
Improved Bounds of Integer Solution Counts via
Volume and Extending to Mixed-Integer Linear
Constraints
Cunjing Ge #

National Key Laboratory for Novel Software Technology, Nanjing University, China
School of Artificial Intelligence, Nanjing University, China

Armin Biere #Ñ

University of Freiburg, Germany

Abstract
Solution counting and solution space integration over linear constraints are important problems
with many applications. Previous works addressed either only counting integer points in polytopes
(integer counting) with integer variables or alternatively only computing the volume of polytopes
(solution space integration) on variables over the reals, including approximating the integer count
via a polytope’s volume. We are not aware of a non-trivial algorithm which addresses the mixed
case, where linear constraints are over mixed integer and real variables. In this paper, we propose a
new randomized algorithm to approximate guarantees (bounds) of integer solution counts. Then we
present upper and lower bounds for solution space integration over mixed-integer linear constraints.
Thus, proposed algorithms can be extended to mixed-integer cases as well. The experiments show
that approximations are often very close to exact results in practice, and bounds approximated by
our algorithm are often tight and useful.

2012 ACM Subject Classification Theory of computation → Automated reasoning

Keywords and phrases Integer Solution Counting, Mixed-Integer Linear Constraints, #SMT(LA)
Problems, Volume of Polytopes

Digital Object Identifier 10.4230/LIPIcs.CP.2024.13

Supplementary Material Software: https://github.com/bearben/mixintcount/
archived at swh:1:dir:9101f2a1faa2381bc4779dff649915a21ff3cbae

Funding Cunjing Ge: Cunjing Ge is supported by the National Natural Science Foundation of China
(62202218), and is sponsored by CCF-Huawei Populus Grove Fund (CCF-HuaweiFM202309).

1 Introduction

As one of the most fundamental types of constraints, linear constraints (LCs) have been
studied thoroughly in many areas. Counting solutions over LCs has also many applications,
such as counting-based search [27, 32], simple temporal planning [16] and probabilistic pro-
gram analysis [14, 23]. Moreover, it can be incorporated into DPLL (T)-based #SMT (LA)
counters [12] as a core subroutine.

Since a set of LCs corresponds to a convex polytope, counting integer solutions over LCs
is equivalent to counting integer points inside the polytope. For real solutions, the counting
problem is turned into computing the polytope’s volume, which is defined by the Lebesgue
measure. Naturally, we may be interested in the solution counting problem over mixed-integer
variables. In this paper, we will show that it is a problem of computing the integration of
solution space, and then study the methods for approximating such integrations. We will
call such a problem solution space integration for short.

© Cunjing Ge and Armin Biere;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gecunjing@nju.edu.cn
https://orcid.org/0000-0002-8249-1397
mailto:biere@cs.uni-freiburg.de
https://cca.informatik.uni-freiburg.de/biere/
https://orcid.org/0000-0001-7170-9242
https://doi.org/10.4230/LIPIcs.CP.2024.13
https://github.com/bearben/mixintcount/
https://archive.softwareheritage.org/swh:1:dir:9101f2a1faa2381bc4779dff649915a21ff3cbae;origin=https://github.com/bearben/MixIntCount;visit=swh:1:snp:434313bf638d7d39dc259beb47b5be9f23677a24;anchor=swh:1:rev:9da35b7fafd1145925331b9518dff0ff6881ee51
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Improved Bounds of Integer Solution Counts via Volume

Solution counting problems over LCs were proved to be #P-hard [29]. Barvinok [1, 2]
introduced an algorithm for integer counting. Based on it, tools LattE [18] and barvinok [30]
were implemented, which are still state-of-the-art. For volume of polytopes, tool Vinci [5] is an
implementation and combination of several volume computation algorithms. The Multiphase
Monte-Carlo algorithm [9, 21] is a polynomial time volume approximation algorithm for
convex bodies. The tool Polyvest [10] is a scalable implementation of the Multiphase Monte-
Carlo algorithm over polytopes. A more recent work [11] studied the relation between the
count of inner integer points and the volume of a polytope. They proposed an algorithm called
Vol2Lat to approximate integer counts via volume. This work inspired us to investigate
the relationship among solution space integration, a polytope’s volume and inner integer
points count. For example, let us consider the following simplified formula F extracted from
a scheduling problem:

(2a + 0.3b ≤ t) ∧ (1 ≤ a ≤ 32) ∧ (1 ≤ b ≤ 32) ∧ (0 < t < 50),

where a and b are the numbers of scheduled tasks A and B, the coefficient 2 and 0.3 are the time
cost of two tasks, t is the time limit, which is a real variable. The solution space integration
of F is 14204.5. Therefore, when we uniformly pick an assignment (a0, b0, t0) satisfying the
range constraints, the probability that (a0, b0, t0) satisfies F is 14204.5/(32 ∗ 32 ∗ 49) ≈ 0.283.
Assuming a, b, t ∈ R, the volume of its solution space is 14418.9. Assuming a, b, t ∈ Z,
the integer solution count is 15261. From experiments (see Section 5), we observe that
the values of volume and integer count are usually close to the solution space integration.
Naturally, given a set of mixed-integer LCs, we would like to investigate whether solution
space integrations can be approximated via the volume or the integer lattice count of the
corresponding polytope. The contributions of this paper are the following:

We propose a new randomized algorithm to approximate bounds of integer solution counts
of a set of linear constraints via a polytope’s volume. It returns upper and lower bounds
of integer solution counts with respect to a given confidence.
We introduce and prove bounds for the solution space integration, volume and integer
solution count on a set of LCs with mixed-integer, pure real and pure integer variables
respectively. The bounds show when the three values are close to each other in theory.
Thus, our new algorithm can be directly extended to approximate bounds of solution
space integration on mixed-integer cases.
Experiments show that our approach is promising over mixed-integer cases and also
outperforms the existing bound approximation algorithm Vol2Lat, including instances
generated from program analysis.

2 Background

2.1 Notations and Preliminaries
A Linear Constraint (LC) can be written in the form

∑n
i=1 aixi op b, where xis are numeric

variables, ais and b are real coefficients, and op ∈ {<,≤, >,≥, =}. From a geometric point
of view, a LC is an n-dimensional halfspace, and a finite set of LCs is a polytope. Thus a set
of LCs F corresponds to a polytope P which is in the form of

P = {x⃗ ∈ Rn : Ax⃗ ≤ b⃗}.

Naturally, Zn represents the set of all integer lattices (points with all integer coordinates).
Thus integer models of the linear constraints can be represented by {x⃗ ∈ Zn : Ax⃗ ≤ b⃗}. It is
the same as the integer points inside the corresponding polytope, i.e.,

{x⃗ ∈ Zn : Ax⃗ ≤ b⃗} = P ∩ Zn.

C. Ge and A. Biere 13:3

Now we consider Mixed-Integer Linear Constraints (MILC) whose variables include not
only reals but also integers. We know that changing the sequence of variables of x⃗ will not
affect the size of the solution space of a set of LCs, such as, exchanging two variables xi, xj

and their coefficients ai, aj . So without loss of generality, a set of MILCs F can be written
in the form Ax⃗ = A1x⃗I + A2x⃗R ≤ b⃗, where A = [A1A2], x⃗ = [x⃗I x⃗R] and x⃗I , x⃗R are subsets
of integer and real variables of x⃗ respectively.

▶ Definition 1. Given a set of MILCs F , which corresponds to a polytope P .
Let vol(P) denote the volume of P , i.e., vol(P) =

∫
x⃗∈P

1 dx⃗.
Let lat(P) denote the count of integer lattices in P , i.e., lat(P) = |P ∩ Zn|.
Let nI = |x⃗I | and nR = |x⃗R|. Obviously, n = nI + nR.
Let M(F) = {x⃗ = [x⃗I x⃗R] ∈ ZnI ×RnR : A1x⃗I + A2x⃗R ≤ b⃗} = P ∩ ZnI ×RnR denote the
solution space of F .
Let MI(F) ⊂ ZnI and MR(F) ⊂ RnR denote the projection from M(F) to variables
over x⃗I and x⃗R respectively.
Given an integer assignment α⃗I over x⃗I . Let F{x⃗I = α⃗I} denote the remaining constraints
of F by assigning α⃗I to x⃗I , i.e., F{x⃗I = α⃗I} = A1α⃗I + A2x⃗R ≤ b⃗.
Let integral(F) denote the integral on M(F). In detail,

integral(F) =
∑

α⃗I ∈MI(F)

∫
x⃗∈M(F {x⃗I =α⃗I })

1 dx⃗ (1)

=
∑

α⃗I ∈MI(F)

integral(F{x⃗I = α⃗I}). (2)

Note that M(F{x⃗I = α⃗I}) is essentially a polytope in nR-dimensional space. Let Pα⃗I

represent the corresponding polytope of F{x⃗I = α⃗I}. We have integral(F{x⃗I = α⃗I}) =
vol(Pα⃗I

). Consider an assignment β⃗I on x⃗I s.t. β⃗I ̸∈ MI(F), then vol(Pβ⃗I
) must be zero,

otherwise, ∃β⃗R ∈ M(F{x⃗I = β⃗I}) and [β⃗I β⃗R] would be a solution of F which contradicts
with β⃗I ̸∈ MI(F). Therefore, Equation (2) is equivalent with

integral(F) =
∑

α⃗I ∈S

vol(Pα⃗I
),∀MI(F) ⊆ S ⊂ ZnI . (3)

It also indicates that α⃗Is can be enumerated in a looser space S than MI(F).

Figure 1 An example over two variables x and y, where x is an integer variable and y is a real
variable. The integration integral(F) is the sum of lengths of black lines parallel to y-axis. The
count lat(P) = 40 is the number of dots on those black lines. C(P) is the set of orange and gray
squares, C(B(P)) is the set of orange squares, and thus the set of gray squares can be represented
by C(P) \ C(B(P)). union(C(P)) is the union space of orange and grey squares.

CP 2024

13:4 Improved Bounds of Integer Solution Counts via Volume

▶ Definition 2. An integer-cube is a unit-cube whose center is an integer point. Given an
integer point α⃗ and a polytope P .

Let cube(α⃗) denote the integer-cube centered at α⃗, i.e.,

cube(α⃗) = {x⃗ ∈ Rn : αi −
1
2 ≤ xi ≤ αi + 1

2 , i = 1, . . . , n}.

Let C(P) represent the set of all integer-cubes which intersect with P .
Let C(B(P)) represent the set of all integer-cubes which intersects with B(P), where B(P)
is the boundary (facets) of P .
Let union(C) denote the union

⋃
κ∈C κ, where C is a set of integer-cubes.

Note that each integer-cube corresponds to a unique integer point and its volume is 1.
Therefore, the integer-cube is introduced for bridging the gap between the volume and the
integer count. Figure 1 is an example of integer-cubes, C(P), C(B(P)), etc.

2.2 Approximating Lattice Counts via Polytope’s Volume
Ge et al. [11] observed that the lattice count and the volume of a given polytope are often
close. They also pointed out that there exist cases in which lattice counts and volume
are greatly different. For example, a very ‘thin’ rectangle whose sides are parallel to the
coordinates and the short side lies in interval (0, 1). Then there is no integer point in it, but
its volume can be arbitrarily large as the long side stretches. Therefore, they focused on the
distance between the count and the volume, and further proposed a method to approximate
the count by the volume. The following theorems are their main results.

▶ Lemma 3. Both vol(P), lat(P) are in the interval [|C(P)| − |C(B(P))|, |C(P)|].

▶ Theorem 4. |vol(P)− lat(P)| ≤ |C(B(P))|.

▶ Theorem 5. |C(B(P))| ≤ 2
∑n

i=1
∏

i ̸=j(Mj(P)−mj(P)), where Mi(P) = ⌊max{xi|
x⃗ ∈ P}+ 1⌋ and mi(P) = ⌈min{xi|x⃗ ∈ P} − 1⌉.

Take Figure 1 as the example. We observe that each gray square contains exactly
one integer point in the polytope while orange squares maybe not, so it suggests that the
differences between vol(P), lat(P) and |C(P)| are related to those orange squares, i.e.,
|C(B(P))|. It is the intuition behind the proof of Lemma 3. Based on Lemma 3, it is easy to
obtain Theorem 4 that the difference between vol(P) and lat(P) is bounded by |C(B(P))|.
Then by Theorem 5, a looser bound 2

∑n
i=1

∏
i ̸=j(Mj(P)−mj(P)) is proved which is easier

to be computed in practice. As a result, the count of lattices in a given polytope P can be
approximated via its volume vol(P), i.e.,

|vol(P)− lat(P)| ≤ 2
n∑

i=1

∏
i̸=j

(Mj(P)−mj(P)).

However, according to experimental results in [11], the bound 2
∑n

i=1
∏

i ̸=j(Mj(P)−mj(P))
may be very loose, which prevents some applications. Naturally, we are interested in
improving the above bounds. In this paper, we first propose a new method to approximate
|C(B(P))| which is usually much tighter in experiments. Then we extend Theorem 4 to
mixed-integer cases to approximate integral(F) by vol(P), where P is the corresponding
polytope of F .

C. Ge and A. Biere 13:5

2.3 Sampling in Polytopes
The classical algorithm [4, 22, 20, 19, 8, 12] for sampling real points in a polytope P is
presented in Algorithm 1. It first calls a rounding method, such as the Shallow-β-Cut Ellipsoid
method [15], to find an affine transformation T , s.t., ball(0, 1) ⊂ T (P) ⊂ ball(0, 2n), where
ball(0, r) is a radius r ball centered at origin. Then it employs a hit-and-run random walk
method to generate real points in T (P). It finally returns sample points in P by applying
the inverse transformation T −1. Intuitively, T transforms a very “thin” polytope into a
well-bounded one. Thus, random walks will mix (converge to limiting distribution) faster on
the new polytope T (P). In addition, it guarantees that T (P) contains the origin, which will
be used as the start point for the random walks.

Algorithm 1 Real Points Sampling Algorithm.

1 Function Sampling_Real(P , x⃗0, w)
2 T ← Ellipsoid(P);
3 x⃗← T (x⃗0);
4 while w > 0 do
5 x⃗← Hit-and-run(T (P), x⃗);
6 w ← w − 1;
7 return T −1(x⃗);

The Hit-and-run random walk method was first introduced in [4], where its limiting
distribution was proved to be uniform. It was employed and improved for approximating a
polytope’s volume by [22, 20]. A variation called Coordinate Directions Hit-and-run is found
more efficient by experiments [8, 12]. Thus, we also adopt this variation in our paper, which
consists of the following steps:
Step 1. Given a point x⃗0 ∈ P , it first selects a line L uniformly over n coordinate directions

(parallel to the axes) which passes through the point x⃗0.
Step 2. It then chooses the next point x⃗1 uniformly on the segment of L in P .
Step 3. Repeat above steps w times, x⃗w is finally obtained and adopted.
Earlier works [20] proved that Hit-and-run method mixes in w = O(n2) steps for a random
initial point and O(n3) steps for a fixed initial point. However, further numerical studies [19,
12] reported that w = n is sufficient for nearly uniformly sampling in polytopes with dozens
of dimensions.

3 Our Approach

In this section, we first introduce our new algorithms for approximating lat(P) via vol(P).
Then we extend Theorem 4 and algorithms to mixed-integer cases, i.e., approximating
integral(F) via vol(P).

3.1 The Framework of Bounds Approximation Algorithm
To compute bounds of lat(P), i.e., |C(P)| − |C(B(P))| and |C(P)|, we introduce a Monte-
Carlo algorithm which samples points in union(C(P)) and then counts the number of points
that lie in P and union(C(B(P))).

CP 2024

13:6 Improved Bounds of Integer Solution Counts via Volume

▶ Theorem 6. Suppose X is a set of sample points uniformly generated from union(C(P)).
Let r̂1 = |X∩P |

|X| and r̂2 = 1 − |X∩union(C(B(P)))|
|X| . Then |C(P)| − |C(B(P))| = vol(P) ·

lim|X|→∞
r̂2
r̂1

and |C(P)| = vol(P) · lim|X|→∞
1
r̂1

.

Proof. Let r1 = vol(P)
|C(P)| and r2 = 1− |C(B(P))|

|C(P)| . Since

vol(union(C(P))) =
∑

κ∈C(P)

vol(κ) = |C(P)|,

then r1 = vol(P)
vol(union(C(P))) . Note that sampling in union(C(P)) in uniform and then counting

the number of points that lie in P is a Bernoulli process. Thus r̂1 is the estimated proportion of
successes for r1. Therefore, lim|X|→∞ r̂1 = r1. Similarly, we could find that lim|X|→∞ r̂2 = r2,
and lim|X|→∞

r̂2
r̂1

= r2
r1

= |C(P)|−|C(B(P))|
vol(P) . ◀

From Lemma 3 and Theorem 6, we know that r̂2
r̂1
· vol(P) and 1

r̂1
· vol(P) are the

approximations of the lower bound and the upper bound of lat(P) respectively. Therefore,
we aim to approximate 1

r̂1
and r̂2

r̂1
. Since sampling points is a Bernoulli trial, then r̂1 =

|X∩P |
|X| ∈ [0, 1] is an approximation of proportion of a binomial distribution, and r̂2 as well.

The confidence interval (CI) of r1 is thus a binomial CI. The well-known 1 − δ normal
approximation CI on r1 is

r̂1 − z1−δ/2

√
r̂1(1− r̂1)
|X|

≤ r1 ≤ r̂1 + z1−δ/2

√
r̂1(1− r̂1)
|X|

, (4)

where z1−δ/2 is the 1− δ/2 quantile of a standard normal distribution. Intuitively, CIs of
r1 and r2 can be used as the algorithm’s stopping criterion. Let ê1 ≡ z1−δ/4

√
r̂1(1−r̂1)

|X| and

ê2 ≡ z1−δ/4

√
r̂2(1−r̂2)

|X| which are the margin errors. We obtain 1 − δ/2 CIs of r1 and r2:
r̂1 − ê1 ≤ r1 ≤ r̂1 + ê1 and r̂2 − ê2 ≤ r2 ≤ r̂2 + ê2. Then r1 ≥ r̂1 − ê1 and r2 ≤ r̂2 + ê2 with
probability at least 1− δ/4. Thus we have r̂2−ê2

r̂1+ê1
≤ r2

r1
with probability at least 1− δ/2. By

the same way, we obtain the intervals

r̂2 − ê2

r̂1 + ê1
≤ r2

r1
≤ r̂2 + ê2

r̂1 − ê1
and 1

r̂1 + ê1
≤ 1

r1
≤ 1

r̂1 − ê1
, (5)

so that r̂2
r̂1

and 1
r̂1

lie in them with probability at least 1− δ.

▶ Theorem 7. In Theorem 6, if |X| ≥ z2
1−δ/4 · (

1
ϵ ·

√
1−r2

r2
+ 1−ϵ

ϵ ·
√

1−r1
r1

)2 and |X| ≥
z2

1−δ/4 · (
1+ϵ

ϵ)2 · 1−r1
r1

, then Prob(| r̂2
r̂1
− r2

r1
| ≤ ϵ · r2

r1
) ≥ 1−δ and Prob(| 1

r̂1
− 1

r1
| ≤ ϵ · 1

r1
) ≥ 1−δ.

Proof. Note that 1
r̂1−ê1

− 1
r̂1
≤ ϵ · 1

r̂1
⇐⇒ ϵr̂1 ≥ (1+ϵ)ê1 ⇐⇒ |X| ≥ z2

1−δ/4 ·(
1+ϵ

ϵ)2 · 1−r̂1
r̂1
≈

z2
1−δ/4 · (

1+ϵ
ϵ)2 · 1−r1

r1
. From Equation 5, we have Prob(| 1

r̂1
− 1

r1
| ≤ ϵ · 1

r1
) ≥ Prob(1

r̂1−ê1
− 1

r̂1
≤

ϵ · 1
r̂1

) ≥ 1− δ. The proof of |X| ≥ z2
1−δ/4 · (

1
ϵ ·

√
1−r2

r2
+ 1−ϵ

ϵ ·
√

1−r1
r1

)2 is similar. ◀

Theorem 7 discusses the relations among the confidence δ, the error ϵ and the number
of samples |X|. Since r2

r1
∈ (0, 1] and 1

r1
∈ [1,∞), the scale of samples |X| may vary a

lot with respect to the values of r2
r1

and 1
r1

. Therefore, based on the proof of Theorem 7,
we introduce a dynamical stopping criterion for our algorithm which checks the quality
of the approximation whenever a sample is obtained. The algorithm stops when it found
r̂2
r̂1
− r̂2−ê2

r̂1+ê1
≤ ϵ · r̂2

r̂1
and 1

r̂1−ê1
− 1

r̂1
≤ ϵ

r̂1
, which guarantees Prob(| r̂2

r̂1
− r2

r1
| ≤ ϵ · r2

r1
) ≥ 1− δ

and Prob(| 1
r̂1
− 1

r1
| ≤ ϵ · 1

r1
) ≥ 1− δ.

C. Ge and A. Biere 13:7

Algorithm 2 MixIntCount.

1 Input: P

2 Parameter: ϵ, δ, w, N

3 Output: lb(P), ub(P)
4 X ← ∅;
5 Initialize x⃗ with an arbitrary point in P ;
6 while |X| ≤ N do
7 x⃗← Sampling(P , x⃗, w);
8 X ← X ∪ {x⃗};
9 r̂1 ← |X∩P |

|X| ;
10 r̂2 ← 1− |X∩union(C(B(P)))|

|X| ;
11 if r̂2

r̂1
− r̂2−ê2

r̂1+ê1
≤ ϵ · r̂2

r̂1
and 1

r̂1−ê1
− 1

r̂1
≤ ϵ

r̂1
then break;

12 return vol(P) · r̂2−ê2
r̂1+ê1

, vol(P) · 1
r̂1−ê1

;

The pseudocode of the our main framework is presented in Algorithm 2. The parameters
ϵ, δ and N determine the accuracy and the confidence of approximations and the maximum
number of samples respectively. Note that according to Theorem 7, |X| could be a quite
large number when r2

r1
is close to 0 or 1

r1
≫ 1. In such cases, the approximations of bounds

are meaningless, for example, lat(P)
vol(P) ≥

r2
r1
≈ 0. So we introduce a sampling limit N . The

bounds would be rather meaningless when the algorithm reachs the limit N . The setting
of parameters will be further discussed in Section 4. In general, Algorithm 2 returns the
bounds of lat(P), i.e., lb(P) ≤ lat(P) ≤ ub(P) and |vol(P)− lat(P)| ≤ ub(P)− lb(P)
with probability at least 1− δ.

3.2 Sampling in Unions of Integer-cubes
To generate sample points in union(C(P)) nearly uniformly, we combine Algorithm 1 with
rejection sampling. Algorithm 3 presents the new sampling algorithm. It first enlarges P to
obtain a new polytope P ′, such that P ′ contains all integer-cubes in C(P). Next it samples
real points in P ′ by Algorithm 1. Then it accepts those in union(C(P)). Obviously, the
larger P ′, the lower probability of acceptance. Now a question arises:

How to obtain such a P ′ that is as small as possible?

Algorithm 3 Sampling in union(C(P)).

1 Function Sampling(P , x⃗0, w)
2 P ′ ← Enlarging(P);
3 x⃗← x⃗0;
4 while true do
5 x⃗← Sampling_Real(P ′, x⃗, w);
6 if x⃗ ∈ union(C(P)) then
7 return x⃗;

Intuitively, we can obtain P ′ by shifting every facet H of P to H ′, s.t., the distance
between H and H ′ is sufficient to contain an integer-cube. Minimizing this shifting distance is
formulated into a linear programming (LP) problem, with constraints {−1 ≤ xi ≤ 1} and an

CP 2024

13:8 Improved Bounds of Integer Solution Counts via Volume

objective, maximize A⃗kx⃗, where A⃗k is the kth row of the matrix A. Let vk be such maximum
value for the kth LC. Then we shift it by adding vk. The pseudocode of constructing P ′ is
shown in Algorithm 4. The following theorem guarantees that P ′ obtained by Algorithm 4
contains union(C(P)).

▶ Theorem 8. Given the kth LC Hk ≡ A⃗kx⃗ ≤ bk. Let vk = max{A⃗kx⃗| − 1 ≤ xi ≤ 1, i =
1, . . . , n} and H ′

k ≡ A⃗kx⃗ ≤ bk + vk. Then we have κ ⊂ H ′
k,∀κ ∈ C(Hk).

Proof. Let Gk = A⃗kx⃗ ≤ 0 and G′
k = A⃗kx⃗ ≤ vk. Then it is equivalent to prove κ ⊂

G′
k,∀κ ∈ C(Gk). Assume ∃cube(α⃗) ∈ C(Gk) and ∃ ⃗pout ∈ cube(α⃗) s.t., ⃗pout ̸∈ G′

k. Let
cmax = max{A⃗kx⃗|x⃗ ∈ cube(α⃗)} and cmin = min{A⃗kx⃗|x⃗ ∈ cube(α⃗)}. Recall that cube(α⃗) =
{αi − 1

2 ≤ xi ≤ αi + 1
2}, we can find that vk = cmax − cmin. Since cube(α⃗) ∈ C(Gk), then

∃p⃗in ∈ cube(α⃗)∩Gk. Thus the hyperplane A⃗kx⃗ = A⃗k ⃗pout is outside of G′
k, and A⃗k ⃗pout > vk.

Similarly, we could find that A⃗kp⃗in ≤ 0, yielding the contradiction vk = cmax − cmin ≥
A⃗k ⃗pout − A⃗kp⃗in > vk. ◀

Algorithm 4 Enlarging P by shifting hyperplanes.

1 Function Enlarging(P)
2 for each A⃗kx⃗ ≤ bk from P do
3 constraints ← {−1 ≤ xi ≤ 1};
4 object ← A⃗kx⃗;
5 vi ← Simplex(object, constraints);

6 return {Ax⃗ ≤ b⃗ + v⃗};

3.3 Efficient Cube Checking

In Algorithm 2 and 3, we have to frequently check whether a point is in any integer-cube in
C(P) or C(B(P)). So in this section, we focus on the following question.

How to efficiently check whether a point p⃗ is in union(C(P)) or union(C(B(P)))?

We observe that if p is not on the boundary of an integer-cube, then p⃗ ∈ union(C(P)) iff
cube([⃗p]) ∈ C(P), where [⃗p] = ([p1], . . . , [pn]) is obtained by rounding numbers to integers.
Since in practice, it is nearly impossible to generate a sample point right on the boundaries
of cubes. We assume p does not sit on the boundary of an integer-cube in this section.
Similarly, we have if p is not on the boundary of an integer-cube, p⃗ ∈ union(C(B(P))) iff
cube([⃗p]) ∈ C(B(P)). Furthermore, cube([⃗p]) ∈ C(P) iff p⃗ ∈ P or cube([⃗p]) ∈ C(B(P)).
Since checking whether p⃗ ∈ P is trivial, we only have to find an efficient method to check
whether cube(α⃗) ∈ C(B(P)) with a given integer point α⃗.

Algorithm 5 presents the method for fast cube checking. Note that vk is the same as in
Algorithm 4, that is, vk = max{A⃗kx⃗|−1 ≤ xi ≤ 1, i = 1, . . . , n}, where A⃗k is the kth row of A.
Obviously, vk/2 = max{A⃗kx⃗|−0.5 ≤ xi ≤ 0.5, i = 1, . . . , n}. Since α⃗ is the center of cube(α⃗),
we have A⃗kα⃗ − vk/2 = min{A⃗kx⃗|x⃗ ∈ cube(α⃗)} and A⃗kα⃗ + vk/2 = max{A⃗kx⃗|x⃗ ∈ cube(α⃗)}.
If ∃j, s.t., A⃗jα⃗− vj/2 > bj , it indicates that cube(α⃗) is completely outside P . Otherwise, if
∃j, s.t., A⃗jα⃗ + vj/2 ≥ bj , it indicates that cube(α⃗) intersects with B(P).

C. Ge and A. Biere 13:9

Algorithm 5 Check whether cube(α⃗) ∈ C(B(P)).

1 Function CubeOnBound(α⃗, P)
2 flag← false;
3 for each A⃗kx⃗ ≤ bk from P do
4 if A⃗kα⃗− vk/2 > bk then
5 return false;

6 if A⃗kα⃗ + vk/2 ≥ bk then
7 flag← true;

8 return flag;

3.4 Extending to Mixed-Integer Cases
In this section, we will introduce and prove the theoretical result on mixed-integer cases.
Combined with Lemma 3, it not only provides bounds for integral(F), but also shows when
integral(F) can be approximated by lat(P) and vol(P).

▶ Theorem 9. |C(P)| − |C(B(P))| ≤ integral(F) ≤ |C(P)|.

Proof. According to Equation (3), the theorem is equivalent with

|C(P)| − |C(B(P))| ≤
∑

α⃗I ∈MI(F)

vol(Pα⃗I
) ≤ |C(P)|. (6)

From Lemma 3, we have |C(Pα⃗I
)| − |C(B(Pα⃗I

))| ≤ vol(Pα⃗I
) ≤ |C(Pα⃗I

)|. Then∑
α⃗I

(|C(Pα⃗I
)| − |C(B(Pα⃗I

))|) ≤
∑
α⃗I

vol(Pα⃗I
) ≤

∑
α⃗I

|C(Pα⃗I
)|. (7)

Given an arbitrary cube(α⃗R) ∈ C(Pα⃗I
). Obviously, ∃α⃗R

′ ∈ cube(α⃗R) such that α⃗R
′ ∈ Pα⃗I

.
Let α⃗ = [α⃗I α⃗R] and α⃗′ = [α⃗I α⃗R

′] which are concatenations of integer and real variables. Then
α⃗′ is an interior point in P and α⃗′ ∈ cube(α⃗). It means cube(α⃗) ∈ C(P). By this way, we could
map C(Pα⃗I

) to C(P ∩ α⃗I ×RnR) ⊂ C(P). Note that C(P ∩ α⃗I ×RnR)∩C(P ∩ α⃗′
I ×RnR) = ∅,

and α⃗I ̸= α⃗′
I , then we have∑

α⃗I

|C(Pα⃗I
)| ≤ |C(P)|. (8)

Given an arbitrary cube(β⃗) ∈ C(P) \ C(B(P)). Let β⃗ = [β⃗I β⃗R]. Note that cube(β⃗) ⊂ P ,
it means cube(β⃗) ∩M(F) ̸= ∅. Thus β⃗I ∈MI(F). Then we obtain an unique integer-cube
cube(β⃗R) ∈ C(Pβ⃗I

) \ C(B(Pβ⃗I
)). Similarly, we have

|C(P)| − |C(B(P))| = |C(P) \ C(B(P))| ≤
∑
α⃗I

(|C(Pα⃗I
)| − |C(B(Pα⃗I

))|). (9)

Combine Equation (7) (8) and (9), then Equation (6) is obtained. ◀

Theorem 9 indicates that Algorithm 2 can be directly applied for solving the solution
space integration problem on mixed-integer constraints, i.e., lb(P) ≤ integral(F) ≤ ub(P).

CP 2024

13:10 Improved Bounds of Integer Solution Counts via Volume

4 Implementation

We implemented a prototype tool called MixIntCount in C++. MixIntCount employs
GLPK for linear programming. It calls Vinci [5] and Polyvest [10] for polytopes’ volume
computation and approximation.

In our implementation, the Ellipsoid method is employed only once, and the affine
transformation T will be reused by the real point sampling in Algorithm 3. Moreover,
whenever a sample is obtained, it will immediately update the counts of samples that lie in
P or union(C(B(P))) and check whether the stopping criterion is satisfied.

Wilson score interval

For convenience, we introduced the normal approximation CI implied by the Central Limit
Theorem for describing Algorithm 2 in Section 3. However, the normal CI suffers from
problems of overshoot and zero-width intervals, e.g., r1 and r2 may sometimes be close to 0 or
1. In such circumstances, the Wilson score interval (or Wilson CI) [31] performs much better
than the normal CI. Therefore, we replace Equation 4 by Wilson CI, and let MixIntCount
compute Wilson CIs as the stopping criterion.

The setting of parameters

We choose parameters ϵ = 0.1, δ = 0.05, w = n, and N = 100000 for MixIntCount, and
ϵ = 0.2, δ = 0.05 for Polyvest. Note that ϵ and δ are different in two tools. In PolyVest,
ϵ and δ control the errors of volume approximations. In MixIntCount, ϵ and δ control
the errors of lower and upper bounds. Since previous numerical studies [19, 12] reported
that w = n is sufficient for nearly uniformly sampling points in polytopes with dozens of
dimensions, we also chose w = n in our implementation. Experiments in Section 5 show
that N = 100000 is sufficiently large, as the lower bounds lb(P) ≤ 0.001 · vol(P) are useless
when |X| reaches N .

A straightforward method for mixed-integer cases

Based on the definition, i.e., Equation 2, it is easy to propose an algorithm for computing
integral(F). First, it enumerates all assignments α⃗I ∈ MI(F). Then for each α⃗I , it
computes vol(Pα⃗I

) by volume computation algorithms. Finally, integral(F) is obtained
by summing up vol(Pα⃗I

). We implemented this method and called it ExactMI, which
could provide exact integration. We adopted it as the baseline for performance comparison
in our evaluation (Section 5). Note that in practice, we could try MixIntCount first, and if
approximations of bounds are not tight enough, we would then employ ExactMI.

Approximating bounds on SMT(LA) formulas

We incorporated MixIntCount into the DPLL(T)-based #SMT(LA) counter [12] directly
to approximate bounds of solution space integration of SMT(LA) formulas. Without loss
of generality, an SMT(LA) formula ϕ with l Boolean variables, n numeric variables and
m LCs can be formally represented as a Boolean formula PSϕ(b1, . . . , bm+l) together with
definitions in the form: bi ≡ Hi, i = 1, . . . , m, where His are LCs. Then bm+1, . . . , bm+l are
the pure Boolean variables of ϕ. An assignment γ⃗ of PSϕ is a vector (γ1, . . . , γm+l) ∈ Bm+l,
where γi is either 1 or 0. A partial assignment γ⃗ means there are some γis not assigned. Let
bool(γ⃗) represent the vector (γm+1, . . . , γm+l) ∈ Bl which corresponds to those pure Boolean

C. Ge and A. Biere 13:11

variables. Let Hγ⃗ =
⋃

1≤i≤m Hγ⃗,i, where Hγ⃗,i is {Hi} or {¬Hi} or ∅ if γi is 1 or 0 or not
assigned respectively. Note that Hi and ¬Hi are LCs, Hγ⃗ is the set of LCs that corresponds
to γ⃗. Thus, an assignment µ⃗ of ϕ consists of (x⃗, bool(γ⃗)), where γ⃗ is an assignment of PSϕ

and x⃗ is a point. Let Mϕ,γ⃗ represent M(Hγ⃗)× bool(γ⃗). The solution space of ϕ is then the
union of sets, formally:

M(ϕ) =
⋃

γ⃗∈M(P Sϕ)

M(Hγ⃗)× bool(γ⃗) =
⋃

γ⃗∈M(P Sϕ)

Mϕ,γ⃗ . (10)

To enumerate γ⃗ ∈M(PSϕ), a DPLL(T)-based scheme was introduced:
Step 1. Find a model µ⃗ of ϕ by DPLL(T) algorithm. From Equation 10, there exists a
partial assignment γ⃗ ∈M(PSϕ), s.t., µ⃗ ∈Mϕ,γ⃗ .
Step 2. Conjunct ϕ with the negation formula G of partial assignment γ⃗, which would
prevent the DPLL(T) algorithm finding models in Mϕ,γ⃗ again. In detail, G =

∨
Gi,

where Gi ≡ bi if γi = 0, Gi ≡ ¬bi if γi = 1.
Step 3. Find the next model µ⃗′ ∈ M(ϕ′) and a partial assignment γ⃗′, s.t., µ⃗′ ∈ Mϕ′,γ⃗′

like Step 1. Repeat above steps until M(ϕ′) = ∅, i.e., unsatisfiable.
In this way, we could find a set Γ = {γ⃗, γ⃗′, . . . } ⊂ M(PSϕ). The above scheme guarantees

M(ϕ) =
⋃
γ⃗∈Γ

Mϕ,γ⃗ and Mϕ,γ⃗1 ∩Mϕ,γ⃗2 = ∅,∀γ⃗1, γ⃗2 ∈ Γ, γ⃗1 ̸= γ⃗2. (11)

From Equation 11, we know that Mϕ,γ⃗s are non-overlapping, then

integral(ϕ) =
∑
γ⃗∈Γ

integral(Mϕ,γ⃗) =
∑
γ⃗∈Γ

integral(Hγ⃗) · 2dγ⃗ , (12)

where dγ⃗ is the number of γis which are not assigned, m + 1 ≤ i ≤ l. From Algorithm 2
and Theorem 9, we could approximate bounds for each Hγ⃗ , i.e., lb(Hγ⃗) ≤ integral(Hγ⃗) ≤
ub(Hγ⃗). By summing up, we obtain the total bounds for ϕ:

lb(ϕ) ≤ integral(ϕ) =
∑
γ⃗∈Γ

integral(Hγ⃗) · 2dγ⃗ ≤ ub(ϕ), (13)

where lb(ϕ) =
∑

γ⃗∈Γ lb(Hγ⃗) · 2dγ⃗ and ub(ϕ) =
∑

γ⃗∈Γ ub(Hγ⃗) · 2dγ⃗ .

5 Evaluation

5.1 Experimental settings
Experiments were conducted on a cloud with 48 Core Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz and 128GB memory. We used a timeout of 3600 seconds and a memory limit of
16GB. The suite of benchmarks consists of two families:

Random Polytopes P (m, n, nI , c), where m, n, nI and c are the number of LCs, the
number of all variables, the number of integer variables and the range size of both xi

and bi, respectively. In detail, a polytope P (m, n, nI , c) = {Ax⃗ ≤ b⃗} is generated by the
following steps: (1) randomly choose nI different integer variables, (2) randomly select
aij ∈ A from −10 to 10 and bi from −c to c, (3) if P is unsatisfiable then repeat above
steps. In our benchmarks, we chose m = n ∈ [3, 15], nI ∈ [1, n] and c ∈ [10, 10000].
Instances from program analysis: We adopted the application benchmarks introduced
by [11] which are generated by analyzing 7 programs (“cubature”, “gjk”, “http-parser”,
“muFFT”, “SimpleXML”, “tcas” and “timeout”) ranging from 0.4k to 7.7k lines of source
code via a symbolic execution bug-finding tool. There are 3803 SMT(LIA) (linear integer
arithmetic) formulas in total.

CP 2024

13:12 Improved Bounds of Integer Solution Counts via Volume

Ta
bl

e
1

R
un

ni
ng

tim
es

an
d

ap
pr

ox
im

at
io

n
re

su
lts

ov
er

ra
nd

om
po

ly
to

pe
s

w
ith

c
=

10
00

.

B
en

ch
m

ar
ks

E
xa

ct
M

I
V

in
ci

P
ol

yV
es

t
B

ou
nd

s
by

M
ix

In
tC

ou
nt

n
n

I
S̄

in
te

gr
al

(F
)

t
(s

)
vo

l(
P

)
t

(s
)

ˆ vo
l(

P
)

t
(s

)
ub

(P
)

vo
l(

P
)

lb
(P

)
vo

l(
P

)
|X

|
t

(s
)

4
1

94
8

1.
44

E
+

10
4.

99
1.

43
E

+
10

0.
00

7
1.

45
E

+
10

0.
07

2
1.

05
5

0.
91

4
28

1
0.

00
4

2
87

4
6.

07
E

+
08

50
8

6.
07

E
+

08
0.

00
6

6.
15

E
+

08
0.

07
4

1.
17

2
0.

82
0

11
77

0.
00

6
3

10
99

—
—

1.
47

E
+

11
0.

00
6

1.
52

E
+

11
0.

06
7

1.
03

7
0.

91
9

15
6

0.
00

3
5

1
36

9
1.

64
E

+
09

1.
89

1.
64

E
+

09
0.

01
2

1.
66

E
+

09
0.

25
7

1.
47

9
0.

63
5

27
91

0.
01

1
2

94
5

—
—

8.
70

E
+

12
0.

01
9

8.
59

E
+

12
0.

25
6

1.
05

0
0.

93
5

18
9

0.
00

5
3

10
86

—
—

6.
13

E
+

13
0.

01
8

6.
17

E
+

13
0.

24
9

1.
06

2
0.

92
3

29
1

0.
00

5
6

1
71

5
5.

55
E

+
09

18
.3

5.
55

E
+

09
0.

05
3

5.
48

E
+

09
0.

75
5

2.
65

3
0.

28
1

52
43

0.
02

3
2

14
38

—
—

1.
34

E
+

17
0.

06
7

1.
39

E
+

17
0.

78
0

1.
03

4
0.

92
5

11
3

0.
00

5
3

22
9

—
—

5.
91

E
+

09
0.

06
3

5.
92

E
+

09
0.

75
1

1.
79

5
0.

46
4

38
24

0.
01

9
7

1
11

01
2.

47
E

+
17

11
3

2.
47

E
+

17
0.

65
9

2.
50

E
+

17
1.

90
1.

12
5

0.
84

8
81

0
0.

00
8

2
98

0
—

—
2.

41
E

+
17

0.
65

5
2.

44
E

+
17

2.
05

1.
13

6
0.

86
7

85
5

0.
01

0
3

72
7

—
—

6.
19

E
+

15
0.

65
8

6.
13

E
+

15
2.

04
1.

17
1

0.
81

3
11

80
0.

01
1

8
1

70
3

6.
57

E
+

14
61

5
6.

57
E

+
14

7.
64

6.
44

E
+

14
4.

56
2.

03
6

0.
41

5
46

43
0.

03
5

2
12

51
—

—
6.

83
E

+
20

7.
91

6.
83

E
+

20
4.

17
1.

09
9

0.
87

3
62

8
0.

00
9

3
55

6
—

—
5.

71
E

+
15

8.
24

5.
68

E
+

15
4.

62
1.

69
5

0.
52

7
37

06
0.

03
0

9
1

47
5

—
—

—
—

2.
37

E
+

13
9.

05
7.

56
0

0.
06

4
49

29
5

0.
39

0
2

12
50

—
—

—
—

3.
82

E
+

22
8.

46
1.

15
2

0.
83

6
10

16
0.

01
5

3
13

8
—

—
—

—
1.

47
E

+
10

9.
71

34
.5

0
0.

00
0

10
00

00
0.

79
2

12
1

25
2

—
—

—
—

2.
56

E
+

15
57

.4
43

.2
4

0.
00

1
10

00
00

1.
51

7
2

43
9

—
—

—
—

8.
18

E
+

19
54

.9
7.

06
3

0.
07

0
45

42
4

0.
70

0
3

14
08

—
—

—
—

1.
43

E
+

32
52

.3
1.

12
3

0.
84

5
84

2
0.

02
5

15
1

95
8

—
—

—
—

5.
85

E
+

32
23

5
2.

12
0

0.
40

8
51

02
0.

15
7

2
15

98
—

—
—

—
5.

10
E

+
38

22
8

1.
29

2
0.

76
6

19
50

0.
07

6
3

15
87

—
—

—
—

4.
20

E
+

36
22

4
1.

46
9

0.
63

5
29

02
0.

10
5

C. Ge and A. Biere 13:13

(1) n = 5, y-axis: ub(P)
lb(P) ,

x-axis: c

(4) n = 10, y-axis: ub(P)
lb(P) ,

x-axis: c

(7) n = 15, y-axis: ub(P)
lb(P) ,

x-axis: c

(2) n = 5, y-axis: ub(P)
lb(P) ,

x-axis: S̄

(5) n = 10, y-axis: ub(P)
lb(P) ,

x-axis: S̄

(8) n = 15, y-axis: ub(P)
lb(P) ,

x-axis: S̄

(3) n = 5, y-axis: S̄,
x-axis: c

(6) n = 10, y-axis: S̄,
x-axis: c

(9) n = 15, y-axis: S̄,
x-axis: c

Figure 2 Experimental results about tightness of bounds ub(P)
lb(P) with different c, S̄ and n.

5.2 Experimental results

Table 1 presents experimental results on random polytopes with different values of n and nI

but fixed c = 1000. Due to page limit, we could only provide partial results here. In Table 1,
S̄ = 1

n

∑n
i=1(max{xi|x⃗ ∈ P} −min{xi|x⃗ ∈ P}) is the average range size of variables in real

domain, |X| is the number of sample points generated. ExactMI is the implementation of the
straightforward method presented in Section 4, which is the baseline. Vinci and PolyVest
are tools for computing or approximating vol(P). MixIntCount approximates the bounds
of differences of integral(F) and vol(P). So the closer the bounds lb(P)/vol(P) and
ub(P)/vol(P) are to 1, the better.

Table 1 shows that vol(P) is usually very close to the exact integral(F). We observe
that ExactMI can only handle instances with only one or two integer variables because
the number of integer assignments generated by ExactMI grows exponentially with respect
to nI . The scalability of ExactMI is also limited by Vinci, which runs out of memory
in a few seconds when n ≥ 9. Polyvest is more scalable as it is a polynomial time
randomized approximation algorithm. Our tool MixIntCount generates approximate
bounds lb(P) ≤ integral(F) ≤ ub(P). The experimental results show that bounds are
mostly useful while the overhead of approximating bounds is negligible compared to the cost
of volume computation or approximation. There are two exceptions when n = 9, nI = 3 and

CP 2024

13:14 Improved Bounds of Integer Solution Counts via Volume

Figure 3 Comparison about the tightness of bounds ub(P)
lb(P) (the smaller the better) between

MixIntCount and Vol2Lat on random polytopes with pure-integer variables.

n = 12, nI = 1 in Table 1. In these cases, the algorithm does not stop before reaching the
maximum number of sample points, i.e., |X| = N , and bounds are also in essence meaningless.
Besides, we observe that bounds are sometimes loose while integral(F) and vol(P) are
very close, such as, when n = 6, nI = 1 and n = 8, nI = 1. From Table 1, we observe
that the tightness of bounds by MixIntCount is related to the size of S̄. In addition, the
parameter c, which controls the domain size of variables, is fixed to 1000. So we conducted
more experiments with different values of c.

Figure 2 presents results about tightness of bounds ub(P)
lb(P) with different settings of c and n.

From Figure 2 (3) (6) (9), we observe that S̄ is highly correlated with c. Comparing Figure 2
(1) (4) (7) and Figure 2 (2) (5) (8), we find that tightness of bounds is more correlated with
S̄ than c. Besides, we also find that tightness of bounds is negatively correlated with n by
comparing each row.

We compared our tool MixIntCount with Vol2Lat on pure integer instances which
can be viewed as the special cases of mixed-integers. Tool Vol2Lat [11] is an approximate
integer solution counter via a polytope’s volume over pure integer constraints. We conducted
experiments on random polytopes where their coefficients are generated in the same way as
the mixed-integer cases. The results are presented in Figure 3, whose x-axis and y-axis are
the tightness of bounds ub(P)

lb(P) by two tools. Note that we force ub(P)
lb(P) = 10 when ub(P)

lb(P) > 10,
thus the line of points at the top of the figure are cases that ub(P)

lb(P) > 10 for Vol2Lat.
Then we conducted experiments on application benchmarks from program analysis which

are #SMT(LIA) problems. Note that both MixIntCount and Vol2Lat were incorporated
into the DPLL (T)-based #SMT (LA) counter [12]. The results are presented in Table 2. Note
that timeout cases by exact counter barvinok (cannot evaluate bounds without exact results)
and degenerated cases (volume is zero) are excluded, so there are 3682 instances remaining.
In Table 2, ē, ēl and ēu represent the average values of relative errors e = |lat(F)−vol(F)|

lat(F) ,
el = lb(F)

lat(F) and eu = ub(F)
lat(F) . Recall that we chose ϵ = 0.1 for MixIntCount in default, so

el and eu will be at most 95% and at least 105%. With a smaller ϵ = 0.01, MixIntCount
provides a bit tighter bounds as presented in Table 2. In general, our approach provides
much tighter upper bounds than Vol2Lat and consumes more time in exchange.

C. Ge and A. Biere 13:15

Table 2 Comparison about errors of bounds (the close to 100% the better) between MixIntCount
(MIC) and Vol2Lat on pure integer instances from application instances.

Benchmarks Vol2Lat MIC (ϵ = 0.1) MIC (ϵ = 0.01)

Name t̄ (s) ēl ēu t̄ (s) ēl ēu t̄ (s) ēl ēu

cubature 1.65 14.9% 347.4% 6.35 13.8% 215.4% 29.9 14.4% 207.6%
gjk 0.17 <0.1% 806.9% 1.65 <0.1% 389.1% 6.49 <0.1% 375.1%
httpparser 0.44 90.5% 117.5% 1.42 87.8% 111.2% 5.14 90.2% 108.6%
muFFT 0.07 45.6% 500.6% 0.71 43.6% 246.8% 1.65 45.4% 239.2%
SimpleXML 0.21 93.8% 120.3% 0.58 90.6% 109.6% 0.95 94.0% 105.9%
tcas 0.60 >99.9% <100.1% 0.60 95.4% 104.9% 0.59 99.5% 100.5%
timeout 9.45 97.4% 109.3% 14.0 92.8% 108.0% 19.4 97.3% 103.5%

6 Related Works

Ge et al. [11] studied the relation between the count of integer points inside a polytope
and a polytope’s volume. Then they proposed an algorithm to approximate the upper
and lower bounds of integer solution counts via volume. They focused on the pure integer
linear constraints. In this paper, we propose new algorithms for bounds approximation via
a polytope’s volume. The experimental results show that our approach provides tighter
bounds on pure-integer cases. In addition, we extend their results and our algorithms to
mixed-integer cases using Theorem 9.

The existing works on solving weighted model integration (WMI) problems [3, 17, 25, 26,
28] were focusing on formulas with Boolean and real variables, e.g., in SMT(LRA) (linear
real arithmetic) representation. In this paper, we consider the solution space integration
problem over mixed-integer linear constraints, which is a theory atom of SMT(LIRA) (linear
mixed integer real arithmetic).

Ma et al. [24] first studied #SMT problems and proposed a DPLL(T)-based #SMT
framework. Chistikov et al. [7] first extended hashing-based model counting techniques from
#SAT to #SMT problems directly. Soon, Chakraborty et al. [6] proposed word-level hash
functions for #SMT(BV) (bit-vector) and showed that their approach outperforms Chistikov’s
method through experiments. After that, Ge et al. [13] compared more recent hashing-based
counters with exact integer counters in the scope of linear integer constraints. They observed
that exact integer counters combined with the DPLL(T)-based #SMT framework are still
more efficient for #LIA and #SMT(LIA) (linear integer arithmetic) problems. So in this
paper, we also incorporate our algorithms into DPLL(T)-based #SMT(LA) (linear arithmetic)
counters for approximating bounds of solution space integrations of #SMT(LA) formulas.

7 Conclusion

In this paper, we proposed an approximate solution space integration algorithm via a
polytope’s volume. It is based on theoretical analysis of bounds for solution space integration,
volume and integer count. The upper and lower bounds provided by our approach are
useful for users to decide whether to trust the approximations. We evaluated our approach’s
scalability and the tightness of bounds by experiments. Extending the bounds to weighted
solution counting problems would be an interesting and challenging direction for future
research.

CP 2024

13:16 Improved Bounds of Integer Solution Counts via Volume

References
1 Alexander I. Barvinok. Computing the volume, counting integral points, and exponential

sums. Discrete & Computational Geometry, 10:123–141, 1993. doi:10.1007/BF02573970.
2 Alexander I. Barvinok. Computing the ehrhart polynomial of a convex lattice polytope.

Discrete & Computational Geometry, 12:35–48, 1994. doi:10.1007/BF02574364.
3 V. Belle, A. Passerini, and Guy Van den Broeck. Probabilistic inference in hybrid domains by

weighted model integration. In Qiang Yang and Michael J. Wooldridge, editors, Proc. of IJCAI
2015, pages 2770–2776. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/392.

4 H. C. P. Berbee, C. G. E. Boender, A. H. G. Rinnooy Kan, C. L. Scheffer, R. L. Smith, and
J. Telgen. Hit-and-run algorithms for the identification of nonredundant linear inequalities.
Math. Program., 37(2):184–207, 1987. doi:10.1007/BF02591694.

5 B. Büeler, A. Enge, and K. Fukuda. Exact Volume Computation for Polytopes: A Practical
Study, pages 131–154. Birkhäuser, 2000. doi:10.1007/978-3-0348-8438-9_6.

6 Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, and Moshe Y. Vardi. Approximate
probabilistic inference via word-level counting. In Proc. of AAAI, pages 3218–3224, 2016.

7 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Approximate counting in SMT
and value estimation for probabilistic programs. In Proc. of TACAS, pages 320–334, 2015.

8 Ben Cousins and Santosh S. Vempala. Gaussian cooling and o*(n3) algorithms for volume
and gaussian volume. SIAM J. Comput., 47(3):1237–1273, 2018. doi:10.1137/15M1054250.

9 M. E. Dyer, A. M. Frieze, and R. Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies. In Proc. of STOC, pages 375–381, 1989.
doi:10.1145/73007.73043.

10 C. Ge and F. Ma. A fast and practical method to estimate volumes of convex polytopes. In
Jianxin Wang and Chee-Keng Yap, editors, Proc. of FAW, volume 9130 of Lecture Notes in
Computer Science, pages 52–65. Springer, 2015. doi:10.1007/978-3-319-19647-3_6.

11 C. Ge, F. Ma, X. Ma, F. Zhang, P. Huang, and J. Zhang. Approximating integer solution
counting via space quantification for linear constraints. In Sarit Kraus, editor, Proc. of IJCAI,
pages 1697–1703. ijcai.org, 2019. doi:10.24963/ijcai.2019/235.

12 C. Ge, F. Ma, P. Zhang, and J. Zhang. Computing and estimating the volume of the
solution space of SMT(LA) constraints. Theor. Comput. Sci., 743:110–129, 2018. doi:
10.1016/j.tcs.2016.10.019.

13 Cunjing Ge and Armin Biere. Decomposition strategies to count integer solutions over
linear constraints. In Zhi-Hua Zhou, editor, Proc. of IJCAI, pages 1389–1395. ijcai.org, 2021.
doi:10.24963/ijcai.2021/192.

14 Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic execution.
In Proc. of ISSTA, pages 166–176, 2012. doi:10.1145/2338965.2336773.

15 M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimiza-
tion. Combinatorica, 1988.

16 Amy Huang, Liam Lloyd, Mohamed Omar, and James C. Boerkoel. New perspectives on
flexibility in simple temporal planning. In Proc. of ICAPS, pages 123–131, 2018. URL:
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17775.

17 Samuel Kolb, Pedro Zuidberg Dos Martires, and Luc De Raedt. How to exploit structure while
solving weighted model integration problems. In Amir Globerson and Ricardo Silva, editors,
Proc. of UAI, volume 115 of Proceedings of Machine Learning Research, pages 744–754. AUAI
Press, 2019. URL: http://proceedings.mlr.press/v115/kolb20a.html.

18 Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. Effective
lattice point counting in rational convex polytopes. J. Symb. Comput., 38(4):1273–1302, 2004.
doi:10.1016/j.jsc.2003.04.003.

19 L. Lovász and I. Deák. Computational results of an O∗(n4) volume algorithm. European
Journal of Operational Research, 216(1):152–161, 2012. doi:10.1016/j.ejor.2011.06.024.

20 L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM J. Comput., 35(4):985–1005,
2006. doi:10.1137/S009753970544727X.

https://doi.org/10.1007/BF02573970
https://doi.org/10.1007/BF02574364
http://ijcai.org/Abstract/15/392
https://doi.org/10.1007/BF02591694
https://doi.org/10.1007/978-3-0348-8438-9_6
https://doi.org/10.1137/15M1054250
https://doi.org/10.1145/73007.73043
https://doi.org/10.1007/978-3-319-19647-3_6
https://doi.org/10.24963/ijcai.2019/235
https://doi.org/10.1016/j.tcs.2016.10.019
https://doi.org/10.1016/j.tcs.2016.10.019
https://doi.org/10.24963/ijcai.2021/192
https://doi.org/10.1145/2338965.2336773
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17775
http://proceedings.mlr.press/v115/kolb20a.html
https://doi.org/10.1016/j.jsc.2003.04.003
https://doi.org/10.1016/j.ejor.2011.06.024
https://doi.org/10.1137/S009753970544727X

C. Ge and A. Biere 13:17

21 L. Lovász and S. Vempala. Simulated annealing in convex bodies and an O∗(n4) volume
algorithm. J. Comput. Syst. Sci., 72(2):392–417, 2006. doi:10.1016/j.jcss.2005.08.004.

22 László Lovász. Hit-and-run mixes fast. Math. Program., 86(3):443–461, 1999. doi:10.1007/
s101070050099.

23 Kasper Søe Luckow, Corina S. Pasareanu, Matthew B. Dwyer, Antonio Filieri, and Willem
Visser. Exact and approximate probabilistic symbolic execution for nondeterministic programs.
In Proc. of ASE, pages 575–586, 2014. doi:10.1145/2642937.2643011.

24 F. Ma, S. Liu, and J. Zhang. Volume computation for boolean combination of linear arithmetic
constraints. In Proc. of CADE, pages 453–468, 2009. doi:10.1007/978-3-642-02959-2_33.

25 P. Z. Dos Martires, A. Dries, and Luc De Raedt. Exact and approximate weighted model
integration with probability density functions using knowledge compilation. In Proc. of AAAI,
2019, pages 7825–7833. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33017825.

26 P. Morettin, A. Passerini, and R. Sebastiani. Advanced SMT techniques for weighted model
integration. Artif. Intell., 275:1–27, 2019. doi:10.1016/j.artint.2019.04.003.

27 Gilles Pesant. Counting-based search for constraint optimization problems. In Proc. of AAAI,
pages 3441–3448, 2016. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/
view/12065, doi:10.1609/AAAI.V30I1.10433.

28 Giuseppe Spallitta, Gabriele Masina, Paolo Morettin, Andrea Passerini, and Roberto Sebastiani.
Smt-based weighted model integration with structure awareness. In James Cussens and Kun
Zhang, editors, Proc. of UAI, volume 180 of Proceedings of Machine Learning Research, pages
1876–1885. PMLR, 2022. URL: https://proceedings.mlr.press/v180/spallitta22a.html.

29 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979. doi:10.1137/0208032.

30 Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice Bruynooghe.
Counting integer points in parametric polytopes using barvinok’s rational functions. Algorith-
mica, 48(1):37–66, 2007. doi:10.1007/s00453-006-1231-0.

31 E. B. Wilson. Probable inference, the law of succession, and statistical inference. Journal
of the American Statistical Association, 22(158):209–212, 1927. doi:10.1080/01621459.1927.
10502953.

32 Alessandro Zanarini and Gilles Pesant. Solution counting algorithms for constraint-centered
search heuristics. In Proc. of CP, pages 743–757, 2007. doi:10.1007/978-3-540-74970-7_52.

CP 2024

https://doi.org/10.1016/j.jcss.2005.08.004
https://doi.org/10.1007/s101070050099
https://doi.org/10.1007/s101070050099
https://doi.org/10.1145/2642937.2643011
https://doi.org/10.1007/978-3-642-02959-2_33
https://doi.org/10.1609/aaai.v33i01.33017825
https://doi.org/10.1016/j.artint.2019.04.003
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12065
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12065
https://doi.org/10.1609/AAAI.V30I1.10433
https://proceedings.mlr.press/v180/spallitta22a.html
https://doi.org/10.1137/0208032
https://doi.org/10.1007/s00453-006-1231-0
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1007/978-3-540-74970-7_52

	1 Introduction
	2 Background
	2.1 Notations and Preliminaries
	2.2 Approximating Lattice Counts via Polytope's Volume
	2.3 Sampling in Polytopes

	3 Our Approach
	3.1 The Framework of Bounds Approximation Algorithm
	3.2 Sampling in Unions of Integer-cubes
	3.3 Efficient Cube Checking
	3.4 Extending to Mixed-Integer Cases

	4 Implementation
	5 Evaluation
	5.1 Experimental settings
	5.2 Experimental results

	6 Related Works
	7 Conclusion

