMT(LA) problems.

with subroutines. Finally, they would sum up the volume,
or integer point counts of polytopes. They also implemented
a prototype tool called VoLCE. The performance of lattice
counting tool LaTTE limited the capability of integer solu-
tion counting of VoLCE. In practice, it often has difficulties
when the number of variables is greater than 10 (preventing
many applications). Since then, some new methods for ap-
proximating integer solution counts were proposed by Ge et
al. [15-
mensions. Naturally, we would like to integrate those new
methods with VoLCE together.

], which could solve problems with dozens of di-

2 Front. Comput. Sci.,

2024, 0(0): 1-10

In this paper, we present the tool SHARPSMT " for #SMT(LA) Definition 1. Let b; correspond to A, for each 1 <i < m. Let

problems. It supports inputs in SMT-LIB (v2.0) format which
is acommon language to describe SMT formulas. SHARPSMT
is an integration of SMT solving and polytope subroutines,
such as, volume computation, volume estimation, lattice count-
ing and approximate lattice counting for convex polytopes.
To reduce the computations of polytope subroutines, we pro-
pose some preprocessing techniques for polytopes, such as,
factorization techniques, variable elimination, cache strategy,
etc. Experimental results show that the new polytope pre-
processing techniques are very effective, especially on appli-
cation instances. We also find that SHARPSMT significantly
outperforms the hashing-based counter SMTAPPROXMC [18]
by further comparison experiments.

The rest of the paper is organized as follows: We first
present background in Section 2. Next, we present the ar-
chitecture of SHARPSMT with new techniques in Section 3.
Then, we discuss the experimental results in Section 4. Fi-

nally, we conclude in Section 5.

2 Background

2.1 Preliminaries and Notations

A Linear Constraint (LC) & can be written in the form i =
>, aix; op b = dxX op b, where x;s are numeric variables, a;s
>, >, =}. Note that
ax = b can be represented by dx < b A @x > b. In addition,

and b are real coefficients, and op € {<, <,

ax > b and ax > b can be represented by —dx¥ < —b and
—dx < —b respectively. So it is sufficient to use op € {<, <}
to represent a LC.

An SMT(LA) formula ¢ with / Boolean variables and n nu-
meric variables can be formally represented by PS4 and H,,
where PS,(b, . .. i}
is a set of LCs. The Boolean formula PSy is also called the

,binir) is aBoolean formula, Hy = {hy, ...

propositional skeleton of ¢. The propositional skeleton con-
tains logical operators, like AND, OR, NOT. A simple exam-
ple of an SMT(LA) formula ¢ is

p=(x+y<1ORx>2y)AND(x+y<1ORx<yORD).

Let the Boolean variables b; and b, represent the linear in-
equalities #; = x+y < 1 and h; = x < y respectively. Then
we obtain the propositional skeleton

PS4 = (by OR (NOT b,)) AND (b; OR b, OR b).

DOur tool SHarRPSMT and experimental data including benchmarks can
be found at http://www.github.com/bearben/sharpsmt

bool(@) represent (b41,. .., b)) Which are pure Boolean

variables of ¢.

Definition 2. A (partial) assignment & of PS, is a vector
(@1, ..., @p) € B™! where «; is either 1 or O (or not as-

signed). It corresponds to Hy = (J <<, Hz,, Where

{hit ife;=1,
Hg;=q{=h} ifa; =0,
0 if a; is not assigned.

Definition 3. An assignment 77 of ¢ is in the form (¥, bool(@)) €
R" x B or Z" x B!, where @ is an assignment of PS4 and Xis
a point in R” or Z".

The solution space of ¢ is then the union of sets, formally:

M(¢) = U M(H,) x bool(d).

@eM(PS,)

ey

Note that Hz can be regarded as a convex polytope. In-
tuitively, the solution space of an SMT(LA) formula can be
viewed as a union of many polytopes.

Definition 4. Given a formula F and a polytope P,
e Let vol(F) and vol(P) denote the volume of solution
space of F and the volume of P respectively.
e Let #F and #P denote the number of integer solutions

of F and lattice points in P respectively.

2.2 DPLL(T)-based Enumeration Scheme

A well-known framework for finding models of SMT(LA)
formulas is called DPLL(T) algorithm. Based on it, we present
a scheme to find a set of (partial) assignments A C M(PS,),
S.t.,

M(g) = U M(H;) x bool (@)

aeA
and M(H) X bool(@) N M(Hp) x bool(B) = 0,
va,fe A d+p. 2)
e Step 1. Find a model 77 of ¢ by DPLL(T) algorithm.
e Step 2. From Equation 1, there exists a (partial) assign-
ment @ € M(PS,), s.t., i € M(Hz) X bool(d@).
e Step 3. Construct a new formula ¢’ = ¢ A NC(&) which
is the conjunction of ¢ and the negation clause NC(@)
of @, The negation clause would prevent the DPLL(T)

http://www.github.com/bearben/sharpsmt

Cunjing GE. SharpSMT: A Scalable Toolkit for Measuring Solution Spaces of SMT(LA) Formulas 3

Viner [19] | PoyVest [14,20] | LartE [21] | Barvinok [22] | ApproxLarCount [17] | VorL2Lar [15]
Input P Ped P P Pe o P
Output vol(P) vol(P) #P #P #P #P, Ib, ub
Guarantee Exact (€, 6)-bound Exact Exact (€, 6)-bound Ib<#P <ub

Table 1 A summary of polytope subroutines. Note that vol(P) and #P are approximate results of vol(P) and #P respectively. The (€, 5)-bound of vol(P)

guarantees the output lie in the interval [(1 + €)"vol(P), (1 + €)vol(P)] with probability at least 1 — 8. The (e, §)-bound of #P is similar.

algorithm finding models in M(Hz) X bool(@) again.
In detail, NC(&@) = \/ I;, where [;s are literals that [; = b;
ifa;=0,and [; = —b; if a; = 1.
e Step 4. Find the next model /i’ € M(¢’) and a (partial)
m' € M(Hg) X bool(@). Repeat
above steps until M(¢") = 0, i.e., unsatisfiable.

assignment @, s.t.,

> oy

In this way, we obtain a set A = {@,&,...} satisfying
Equation 2. Note that such assignment @ € A can be partial

assignments.

2.3 Polytope Subroutines

From Equation 2, {M(Hz) X bool(@), V@ € A} is mutually
non-overlapping. Then the size of solution space is:

IM@) = IM(Hy) x bool (@)

aeA

= > IM(Hp)| - 2%,

aeA

3

where dj is the number of a;s which are not assigned, m + 1
< i <l For real cases ¥ € R", |M(Hy)| is the volume of a

polytope Pz = {¥ € R" : Hz(X)}, i.e,

IM@)] = D vol(Pg) - 2%
aeA
For integer cases ¥ € Z", [M(Hz)| = Pz N Z" = #P; is the
number of lattice points that lie in Pg, i.e.,

“

M@ =) #Pg - 2%,

aeA

&)

Therefore, we employ the various tools for computing integer
solution points or volume with respect to a polytope, which
are also called polytope subroutines. Table 1 gives the sum-
mary of all subroutines invoked by SHARPSMT.

Vine [
ing or estimating the volume of a polytope, which will be in-

] and PoryVEest [14,20] are tools for comput-
voked by SHARPSMT for volume computation or estimation
problems of SMT(LA) formulas. Since the algorithm of vol-
ume estimation is polynomial-time, thus PorLyVEesT is able to
solve larger cases (more variables) than Vinci. In practice,
Vinct would solve a case in a few seconds, otherwise, it usu-

ally runs out of memory or eventually timeout. Naturally, it is

wise to call VIncI first, if VINcI is not able to solve in seconds
or runs out of memory, then SHARPSMT calls PorLyVEsT.
LartE [21], BARvINOK [22], ApPrROXLATCoOUNT (ALC) [17]
and Vor2Lar (V2L) [15] are tools for computing or estimat-
ing the count of lattices in a polytope. They will be em-
ployed for the integer solution counting of SMT(LA) formu-
las. LartE and BarviNok are both the implementations of
Barvinok’s algorithm. The tool BarviNok was released after
LartE, which has an in general better performance. ALC and
V2L are both approximate lattice counters, and are able to
solve larger cases (more variables) than BArviNok. But their
approximation methods are essentially different. ALC returns
the approximation with an (e, §)-bound, which is similar with
the volume estimation method PorLyVEsT. V2L gives an exact
bound of vol(P) and #P, if the bound is tight, then vol(P) ~
#P, which means #P can be approximated by vol(P). Note
that it usually takes less than 0.1s to compute the bound by
V2L, which is very efficient. Therefore, we have the follow-
ing strategy: SHARPSMT calls BarviNok first. If BarviNok
is not able to solve in seconds, then it calls V2L to obtain
a bound of vol(P) and #P. If the bound is tight, SHARPSMT
calls volume computation or estimation methods to approxi-

mate the integer solution count, otherwise, it calls ALC.

3 Architecture

Based on Equation 4 and 5, the brief idea of SHARPSMT is
enumerating feasible assignments by solving the SMT(LA)
formula and then accumulating the volumes or lattice counts
of polytopes corresponding to these assignments. A schematic
overview of the architecture is presented in Fig. 1. A regular
run of SHARPSMT has four stages: parsing and rewriting, fea-
sible assignments enumeration, polytope preprocessing and

polytope subroutines.

3.1 Parsing and Rewritting

SHARPSMT reads the input and recursively builds an abstract
syntax DAG (directed acyclic graph). Like most SMT solvers,
basic rewriting rules are applied to simplify the DAG during

the parsing process.

4 Front. Comput. Sci., 2024, 0(0): 1-10

Parsing and

Rewriting

__

__

Assignments

¢ =¢ANC(a)and A = AU {a'}
|

¢ issat

Enumeration

i SMT solving
i

Find an assignment a

> Generate a bunch o'

. ¢ is unsat .

T 2
| : |
| Polytopes Obtain P, Pq .| Factorize P, Py Variable i
i Preprocessing for each @ € A into Pg;s Elimination |
! Cache Strategy ;

A4

{/ __ \‘I
I Polytopes L . !
! . Polyvest Vinci LattE Barvinok ALC V2L i
| Subroutines i

Fig.1 Schematic overview of the architecture of SHARPSMT.

e Inequality Extraction.

Recall that polytope subroutines only take linear inequali-
ties as inputs, so SHARPSMT has to extract inequalities from
SMT(LA) formulas. The inequality extractor is a component
to rewrite the SMT(LA) expression into a combination of
Boolean skeletons and normalized linear inequalities. Parser
calls extractor whenever it has parsed a comparison operator
(=, <, <, >, >, distinct) which is the root of a DAG of inequal-
ities. Note that such a DAG may consist of more than one
inequality if it contains if-then-else (ite) operators. For
a DAG with ite operators, the extractor recursively traverses
the DAG, records the conditions of each ite and then recon-
structs a syntax tree with Boolean variables which represents
those extracted inequalities. Each time an inequality is ex-
tracted, SHARPSMT creates a Boolean variable to substitute
this inequality in the DAG and adds a constraint to link the
variable with the inequality.

Fig. 2 is an example of the inequality extraction. Red
nodes represent the roots of DAGs. The left-hand-side is a
DAG of an input expression in SMT-LIB language: (= (+
(ite a (ite b x y) (+ x ¥)) z) (- x)). The right-
hand-side are three syntax trees reconstructed by our inequal-
ity extractor. Note that ieql, ieq2 and ieq3 represent the
inequalities 2x + z = 0, x+y+z =0and 2x +y+z = 0

respectively. Then such syntax trees are Boolean skeletons.

Moreover, the conjunction of these three trees is equivalent
to the original expression.

e Inequality Normalization.

The inequality extraction also normalizes inequalities. With
Boolean operations, one can represent <, <,> and > simply
by <,eg,.x+y <0 o not(x+y > 0) © not (—x -
y < 0). Thus a normalized inequality is of the form ay +
aix) + -+ + ayx, = (<) 0, where a;s are constants, x;s are
variables, and ag > 0. Note that one can obtain a unique
normalized inequality by keeping first non-zero multiplier to
be one. SHARPSMT does not normalize inequalities by this
way, because it may cause rounding errors when SHARPSMT
calls polytope subroutines.

Example 1. Consider the following SMT(LRA) formula:
(pegdx—y< DAz Vx-—y=21Arz>1),

where p, g are Boolean variables, and x, y, z € [-2, 2] are real
variables. With the inequality extraction and normalization,
SHARPSMT transforms this formula into a Boolean skeleton
((p® g ® —by1) A by) vV (by A —b3)) with inequalities b; =
l1-x+y<0,b,=z<0,andb3=-1+72<0.

3.2 Feasible Assignments Enumeration

In the second stage, SHARPSMT tries to find the set of feasible

assignments A in Equation 4 and 5. It employs the enumera-

Cunjing GE. SharpSMT: A Scalable Toolkit for Measuring Solution Spaces of SMT(LA) Formulas 5

(= (+(itea(itebxy) (+xy)) 2) (-x))

I. a=true, b=true => 2x+z=0
IIl. a=true, b=false => x+y+z=0
I1l. a=false => 2x+y+z=0

Fig. 2 An example of extracting linear inequalities from a formula which contains ite operators.

tion scheme which is shown in Section 2.2. It calls the SMT
solver to obtain a feasible assignment @, then adds a nega-
tion clause NC(@) to rule out the assignment just found, and
so forth. Currently, SHARPSMT uses Z3, as the SMT(LA)
solver, through APIs. Note that it is easy to employ other
modern SMT solvers since SHARPSMT sees SMT solving as
a black box.
o Merge partial assignments into “bunches”
To reduce |A|, SHARPSMT employs a technique for merging
partial assignments called Bunch strategy [13].
e Step 1. Find k s.t., a4 in @ is assigned and @ |= PS,
where @' = (aq, ... s Uy
e Step 2. If such k exists, thenﬁ = (B1,...,Bm+1), Where
Bi = a;, Vi # k and By is not assigned. Repeat above

s T, -

steps on the new partial assignment ﬁ
e Step 3. Otherwise, the method returns a bunch @.
Note that M(HE) = M(Hz) U M(H). It means ﬁ can be
viewed as a merged result of @ and @. Then a bunch is a

partial assignment which cannot be further merged.

Example 2. The SMT formula in Example | has 7 feasible

assignments as the following:

{p: q, bl? _'b2’ _'b3}’ {p» q, _'bl’sz b3}’ {p» g, bl’sz b3}7
{ps -q, bl, _'b2’ _'b3}’ {_'p’ q, bl, b2’ b3}s
{=P.q,b1, b2, =3}, {=p, —q, =b1, by, b3}.

Since {—p, ~q, b1, ~b,, —bs} satisfies the Boolean skeleton
and the corresponding set of inequalities is not consistent,
then partial assignment {b|, —b,, —bs} is also feasible. In ad-
dition, we have vol({b, =b,, =b3}) = vol({p, q, b1, =b>, =b3})+
vol({p, =q, by, =bs, =b3})+vol({=p, q, by, =bs, =b3})+vol({-p,
—q, b1, by, ~bs}). Therefore, the bunch strategy reduces three

feasible assignments {p, q, by, =b,, =b3}, {p, =q, b, =b,, —b3}
and {-p, g, b1, —b,, —e3} into {b;, —b;, —b3}. Note that =z < 1
implies -z < 0 and z < 0 implies z < 1. So SharpSMT will
obtain 5 bunches at last:

{bl’ _'b3}1 {_'p’ Q»bl,bz}, {p, _'CI7b]sb2}s
{_|p, -q, _'blst}’ {ps q, _'bl’bz}-

3.3 Polytope Preprocessing

In the third stage, SHARPSMT employs some preprocessing
techniques on polytopes to improve the efficiency of polytope
subroutines in the fourth stage. Given a partial assignment
@ € A, it corresponds to a polytope Pg. First, SHARPSMT fac-
torizes Py into small polytopes Pg 1, ... Pzt Then vol(Pz) =
Hf;l vol(Pg;). After that, for each Pz;, SHARPSMT reduces
variables and obtains PZ},J. Then it searches in cache to deter-
mine whether vol(P:ii) has been computed. If P:ﬁ is a new
polytope for subroutines, it calls subroutines and adds the re-
sult into cache. Finally, SHARPSMT returns the final result
vol($) = Ygea [1vol(P;) - 2% by Equation 4. It is similar
for computing #¢, according to Equation 5. In the rest of this
section, we give the details of those preprocessing techniques.
o Factorization

The number of variables is a key factor about the difficulty
of polytope subroutines. For example, the state-of-the-art
exact integer counter or volume computation algorithms of-
ten have difficulties when the number of variables is greater
than 15. For the state-of-the-art volume approximations, it
takes minutes to solve problems with around 100 dimensions,
which are still expensive. Therefore, reducing the number of
variables will be beneficial to sHaARPSMT. Our tool employs

polytope preprocessing techniques for dimension reduction.

6 Front. Comput. Sci., 2024, 0(0): 1-10

It first factorizes the set of linear inequalities, which corre-
sponds to a given bunch, into mutually independent groups
of inequalities, then applies the polytope subroutine to obtain
the size of solution space of each group of inequalities, and
finally returns the product. SHARPSMT also tries to check and
reduce irrelevant variables.

Example 3. Consider a set of linear constraints

x1 + x3 < 10,

Xy + x4 + x5 >0,
3x4 — 2x5 < 10,
-8<x;<7,i€[l,5].

It can be factorized into two sets of variables {xj, x3} and

{x>, x4, x5} and two sets of constraints

Xy + X4 + x5 >0,
x1 + x3 <10,

_8§xiS7,i€{1,3}’

3x4 — 2x5 < 10,
-8 <x;<7,i€{2,4,5}.
Then the 5-dimensional polytope is thus factorized into two

polytopes with at most 3 dimensions, which will save the

computation cost of polytope subroutines.

Ge and Biere [
tion techniques, but they are not integrated in SHARPSMT so

] proposed more sophisticated factoriza-

far. It will be our future work.

e Variable Elimination

Given a set of inequalities Hy, which corresponds to a feasi-
ble assignment @, it may contains equalities, i.e., d¥ < b € Hy
and aX > b € Hg. In such cases, the corresponding poly-
tope Pz is degenerate and vol(Pz) = 0. To count the in-
teger solutions #Pgz, we can naturally reduce one variable
for an equality constraint by Gauss elimination. For exam-
ple, assume a; is non-zero, we can eliminate x; by equation
x1 = (b—ayx; —- - —ayx,)/a;. Obviously, Gauss elimination
will not change the count of integer solutions.

Specifically, the subroutine V2L, which approximates in-
teger solution counts via polytopes’ volume, relies on Gauss
elimination. Since vol(Pz) = 0, the volume cannot be used to
approximate the integer count when #Pz > 0. However, it is
probably that vol(P’) ~ #P' = #Pz, where P’ is the polytope
generated by Gauss elimination.

o Reusing with Cache
SHARPSMT stores the results of calls of polytope subroutines

in a cache, so that it can retrieve the result of a polytope which

has already been calculated from the cache. For example,
{—=p, g, —b1, by} and {p, q, ~b1, by} are two different bunches
in Example 2, but both correspond to the polytope {-b; A
by, x,y,z € [-2,2]}. Recall that SHARPSMT has extracted and
stored all inequalities, the polytope passed to a subroutine is
essentially a feasible assignment, which corresponds to the
polytope. So we set the feasible assignment to be the key and
bind it to the results returned by the polytope subroutine.
Besides, the factorization technique on polytopes may cre-
ate same sub-polytopes when factorizing different polytopes.
For example, let us consider two bunches {b;, ~b3} and {p, g,
b1, by} in Example 2, which correspond to P; = {b; A —b3,
x, ¥,z € [-2,2]} and P, = {b) A by, x,y,z € [-2,2]} respec-
tively. P; can be factorized into Py; = {b1, x,y € [-2,2]} and
P, = {=b3,z € [-2,2]}, and vol(P{) = vol(Py1) X vol(P3).
Similarly, P, can be factorized into Py; = {by, x,y € [-2,2]}
and P>, = {b,,z € [-2,2]}. Note that P;; = P», so the result

of P can be reused when handling P,.
e Interval Computation

One-dimensional problems are trivial, but all polytope sub-
routines do not have special treatments for this. So SHARPSMT
will handle such cases directly. The one-dimensional poly-
tope is an interval, so we only have to calculate the upper and

lower bounds by checking the corresponding inequalities.
e Two-round Strategy [14]

For PoLy VEsT and ALC, as the number of samplings increases,
the accuracy of estimation improves, and the estimation pro-
cess also takes more time. It is important to balance the ac-
curacy and the running time since the subroutines are usually
called many times. Therefore, SHARPSMT employs a two-
round strategy [14] that can dynamically determine a proper
weight for sampling. At the first round of estimation, each
feasible assignment is generated with a fixed small weight to
get a quick and rough estimation. Since the volumes (or lat-
tice counts) of polytopes may vary a lot. Intuitively, a feasible
assignment with relatively larger volume should be estimated
with higher accuracy. Hence in the second round, the weight
for each assignment is determined according to its estimated
volume from the first round.

Example 4. Recall the bunches listed in Example 2: {b, =b3},
{=P.4,b1,b2},{p, =q, b1, b2}, {=p, —q, =b1, b2}, {p, q, =b1, b}
Consider the volume of the first bunch {b;, =b3}. SHARPSMT
factorizes the corresponding polytope P = {bj A—b3, x,y,z €
[-2,2]} into Py = {by,x,y € [-2,2]} and Py, = {=b3,7 €
[-2, 2]}, where vol(P;) = vol(Pyy) X vol(P;2). Then it calls

Cunjing GE. SharpSMT: A Scalable Toolkit for Measuring Solution Spaces of SMT(LA) Formulas

120

100

Case

t(s)

Vinci
—=— PolyVest
=#- Vinci+PP

-~ PolyVest+PP

100 1000

Fig. 3 Performance comparisons among subroutines of SHARPSMT on random instances (real variables).

120

100

Case

ALC
—#- Barvinok
—o— LattE
—— Vol2Lat
-#- ALC+PP
- Barvinok+PP
-©- LattE+PP
-<-- Vol2Lat+PP

100 1000

Fig. 4 Performance comparisons among subroutines of SHARPSMT on random instances (integer variables).

polytope subroutines on Py; and computes the interval of Py,
directly. Finally, SHARPSMT obtains the volume vol(P;) =
4.5, and vol({b1, =b3}) = 4 X vol(P) = 18 as there are 4 pos-
sible assignments for pair (a, b). Now let us consider the sec-
ond bunch {-p, g, b}, b,}. The corresponding polytope P, =
{b1 Aby, x,y,7 € [-2,2]} can also be factorized into two poly-
topes Py = {b1,x,y € [-2,2]} and Py = {by,z € [-2,2]}.
Since P>; = Pii, SHARPSMT reuses the result of vol(Pyy).
At last, SHARPSMT obtains the result vol({—p, q,b1,b2}) =
4.5 X vol(Py) = 9. Similarly, SHARPSMT computes the re-
sults of the rest bunches {p, —q, b1, b2}, {-p, ~q, ~b1, by} and
{p,q, b1, b}, and sums up. So the total volume of this for-
mulais 18 + 9+ 9 + 23 + 23 = 82.

4 Evaluation

In this section, we report experimental results about the per-
formance of SHARPSMT. SHARPSMT provides a command-
line parameter -w to quickly set bounds to numeric variables.
Specifically, with such word-length parameter w, SHARPSMT
add the bound x; € [-2"1,2"~! — 1] for each variable x;.
We chose w = 8, i.e., x; € [—128,127], for all unbounded
SMT(LA) formulas. For (e, §)-counters, PoLy VEst and ALC,
we chose € = 0.2 and 6 = 0.1. Experiments were conducted
on Intel(R) Xeon(R) Gold 6248 @ 2.50GHz CPUs with a
time limit of 1800 seconds and memory limit of 4 GB per
benchmark. The benchmark set consists of:
e Random instances: We generated 126 SMT(LRA) and
SMT(LIA) formulas by randomly choosing coefficients

Front. Comput. Sci.,

R i

@ L STl

e~

4000

3600

Case

3200

3000

0.1 10

t(s)

2024, 0(0): 1-10

e e

e

ALC
—#— Barvinok
LattE
——Vol2Lat
=% ALC+PP
Barvinok+PP
-©- LattE+PP
-9-- Vol2Lat+PP

100 1000

Fig.5 Performance comparisons among subroutines of SHARPSMT on application instances.

of inequalities and literals of clauses. They are named
aslra_bn_lorlia_b_n_1, whichhave b Boolean vari-
ables, n real variables and [inequalities.

Application instances: We adopted 4131 benchmarks
[] from program analysis and simple temporal
planning (STN).

Bit-vector formulas: We translated some small-scale

i

random and application instances from SMT(LIA) for-
mulas into SMT(BV) formulas for comparing SHARPSMT
with hashing-based #SMT(BV) counters.

We conducted experimental on random and application in-
stances with different polytopes subroutines. We also com-
pared the performance of SHARPSMT with and without poly-
tope preprocessing techniques. Fig. 3 and 4 present the re-
sults on random instances. Fig. 5 presents the results on ap-
plication instances. In these figures, the x-axis means the run-
ning time and presented in logarithmic. Note that “X+PP” are
the results of SHARPSMT calls the single subroutine “X” with
polytope preprocessing (PP) techniques.

From Fig. 3 and 4, we observe that the polytope prepro-
cessing techniques could improve the performance of poly-
tope subroutines a bit. The exact volume computation tool
Vinct works better on relative small instances than volume
approximation tool PoLyVEsT, on the other hand, PoLyVEsT
can solve more larger instances. By comparing lattice counter
ALC, BarviNok, LartE and V2L in Fig. 4, we find that ALC
is outperforms all other tools, and V2L is the second, and
BarviNok is slightly better than LarTE. It is reasonable as
ALC and V2L are approximate counters.

From Fig. 5, it is obvious that the polytope preprocessing

(PP) techniques are very effective. With PP techniques, all
subroutines could handle more than 3800 instances (4131 in
total) in one second. Moreover, all subroutines with PP could
more cases in 1800s timeout. On these application bench-
marks, we find that BARvVINOK is overall the best and then V2L
and ALC.

e Comparing with Hashing-based Counters

We compared SHARPSMT with SMTAprPRoXMC [18] which
is a hashing-based approximate counter for SMT(BV) formu-
las. For comparison, we translated SMT(LIA) formulas into
SMT(BYV) formulas semi-manually by replacing integer vari-
ables with fixed-length variables, bit-vector constants and bit
operations. We experimented SMTApPrRoXMC with param-
eters € = 0.8 and 6 = 0.2. It guarantees the output lying
in interval [1.87'#F, 1.8#F] with probability at least 80%,
where #F is the exact solution count of a given formula F.
Table 2 presents the result of comparing the performance of
SaARPSMT with SMTAPPrROXMC on a subset of our bench-
marks. In these experiments, SHARPSMT calls LartE for in-
teger solution counting inside a polytope, so our tool returns
the exact counts instead of estimations. Table 2 shows that
our approach significantly outperforms SMTApprOXMC. We
observe that the running time of SMTAPPrROXMC is closely
related to the number of the solutions rather than the num-
ber of variables, i.e., the larger number of solutions, the more
difficult for SMTAprPrOXMC to handle. Note that Ge [17]
also compared Barvinok and ALC with more hashing-based
], and GANAK

model counters, ApPRoXMC4 [23], CACHET [

[

are more suitable for counting integer solutions on linear con-

]. The experimental results show that BArvinok and ALC

Cunjing GE. SharpSMT: A Scalable Toolkit for Measuring Solution Spaces of SMT(LA) Formulas

SHARPSMT(ALC) | SHARPSMT(BARVINOK) SMTAPPROXMC

Instance #var | #ineq result % t(s) result #¢ t(s) result #?zi t(s)
getopPath_1 1 10 242 0.01 242 0.01 242 2.57
getopPath_2 3 20 8085 0.01 8085 0.01 8.38E+03 14.96
findmiddle 4 3 6 5.76e+06 | 0.02 | 5.53e+06 0.02 —_— —_—
findmiddle_6 3 6 1.31e+05 | 0.03 | 1.31e+05 0.02 1.33e+05 151.5
findmiddle_8 3 6 6.63e+04 | 0.01 | 6.53e+04 0.02 6.21e+04 207.9
Space_manage_38 7 15 6.3le+14 | 0.02 | 5.4le+14 0.02 —_— e
Space_manage_49 13 20 1.94e+27 | 0.05 | 2.51e+27 0.05 E— e
tcas_1201 7 18 1.10e+12 | 0.01 1.10e+12 0.01 —_— —_—
tcas_1214 7 18 4.28e+09 | 0.01 | 4.28e+09 0.01 —_— —_—
lia_10_10_5 10 5 1.20e+23 | 0.03 | 1.19e+23 22.16 —_— —_—
lia.7.73 7 3 2.77e+16 | 0.02 | 2.48e+16 2.25 —_— —_

lia 6_6_3 6 3 9.23e+13 | 0.02 | 9.79e+13 8.08 —_— —_—
lia552 5 2 9.82e+10 | 0.02 | 9.73e+10 0.04 —_— —_—
lia8.4.4 4 4 1.19e+09 | 0.08 | 1.14e+09 1.04 —_— —_
lia 633 3 3 1.33e+06 | 0.01 1.28e+06 0.02 1.12e+06 | 878.01
lia3.3.3 3 3 2.97e+06 | 0.03 | 2.97e+06 0.02 291e+06 | 909.15
lia222 2 2 9.52e+04 | 0.02 | 9.43e+04 0.02 8.74e+04 21.86
lia22_1 2 1 6.70e+04 | 0.02 | 6.55e+04 0.02 6.50e+04 22.41

Table 2 Comparison results of SHARPSMT and SMTApproxMC on small-scale instances.

straints. And hashing-based counters only gains upper hand
on cases with very small domains, such as, x; € {-1,0, 1}.

5 Conclusion and Future Work

In this paper, we introduced our tool SHARPSMT for comput-
ing the volume of the solution space (or counting the num-
ber of integer solutions), given an SMT(LA) formula which
is a Boolean combination of linear arithmetic inequalities.
SHARPSMT employs the DPLL(T) algorithm for feasible as-
signment enumeration, then it calls various polytope subrou-
tines for different tasks. We also proposed a series of new
polytope preprocessing techniques and implemented them in
SaARPSMT. Experimental results show that the new polytope
preprocessing techniques are very effective, especially on ap-
plication instances. We believe that the tool will be useful in
a number of domains, such as program analysis and proba-
bilistic verification.
Ge and Biere [
tion techniques, but we only implement a direct factoriza-

] proposed more sophisticated factoriza-

tion method in SHARPSMT so far. It will be our future work.
The two-round strategy [14] has been shown effective with
volume approximation method PorLyVEst. Intuitively, this
technique may also work with approximate lattice counting
method, such as, ALC and V2L. But SuarRpSMT only em-
ploys two-round strategy with PoLyVEsT so far. We will con-

sider this in the future.

Acknowledgements Cunjing Ge is supported by the National Natural Sci-
ence Foundation of China (62202218), and is sponsored by CCF-Huawei
Populus Grove Fund (CCF-HuaweiFM202309).

References

1. Barrett C, Conway C L, Deters M, Hadarean L, Jovanovic D, King T,
Reynolds A, Tinelli C. CVC4. In: Proceedings of Computer Aided
Verification - 23rd International Conference (CAV). 2011, 171-177

2. Barbosa H, Barrett C W, Brain M, Kremer G, Lachnitt H, Mann M,
Mohamed A, Mohamed M, Niemetz A, Notzli A, Ozdemir A, Preiner
M, Reynolds A, Sheng Y, Tinelli C, Zohar Y. cvc5: A versatile and
industrial-strength SMT solver. In: Fisman D, Rosu G, eds, Proceed-
ings of Tools and Algorithms for the Construction and Analysis of Sys-
tems - 28th International Conference (TACAS). 2022, 415-442

3. Cimatti A, Griggio A, Schaafsma B J, Sebastiani R. The mathsat5
SMT solver. In: Piterman N, Smolka S A, eds, Proceedings of Tools
and Algorithms for the Construction and Analysis of Systems - 19th
International Conference (TACAS). 2013, 93-107

4. Dutertre B. Yices 2.2. In: Proceedings of Computer Aided Verification
- 26th International Conference (CAV). 2014, 737-744

5. Mourad L M, Bjgrner N. Z3: an efficient SMT solver. In: Proceedings
of Tools and Algorithms for the Construction and Analysis of Systems
- 14th International Conference (TACAS). 2008, 337-340

6. Chavira M, Darwiche A. On probabilistic inference by weighted model
counting. Artificial Intelligence, 2008, 172(6-7): 772-799

7. Belle V, Passerini A, Broeck d G V. Probabilistic inference in hybrid
domains by weighted model integration. In: Yang Q, Wooldridge M J,
eds, Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence (IJCAI). 2015, 2770-2776

10

11.

12.

13.

14.

15.

16.

17.

18.

Front. Comput. Sci., 2024, 0(0): 1-10

Zanarini A, Pesant G. Solution counting algorithms for constraint-
centered search heuristics. In: Proceedings of Principles and Practice
of Constraint Programming (CP). 2007, 743-757

Pesant G. Counting-based search for constraint optimization problems.
In: Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence. 2016, 3441-3448

Huang A, Lloyd L, Omar M, Boerkoel J C. New perspectives on flex-
ibility in simple temporal planning. In: Proceedings of the Twenty-
Eighth International Conference on Automated Planning and Schedul-
ing (ICAPS). 2018, 123-131

Geldenhuys J, Dwyer M B, Visser W. Probabilistic symbolic execu-
tion. In: Proceedings of International Symposium on Software Testing
and Analysis (ISSTA). 2012, 166-176

Luckow K S, Pasareanu C S, Dwyer M B, Filieri A, Visser W. Exact
and approximate probabilistic symbolic execution for nondeterministic
programs. In: Proceedings of ACM/IEEE International Conference on
Automated Software Engineering (ASE). 2014, 575-586

MagF, Liu S, Zhang J. Volume computation for boolean combination of
linear arithmetic constraints. In: Proceedings of the 22nd International
Conference on Automated Deduction (CADE). 2009, 453468

Ge C, Ma F, Zhang P, Zhang J. Computing and estimating the volume
of the solution space of SMT(LA) constraints. Theoretical Computer
Science, 2018, 743: 110-129

Ge C, Ma F, Ma X, Zhang F, Huang P, Zhang J. Approximating in-
teger solution counting via space quantification for linear constraints.
In: Kraus S, ed, Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence (IJCAI). 2019, 1697-1703

Ge C, Biere A. Decomposition strategies to count integer solutions
over linear constraints. In: Zhou Z, ed, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence (IICAI). 2021,
1389-1395

Ge C. Approximate integer solution counts over linear arithmetic con-
straints. In: Wooldridge M J, Dy J G, Natarajan S, eds, Proceedings
of Thirty-Eighth AAAI Conference on Artificial Intelligence. 2024,
8022-8029

Chakraborty S, Meel K S, Mistry R, Vardi M Y. Approximate proba-

bilistic inference via word-level counting. In: Proceedings of the Thir-

19.

20.

21.

22.

23.

24.

25.

tieth AAAI Conference on Artificial Intelligence. 2016, 3218-3224
Biieler B, Enge A, Fukuda K. In: Kalai G, Ziegler G M, eds. Exact Vol-
ume Computation for Polytopes: A Practical Study. Birkhéuser Basel,
2000, 131-154

Ge C,MaF. A fast and practical method to estimate volumes of convex
polytopes. In: Proceedings of Frontiers in Algorithmics - 9th Interna-
tional Workshop (FAW). 2015, 52-65

LoeraJ A D, Hemmecke R, Tauzer J, Yoshida R. Effective lattice point
counting in rational convex polytopes. Journal of Symbolic Computa-
tion, 2004, 38(4): 1273-1302

Verdoolaege S, Seghir R, Beyls K, Loechner V, Bruynooghe M. Count-
ing integer points in parametric polytopes using barvinok’s rational
functions. Algorithmica, 2007, 48(1): 37-66

Soos M, Meel K S. BIRD: engineering an efficient CNF-XOR SAT
solver and its applications to approximate model counting. In: Pro-
ceedings of the Thirty-Third AAAI Conference on Artificial Intelli-
gence. 2019, 1592-1599

Sang T, Bacchus F, Beame P, Kautz H A, Pitassi T. Combining com-
ponent caching and clause learning for effective model counting. In:
Proceedings of the Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT). 2004

Sharma S, Roy S, Soos M, Meel K S. GANAK: A scalable prob-
abilistic exact model counter. In: Kraus S, ed, Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence
(IJCAI). 2019, 1169-1176

Cunjing Ge is a PostDoc in School of Ar-
tificial Intelligence, Nanjing University,
China.

in Computer Software and Theory from

He received his Ph.D. degree

Institute of Software, Chinese Academy
of Sciences. His research interests in-

cluding constraint satisfaction problem,

model counting, and abductive learning.

	Introduction
	Background
	Preliminaries and Notations
	DPLL(T)-based Enumeration Scheme
	Polytope Subroutines

	Architecture
	Parsing and Rewritting
	Feasible Assignments Enumeration
	Polytope Preprocessing

	Evaluation
	Conclusion and Future Work

