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Abstract. The volume is an important attribute of a convex body. In
general, it is quite difficult to calculate the exact volume. But in many
cases, it suffices to have an approximate value. Volume estimation meth-
ods for convex bodies have been extensively studied in theory, however,
there is still a lack of practical implementations of such methods. In
this paper, we present an efficient method which is based on the Multi-
phase Monte-Carlo algorithm to estimate volumes of convex polytopes. It
uses the coordinate directions hit-and-run method, and employs a tech-
nique of reutilizing sample points. We also introduce a new result check-
ing method for performance evaluation. The experiments show that our
method can efficiently handle instances with dozens of dimensions with
high accuracy.

1 Introduction

Volume computation is a classical problem in mathematics, arising in many ap-
plications such as economics, computational complexity analysis, linear systems
modeling, and statistics. It is also extremely difficult to solve. Dyer et.al. [1] and
Khachiyan [2][3] proved respectively that exact volume computation is #P-hard,
even for explicitly described polytopes. Büeler et.al. [4] listed five volume compu-
tation algorithms for convex polytopes. However, only the instances around 10
dimensions can be solved in reasonable time with existing volume computation
algorithms, which is quite insufficient in many circumstances. Therefore we turn
attention to volume estimation methods.

There are many results about volume estimation algorithms of convex bodies
since the end of 1980s. A breakthrough was made by Dyer, Frieze and Kannan [5].
They designed a polynomial time randomized approximation algorithm (Multi-
phase Monte-Carlo Algorithm), which was then adopted as the framework of
volume estimation algorithms by successive works. At first, the theoretical com-
plexity of this algorithm is O∗(n23) 1, but it was soon reduced to O∗(n4) by
Lovász, Simonovits et. al. [6][7][8][9]. Despite the polynomial time results and

1 “soft-O” notation O∗ indicates that we suppress factors of logn as well as factors
depending on other parameters like the error bound
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reduced complexity, there is still a lack of practical implementation. In fact,
there are some difficulties in applying the above volume estimation algorithms.
First, in theoretical research of randomized volume algorithms, oracles are usu-
ally used to describe the convex bodies and the above time complexity results
are measured in terms of oracle queries. However, oracles are too complex and
oracle queries are time-consuming. Second, there exists a very large hidden con-
stant coefficient in the theoretical complexity [8], which makes the algorithms
almost infeasible even in low dimensions. The reason leading to this problem is
that the above research works mostly focus on arbitrary dimension and theo-
retical complexity. To guarantee that Markov Chains mix in high-dimensional
circumstance, it is necessary to walk a large constant number of steps before
determining the next point.

In this paper, we focus on practical and applicable method. We only consider
specific and simple objects, i.e., convex polytopes. On the other hand, the size
of problem instances is usually limited in practical circumstances. With such
limited scale, we find that it is unnecessary to sample as many points as the
algorithm in [8] indicates. We implement a volume estimation algorithm which
is based on the Multiphase Monte-Carlo method. The algorithm is augmented
with a new technique to reutilize sample points, so that the number of sample
points can be significantly reduced. We compare two hit-and-run methods: the
hypersphere directions method and the coordinate directions method, and find
that the latter method which is employed in our approximation algorithm not
only runs faster, but is also more accurate. Besides, in order to better evaluate
the performance of our tool, we also introduce a new result checking method.
Experiments show that our tool can efficiently handle instances with dozens
of dimensions. To the best of our knowledge, it is the first practical volume
estimation tool for convex polytopes.

We now outline the remainder of the paper: In section 2, we propose our
method in detail. In section 3, we show experimental results and compare our
method with the exact volume computation tool VINCI[10]. Finally we conclude
this paper in Section 4.

2 The Volume Estimation Algorithm

A convex polytope may be defined as the intersection of a finite number of half-
spaces, or as the convex hull of a finite set of points. Accordingly there are two
descriptions for a convex polytope: half-space representation (H-representation)
and vertex representation (V-representation). In this paper, we adopt the H-
representation.

An n-dimensional convex polytope P is represented as P = {Ax ≤ b}, where
A is an (m× n) matrix. aij represents the element at the i-th row and the j-th
column of A, and ai represents the i-th column vector of A. For simplicity, we
also assume that P is full-dimensional and not empty. We use vol(K) to represent
the volume of a convex body K, and B(x,R) to represent the ball with radius
R and center x.
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We define ellipsoid E = E(A, a) = {x ∈ Rn|(x− a)TA−1(x− a) ≤ 1}, where
A is a symmetric positive definite matrix.

Like the original multiphase Monte-Carlo algorithm, our algorithm consists
of three parts: rounding, subdivision and sampling.

2.1 Rounding

The rounding procedure is to find an affine transformation T on polytope Q

such that B(0, 1) ⊆ T (Q) ⊆ B(0, r) and a constant γ = vol(Q)
vol(T (Q)) . If r > n,

T can be found by the Shallow-β-Cut Ellipsoid Method [11], where β = 1
r .

It is an iterative method that generates a series of ellipsoids {Ei(Ti, oi)} s.t.
Q ⊆ Ei, until we find an Ek such that Ek(β2Tk, ok) ⊆ Q. Then we transform
the ellipsoid Ek into B(0, r). Note that this method is numerically unstable on
even small-sized problems, such as polytopes in 20-dimensions. Therefore, we
adopt a modification of Ellipsoid Method which described in [12].

This procedure could take much time when r is close to n, e.g. r = n+1. There
is a tradeoff between rounding and sampling, since the smaller r is, the more
iterations during rounding and the fewer points have to be generated during
sampling. We set r = 2n in our implementation. Rounding can handle very
“thin” polytopes which cannot be subdivided or sampled directly. We use P to
represent the new polytope T (Q) in the sequel.

2.2 Subdivision

To avoid curse of dimensionality(the possibility of sampling inside a certain space
in target object decreases very fast while dimension increases), we subdivide P
into a sequence of bodies so that the ratio of consecutive bodies is at most a
constant, e.g. 2. Place l = dn log2 re concentric balls {Bi} between B(0, 1) and
B(0, r), where

Bi = B(0, ri) = B(0, 2i/n), i = 0, . . . , l.

Set Ki = Bi ∩ P , then K0 = B(0, 1), Kl = P and

vol(P ) = vol(B(0, 1))

l−1∏
i=0

vol(Ki+1)

vol(Ki)
= vol(B(0, 1))

l−1∏
i=0

αi. (1)

So we only have to estimate the ratio αi = vol(Ki+1)/vol(Ki), i = 0, . . . , l − 1.
Since Ki = Bi ∩P ⊆ Bi+1 ∩P = Ki+1, we get αi ≥ 1. On the other hand, {Ki}
are convex bodies, then

Ki+1 ⊆
ri+1

ri
Ki = 21/nKi,

we have

αi =
vol(Ki+1)

vol(Ki)
≤ 2.

Specially, Ki+1 = 21/nKi if and only if Ki+1 = Bi+1 i.e. Bi+1 ⊆ P . That is,
1 ≤ αi ≤ 2 and αi = 2⇔ Bi+1 ⊆ P .
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2.3 Hit-and-run

To approximate αi, we generate step size random points in Ki+1 and count the
number of points ci in Ki. Then αi ≈ step size/ci. It is easy to generate uniform
distributions on cubes or ellipsoids but not on {Ki}. So we use a random walk
method for sampling. Hit-and-run method is a random walk which has been
proposed and studied for a long time [13][14][15]. The hypersphere directions
method and the coordinate directions method are two hit-and-run methods. In
the hypersphere directions method, the random direction is generated from a
uniform distribution on a hypersphere; in the coordinate directions method, it
is chosen with equal probability from the coordinate direction vectors and their
negations. Berbee et al. [14] proved the following theorems.

Theorem 1. The hypersphere directions algorithm generates a sequence of in-
terior points whose limiting distribution is uniform.

Theorem 2. The coordinate directions algorithm generates a sequence of inte-
rior points whose limiting distribution is uniform.

Coordinate directions and their negations are special cases of directions gen-
erated on a hypersphere, hence the former theoretical research about volume
approximation algorithm with hit-and-run methods mainly focus on the hyper-
sphere directions method [8]. In this paper, we apply the coordinate directions
method to our volume approximation algorithm. It starts from a point x in
Kk+1, and generates the next point x′ in Kk+1 by two steps:

Step 1. Select a line L through x uniformly over n coordinate directions,
e1, . . . en.

Step 2. Choose a point x′ uniformly on the segment in Kk+1 of line L.

More specifically, we randomly select the dth component xd of point x and get
xd’s bound [u, v] that satisfies

x|xd=t ∈ Kk+1, ∀t ∈ [u, v] (2)

x|xd=u, x|xd=v ∈ ∂Kk+1 (3)

(“∂” denotes the boundary of a set). Then we choose x′d ∈ [u, v] with uniform
distribution and generate the next point x′ = x|xd=x′

d
∈ Kk+1.

Our hit-and-run algorithm is described in Algorithm 1. Ri = 2i/n is the
radius of Bi. Note that Kk+1 = Bk+1 ∩P , so x′ ∈ Bk+1 and x′ ∈ P . We observe
that

x′ ∈ Bk+1 ⇔ |x′| ≤ Rk+1 ⇔ x′2d ≤ R2
k+1 −

∑
i 6=d

x2i

x′ ∈ P ⇔ aix
′ ≤ bi ⇔ aidx

′
d ≤ bi −

∑
j 6=d

aijxj = µi, ∀i
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Algorithm 1 Hit-And-Run Sampling Algorithm

1: function Walk(x, k)
2: d← random(n)
3: c← |x|2 − x2d
4: r ←

√
R2

k+1 − c
5: max← r − xd
6: min← −r − xd
7: for i← 1,m do
8: boundi ← (bi − aix)/aid
9: if aid > 0 and boundi < max then

10: max← boundi
11: else if aid < 0 and boundi > min then
12: min← boundi
13: end if
14: end for
15: xd ← xd + random(min, max)
16: return x
17: end function

Let

u = max{−
√
R2
k+1 −

∑
i6=d

x2i ,
µi
aid
} ∀i s.t. aid < 0

v = min{
√
R2
k+1 −

∑
i6=d

x2i ,
µi
aid
} ∀i s.t. aid > 0

then interval [u, v] is the range of x′d that satisfies Formula (2) and Formula (3),
and u = xd +min, v = xd +max in Algorithm 1.

Usually, Walk function is called millions of times, so it is important to im-
prove its efficiency, such as use iterators in for loop and calculation of |x|. At
the same time, we move the division operation (line 8), which is very slow for
double variables, out of Walk function because (bi − aix)/aid = bi

aid
− ai

aid
x, i.e.,

divisions only occur between constants.

2.4 Reutilization of Sample Points

In the original description of the Multiphase Monte Carlo method, it is indicated
that the ratios αi are estimated in natural order, from the first ratio α0 to the
last one αl−1. The method starts sampling from the origin. At the kth phase, it
generates a certain number of random independent points in Kk+1 and counts
the number of points ck in Kk to estimate αk. However, our algorithm performs
in the opposite way: Sample points are generated from the outermost convex
body Kl to the innermost convex body K0, and ratios are estimated accordingly
in reverse order.
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The advantage of approximation in reverse order is that it is possible to fully
exploit the sample points generated in previous phases. Suppose we have already
generated a set of points S by random walk with almost uniform distribution
in Kk+1, and some of them also hit the convex body Kk, denoted by S ′. The

ratio αk is thus estimated with |S′|
|S| . But these sample points can reveal more

information than just the ratio αk. Since Kk is a sub-region of Kk+1, the points
in S ′ are also almost uniformly distributed in Kk. Therefore, S ′ can serve as part
of the sample points in Kk. Furthermore, for any Ki (0 ≤ i ≤ k) inside Kk+1,
the points in Kk+1 that hit Ki can serve as sample points to approximate αi as
well.

Based on this insight, our algorithm samples from outside to inside. Suppose
to estimate each ratio within a given relative error, we need as many as step size
points. At the kth phase which approximates ratio αl−k, the algorithm first
calculates the number count of the former points that are also in αl−k+1, then
generates the rest (step size− count) points by random walk.

Unlike sampling in natural order, choosing the starter for each phase in re-
verse sampling is a bit complex. The whole sampling process in reverse order
also starts from the origin point. At each end of the k-th phase, we select a point
x in Kk+1 and employ x′ = 2−

1
nx as the starting point of the next phase since

2−
1
nx ∈ Kk.

It’s easy to find out that the expected number of reduced sample points with
our algorithm is

l−1∑
i=1

(step size× 1

αi
). (4)

Since αi ≤ 2, we only have to generate less than half sample points with this
technique. Actually, results of expriments show that we can save over 70% time
consumption on many polytopes.

2.5 Framework of the Algorithm

Now we present the framework of our volume estimation method. Algorithm 2 is
the Multiphase Monte-Carlo algorithm with the technique of reutilizing sample
points.

The function Preprocess represents the rounding procedure and it returns
the ratio of γ. In Algorithm 2, the formula dn2 log2 |x|e returns index i that
x ∈ Ki\Ki−1. We use ti to record the number of sample points that hit Ki\Ki−1.
Furthermore, the sum count of t0, . . . , tk+1 is the number of reusable sample
points that are generated inside Kk+1. Then we only have to generate the rest
(step size − count) points inside Kk+1 in the k-th phase. Then we use 2−

1
nx

as the starting point of the next phase. Finally, according to equation (1) and

γ = vol(Q)
vol(P ) , we achieve the estimation of vol(Q) .
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Algorithm 2 The Framework of Volume Estimation Algorithm

1: function EstimateVol
2: γ ← Preprocess( )
3: x← O
4: l← dn log2 re
5: for k ← l − 1, 0 do
6: for i← count, step size do
7: x←Walk(x, k)
8: if x ∈ B0 then
9: t0 ← t0 + 1

10: else if x ∈ Bk then
11: m← dn

2
log2 |x|e

12: tm ← tm + 1
13: end if
14: end for
15: count←

∑k
i=0 ti

16: αk ← step size/count

17: x← 2−
1
n x

18: end for
19: return γ · unit ball(n) ·

∏l−1
i=0 αi

20: end function

3 Experimental Results

We implement the algorithm in C++ and the tool is named PolyVest (Polytope
Volume Estimation). In all experiments, step size is set to 1600l for the reason
discussed in Appendix A and parameter r is set to 2n. The experiments are
performed on a workstation with 3.40GHz Intel Core?i7-2600 CPU and 8GB
memory. Both PolyVest and VINCI use a single core.

3.1 The Performance of PolyVest

Table 1 shows the results of comparison between PolyVest and VINCI. VINCI is
a well-known package which implements the state of the art algorithms for exact
volume computation of convex polytopes. It can accept either H-representation
or V-representation as input. The test cases include: (1) “cube n”: Hypercubes
with side length 2, i.e. the volume of “cube n” is 2n. (2) “cube n(S)”: Apply 10
times random shear mappings on “cube n”. The random shear mapping can be

represented as PQP , with Q =

(
I M
0 I

)
, where the elements of matrix M are

randomly chosen and P is the products of permutation matrices {Pi} that put
rows and columns of Q in random orders. This mapping preserves the volume.
(3) “rh n m”: An n-dimentional polytope constructed by randomly choosing m
hyperplanes tangent to sphere. (4) “rh n m(S)”: Apply 10 times random shear
mappings on “rh n m”. (5) “cuboid n(S)”: Scaling “cube n” by 100 in one di-
rection, and then apply random shear mapping on it once. We use this instance
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to approximate a “thin stick” which not parallel to any axis. (6) “ran n m”:
An n-dimentional polytope constructed by randomly choosing integer coefficient
from -1000 to 1000 of matrix A.

Table 1. Comparison between PolyVest and VINCI

PolyVest VINCI

Instance n m Result Time(s) Result Trlass(s) Thot(s) Tlawnd(s)

cube 10 10 20 1015.33 0.380 1024 0.004 0.044 0.008
cube 15 15 30 33560.1 1.752 32768 0.300 212.8 0.156
cube 20 20 40 1.08805e+6 4.484 1.04858e+6 — — 8.085
cube 30 30 60 1.0902e+9 23.197 — — — —
cube 40 40 80 1.02491e+12 72.933 — — — —

cube 10(S) 10 20 1027.1 0.184 1023.86 0.008 0.124 0.024
cube 15(S) 14 28 30898.2 0.784 32766.4 0.428 369.6 0.884

rh 8 25 8 25 793.26 0.132 785.989 0.864 0.160 0.016
rh 10 20 10 20 13710.0 0.240 13882.7 0.284 0.340 0.012
rh 10 25 10 25 5934.99 0.260 5729.52 5.100 1.932 0.072
rh 10 30 10 30 2063.55 0.280 2015.58 660.4* 5.772 0.144

rh 8 25(S) 8 25 782.58 0.136 785.984 1.268 0.156 0.032
rh 10 20(S) 10 20 13773.2 0.232 13883.8 0.832 0.284 0.032
rh 10 25(S) 10 25 5667.49 0.252 5729.18 11.949 1.960 0.104
rh 10 30(S) 10 30 2098.89 0.276 2015.87 1251.1* 6.356 0.248

: Enable the VINCI option to restrict memory storage, so as to avoid running out of
memory.

In Table 1, Trlass, Thot and Tlawnd represent the time consumption of three
parameters of methods in VINCI respectively. The “rlass” uses Lasserre’s method,
it needs input of H-representation. The “hot” uses a Cohen&Hikey-like face enu-
meration scheme, it needs input of V-representation. The “lawnd” uses Lawrence’s
formula, it is the fatest method in VINCI and both descriptions are needed. From
“cube 20” to “cube 40”, “rlass” and “hot” cannot handle these instances in rea-
sonable time. We did not test instances “cube 30” and “cube 40” by “lawnd”,
because there are too many vertices in these polytopes.

Observe that the “rlass” and “hot” methods of VINCI usually take much
more time and space as the scale of the problem grows a bit, e.g. “cube n(n ≥
15)” and “rh 10 30”. With H- and V- representations, the “lawnd” method is
very fast for instances smaller than 20 dimensions. However, enumerating all
vertices of polytopes is non-trivial, as is the dual problem of constructing the
convex hull by the vertices. This process is both time-consuming and space-
consuming. As a result, “lawnd” method is slower than PolyVest for random
polytopes around 15 dimensions with only H-representation. The running times
of PolyVest appear to be more ‘stable’. In addition, PolyVest only has to store
some constant matrices and variable vectors for sampling.

Since PolyVest is a volume estimation method instead of an exact volume
computation one like VINCI, we did more tests on PolyVest to see how accurate
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Table 2. Statistical Results of PolyVest

Instance Average Std Dev 95% Confidence Interval Freq Error
Volume v σ I = [p, q] on I ε = q−p

v

cube 10* 1024.91 41.7534 [943.077, 1106.75] 947 15.9695%
cube 20* 1.04551e+6 49092.6 [9.49284e+5, 1.14173e+6] 942 18.4067%
cube 30 1.06671e+9 5.95310e+7 [9.50024e+8, 1.18339e+9] 96 21.8769%
cube 40 1.09328e+12 4.85772e+10 [9.98073e+11, 1.18850e+12] 95 17.4175%

cuboid 10(S)* 102258 3162.13 [96060.1, 108456] 953 12.1219%
cuboid 20(S)* 1.04892e+8 388574e+6 [9.72760e+7, 1.12508e+8] 953 14.5217%
cuboid 30(S) 1.07472e+11 4.42609e+9 [9.87968e+10, 1.16147e+11] 93 16.1440%
ran 10 30* 11.0079 0.413874 [10.1967, 11.8191] 946 14.7383%
ran 10 50* 1.48473 4.81726e-2 [1.39031, 1.57915] 952 12.7186%
ran 15 30 290.575 12.8392 [265.410, 315.740] 92 17.3208%
ran 15 50 3.30084 0.145495 [3.01567, 3.58601] 96 17.2787%
ran 20 50 1.25062 6.60574e-2 [1.12115, 1.38010] 94 20.7053%
ran 20 100 8.79715e-3 3.144633e-4 [8.18080e-3, 9.41350e-3] 96 14.0125%
ran 30 60 195.295 10.37041 [174.969, 215.621] 97 20.8157%
ran 30 100 2.21532e-5 1.13182e-6 [1.99348e-5, 2.43715e-5] 98 20.0276%
ran 40 100 3.02636e-5 1.76093e-6 [2.68121e-5, 3.3715e-5] 96 22.8091%

: Estimated 1000 times with POLYVEST.

it is. We estimated 100 times with PolyVest for each instance in Table 2 and
listed the statistical results. From Table 2, we observe that the frequency on I
is approximately 950 which means Pr(p ≤ vol(P ) ≤ q) ≈ 0.95. Additionally,
values of ε (ratio of confidence interval’s range to average volume v) are smaller
than or around 20%.

3.2 Result Checking

For arbitrary convex polytopes with more than 10 dimensions, there is no easy
way to evaluate the accuracy of PolyVest since the exact volumes cannot be
computed with tools like VINCI in reasonable time. However, we find that a
simple property of geometric body is very helpful for verifying the results.

Given an arbitrary geometric body P , an obvious relation is that if P is
divided into two parts P1 and P2, then we have vol(P ) = vol(P1) + vol(P2).
For a random convex polytope, we randomly generate a hyperplane to cut the
polytope, and test if the results of PolyVest satisfy this relation.

Table 3 shows the results of such tests on random polytopes in different
dimensions. Each polytope is tested 100 times. Values in column “Freq.” are the
times that (vol(P1)+vol(P2)) falls in 95% confidence interval of vol(P ), and these

values are all greater than 95. The error |Sum−vol(P )|
vol(P )

is quite small. Therefore,

the outputs of PolyVest satisfy the relation vol(P ) = vol(P1) + vol(P2). The
test results further confirm the reliability of PolyVest.
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Table 3. Result Checking

n vol(P ) 95% Confidence Interval vol(P1) vol(P2) Sum Error Freq.

10 916.257 [847.229, 985.285] 498.394 414.676 913.069 0.348% 98
20 107.976 [97.4049, 118.548] 50.4808 57.3418 107.823 0.142% 99
30 261424 [228471, 294376] 40332.7 218637 258969 0.939% 96
40 5.08e+11 [4.58e+11, 5.57e+11] 9.44e+10 4.15e+11 5.09e+11 0.234% 98

3.3 The Performance of two Hit-and-run Method

In Table 4, t1 and t2 represent the time consumption of the coordinate directions
and the hypersphere directions method when each method is executed 10 million
times. Observe that the coordinate directions method is faster than the other
one. The reason is that the hypersphere directions method has to do more vector
multiplications to find intercestion points and m×n more divisions during each
walk step.

Table 4. Random walk by 10 million steps

n m time t1(s) time t2(s)

10 20 6.104 13.761
20 40 10.701 24.502
30 60 17.541 40.455
40 80 27.494 61.484

In addition, we also compare the two hit-and-run methods on accuracy. The
results in Table 5 show that the relative errors and standard deviations of the
coordinate directions method are smaller.

Table 5. Comparison about accuracy between two methods

Simplified Original

Instance Exact Vol v Volume v Err |v−v|
v

Std Dev σ Volume v′ Err |v−v|
v

Std Dev σ′

cube 10 1024 1024.91 0.089% 41.7534 1028.31 0.421% 62.6198
cube 14 16384 16382.3 0.010% 3.020 16324.6 0.363% 1145.76
cube 20 1.04858e+6 1.04551e+6 0.293% 49092.6 1.04426e+6 0.412% 81699.9
rh 8 25 785.989 786.240 0.032% 23.5826 791.594 0.713% 50.5415
rh 10 20 13882.7 13876.3 0.046% 473.224 13994.4 0.805% 963.197
rh 10 25 5729.52 5736.83 0.128% 193.715 5765.18 0.622% 368.887
rh 10 30 2015.58 2013.08 0.124% 62.1032 2041.60 1.291% 124.204

3.4 The Advantage of Reutilization of Sample Points

In Table 6, we demonstrate the effectiveness of reutilization technique. Values
of n1 are the number of sample points without this technique. Since our method
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is a randomized algorithm, the number of sample points with this technique is
not a constant. So we list average values in column n2. With this technique, the
requirement of sample points is significantly reduced.

Table 6. Reutilize Sample Points

Instance n1 n2 n2/n1

cube 10 2016000 535105.41 26.5%
cube 15 5856000 1721280.3 29.4%
cube 20 12249600 3789370.7 30.9%
rh 8 25 1040000 181091.13 17.4%
rh 10 30 2016000 304211.03 15.1%
cross 7 809600 78428.755 9.69%
fm 6 5856000 955656.79 16.3%

4 Related Works

To our knowledge, there are two implementations of volume estimation methods
in literature. Liu et al. [16] developed a tool to estimate volume of convex body
with a direct Monte-Carlo method. Suffered from the curse of dimensionality,
it can hardly solve problems as the dimension reaches 5. The recent work [17]
is an implementation of the O∗(n4) volume algorithm in [9]. The algorithm is
targeted for convex bodies, and only the computational results for instances
within 10 dimensions are reported. The authors also report that they could not
experiment with other convex bodies than cubes, since the oracle describing the
convex bodies took too long to run.

5 Conclusion

In this paper, we propose an efficient volume estimation algorithm for convex
polytopes which is based on Multiphase Monte Carlo algorithm. With simplified
hit-and-run method and the technique of reutilizing sample points, we consider-
ably improve the existing algorithm for volume estimation. Our tool, PolyVest,
can efficiently handle instances with dozens of dimensions with high accuracy,
while the exact volume computation algorithms often fail on instances with over
10 dimensions. In fact, the complexity of our method (excluding rounding pro-
cedure) is O∗(mn3) and it is measured in terms of basic operations instead of
oracle queries. Therefore, our method requires much less computational overhead
than the theoretical algorithms.
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A About the Number of Sample Points

From Formula (1),

vol(P )

vol(B(0, 1))
=

l−1∏
i=0

αi =

l−1∏
i=0

step size

ci
=
step sizel∏l−1

i=0 ci
,

which shows that to obtain confidence interval of vol(P ), we only have to focus

on
∏l−1
i=0 ci. For a fixed P , {αi} are fixed numbers. Let c =

∏l
i=1 ci and D(l, P )
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denote the distribution of c. With statistical results of substantial expriments
on concentric balls, we observe that, when step size is sufficiently large, the dis-
tribution of ci is unbiased and its standard deviation is smaller than twice of
the standard deviation of binomial distribution in dimensions below 80. Though
such observation sometimes not holds when we sample on convex bodies oth-
er than balls, we still use this to approximate the distribution of ci. Consider
random variables Xi following binomial distribution B(step size, 1/αi), we have

E(c) = E(c1) . . . E(cl) = E(X1) . . . E(Xl) = step sizel
l∏
i=1

1

αi
,

D(c) = E((c1 . . . cl)
2)− E(c)2 =

l∏
i=1

(D(ci) + E(ci)
2)− E(c)2

=

l∏
i=1

(4D(Xi) + E(Xi)
2)− E(c)2

=

l∏
i=1

step size2

α2
i

(1 +
4αi

step size
(1− 1

αi
))− E(c)2

= E(c)2(β − 1),

where β =
∏l
i=1(1 + 4αi

step size −
4

step size ).

Suppose {ξ1, . . . , ξt} is a sequence of i.i.d. random variables following D(l, P ).
Notice D(c), the variance of D(l, P ), is finite because β − 1 → 0 as t → ∞.
According to central limit theorem, we have∑t

i=1 ξi − tE(c)√
tD(c)

d→ N(0, 1).

So we obtain the approximation of 95% confidence interval of c, [E(c)−σ
√
D(c), E(c)+

σ
√
D(c)], where σ = 1.96. And

Pr(
vol(B(0, 1))step sizel

E(c) + σ
√
D(c)

≤ vol(P ) ≤ vol(B(0, 1))step sizel

E(c)− σ
√
D(c)

) ≈ 0.95.

Let ε ∈ [0, 1] denote the ratio of confidence interval’s range to exact value of
vol(P ), that is

vol(B(0, 1))step sizel

E(c) + σ
√
D(c)

− vol(B(0, 1))step sizel

E(c)− σ
√
D(c)

≤ vol(P ) · ε (5)

⇐⇒ 1

E(c)− σ
√
D(c)

− 1

E(c) + σ
√
D(c)

≤ ε

E(c)
(6)

⇐⇒ 1

1− σ
√
β − 1

− 1

1 + σ
√
β − 1

≤ ε (7)
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⇐⇒ 4σ2(β − 1) ≤ ε2(1 + σ2 − σ2β)2 (8)

⇐⇒ ε2σ2β2 − 2ε2(1 + σ2)β − 4β + (
1

σ
+ σ)2 + 4 ≥ 0. (9)

Solve inequality (9), we get β1(ε, σ), β2(ε, σ) that β ≤ β1 and β ≥ β2 (ignore
β ≥ β2 because 1− σ

√
β2 − 1 < 0). β ≤ (1 + 4

step size )l, since 1 ≤ αi ≤ 2.

(1 +
4

step size
)l ≤ β1 ⇐⇒ step size ≥ 4

β
1/l
1 − 1

, (10)

(10) is a sufficient condition of β ≤ β1. Furthermore, 4/(lβ
1/l
1 − l) is nearly a

constant as ε and σ are fixed. For example, 4/(lβ
1/l
1 − l) ≈ 1569.2 ≤ 1600 when

ε = 0.2, σ = 1.96. So step size = 1600l keeps the range of 95% confidence
interval of vol(P ) less than 20% of the exact value of vol(P ).


