

# 命题逻辑



2025-9-23

1



# 命题逻辑

# 语法



# 字母表



定义1.1(字母表).命题逻辑的字母表含三类符号:

(1) 命题符号:

$$p q r \dots$$

(2) 联结符号(联结词):

$$\neg$$
  $\land$   $\lor$   $\rightarrow$ 

(3) 辅助符号(标点符号):

( )

# 命题公式



- 命题逻辑的所有原子公式和公式的集分别记为*PS*(命题符集合)和*PROP*(命题集)。
  - > 公式由表达式定义
  - > 公式相当于自然语言中符合语法规则的语句

# 命题公式



- 命题逻辑的所有原子公式和公式的集分别记为*PS*(命题符集合)和*PROP*(命题集)。
  - > 公式由表达式定义
  - 公式相当于自然语言中符合语法规则的语句

- 表达式不一定是公式
  - > p
  - > pq
  - > (r)
  - $\triangleright p \land \rightarrow q$
  - $\triangleright (p \lor q)$

# 命题的定义



**定义1.2**(PROP).  $A \in PROP$ 当且仅当它能有限次地由以下

- (i)~(iii)生成:
- (i)  $PS \subseteq PROP$ ;
- (ii) 如果 $A \in PROP$ ,则 $(\neg A) \in PROP$ ;
- (iii) 如果 $A, B \in PROP$ ,则 $(A * B) \in PROP$ 。

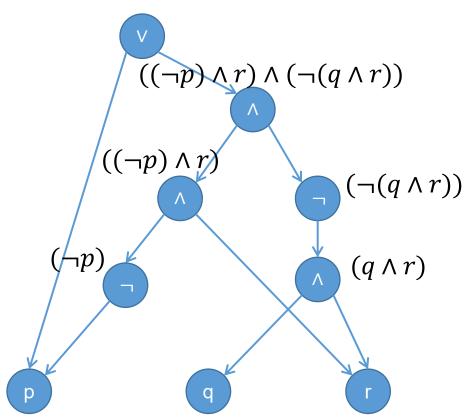
其中\*E {∧, V, →}。

• 定义中的(i)~(iii)称为命题公式的形成规则。

# 命题的定义



• 例,  $(p \lor (((\neg p) \land r) \land (\neg (q \land r))))$ 。





# 命题逻辑

# 语义



# 语法与语义



• 语法: 符号表达式的形式结构

• 语义: 符号和符号表达式的涵义(给符号以某种解释)



• 什么是命题逻辑的语义?

● 对于任意的赋值  $v: PS \to \{T, F\}$ ,定义一个解释  $\hat{v}: PROP \to \{T, F\}$ 

#### 联结词定义的布尔函数



定义1.3. 令真值集 $B = \{T, F\}$ ,

- 联结词  $\neg$  被解释为一元函数  $H_{\neg}$ :  $\mathbf{B} \rightarrow \mathbf{B}$ ;
- 联结词 \* 被解释为二元函数  $H_*$ :  $\mathbf{B}^2 \to \mathbf{B}$ , 其中\* $\in \{\land, \lor, \to\}$ ;
- *H*<sub>¬</sub>, *H*<sub>∧</sub>, *H*<sub>∨</sub>, *H*<sub>→</sub>定义如下:

| p | q | $H_{\neg}(\boldsymbol{p})$ | $H_{\wedge}(\boldsymbol{p},\boldsymbol{q})$ | $H_{\vee}(\boldsymbol{p},\boldsymbol{q})$ | $H_{\rightarrow}(\boldsymbol{p},\boldsymbol{q})$ |
|---|---|----------------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------------|
| Т | Т | F                          | Т                                           | Т                                         | Т                                                |
| Т | F | F                          | F                                           | Т                                         | F                                                |
| F | Т | Т                          | F                                           | Т                                         | T                                                |
| F | F | Т                          | F                                           | F                                         | Т                                                |



定义1.4(命题的语义).

• v 为一个赋值指它是函数 v:  $PS \to B$ , 从而对任何命题符 $P_i$ ,  $v(P_i)$ 为T或 $F_i$ 



#### 定义1.4(命题的语义).

- v 为一个赋值指它是函数 v:  $PS \to B$ , 从而对任何命题符 $P_i$ ,  $v(P_i)$ 为T或F;
- 对于任何赋值 v, 定义  $\hat{v}$ :  $PROP \rightarrow B$  如下:

$$\hat{v}(P_n) = v(P_n), n \in N;$$

$$\hat{v}(\neg A) = H_{\neg}(\hat{v}(A));$$

$$\hat{v}(A*B) = H_*(\hat{v}(A), \hat{v}(B)),$$
 其中\* $\in \{\land, \lor, \rightarrow\}$ 。

对于命题A,它在赋值v下的解释  $\hat{v}(A)$  为T或F。



例, 
$$A = (p \land q) \rightarrow (\neg q \lor r)$$
, 设  $v$  是一个赋值, 使得  $v(p) = v(q) = v(r) = 1$ .



例, 
$$A = (p \land q) \rightarrow (\neg q \lor r)$$
, 设  $v$  是一个赋值, 使得  $v(p) = v(q) = v(r) = 1$ .

那么,我们有

$$\hat{v}(p \wedge q) = H_{\wedge}(p,q) = 1,$$

$$\hat{v}(\neg q \vee r) = H_{\vee}(H_{\neg}(q),r) = 1,$$

$$\hat{v}(A) = H_{\rightarrow}(H_{\wedge}(p,r), H_{\vee}(H_{\neg}(q),r)) = 1.$$



例, 
$$A = (p \land q) \rightarrow (\neg q \lor r)$$
, 设  $v$  是一个赋值, 使得  $v(p) = v(q) = v(r) = 0$ .



例, 
$$A = (p \land q) \rightarrow (\neg q \lor r)$$
, 设  $v$  是一个赋值,使得  $v(p) = v(q) = v(r) = 0$ .

#### 我们有

$$\hat{v}(p \wedge q) = H_{\wedge}(p, q) = 0,$$

$$\hat{v}(\neg q \vee r) = H_{\vee}(H_{\neg}(q), r) = 1,$$

$$\hat{v}(A) = H_{\rightarrow}(H_{\wedge}(p, q), H_{\vee}(H_{\neg}(q), r)) = 1.$$

## 可满足性



**定义1.5.** 设 $A \in PROP$ , v为赋值, $\Gamma \subseteq PROP$ 。

1. v 满足 A, 记为  $v \models A$ , 指  $\hat{v}(A) = T$ ; A 是可满足的,指  $\exists v$  使得  $v \models A$ ;

2. v 満足  $\Gamma$ , 记为  $v \models \Gamma$ , 指对于  $\forall B \in \Gamma$ ,  $v \models B$ ;  $\Gamma$  是可满足的,指  $\exists v$  使得  $v \models \Gamma$ 。

注: 若 $v \not\models A$ ,则 $v \models \neg A$ 。

Γ的可满足性蕴含Γ中所有公式的可满足性。 但反之不一定成立。

# 永真式



定义1.6. 设A为命题,v为赋值。

- 1. A 为永真式(也称重言式),记为 ⊨ A, 指对于  $\forall v$  都有  $\hat{v}(A) = T$ ;
- 2. A 为矛盾式,指对于  $\forall v$  都有  $\hat{v}(A) = F$ ;

例, 
$$A \rightarrow A$$
, 
$$\neg \neg A \rightarrow A$$
, 
$$(A \land B) \rightarrow (B \land A).$$

# 语义结论



**定义1.7.** 设 $A \in PROP$ , v为赋值,  $\Gamma \subseteq PROP$ 。

 $A \in \Gamma$  的语义结论(也称逻辑推论),记为  $\Gamma \models A$ ,指对所有 v,若 $v \models \Gamma$ ,则  $v \models A$ 。

注:此处 = 也是元语言中的符号,

 $\Gamma \models A$  也可以读作" $\Gamma$ 逻辑地蕴含A",

 $\Gamma \models A$  不是形式语言中的公式,是元语言中的命题。

# 逻辑等价



21

定义1.8. 设 A, B 为命题, A 与 B 逻辑等价(也称逻辑等

值),记为 $A \simeq B$ ,指对于任意赋值 v, $v \vDash A$  当且仅当  $v \vDash B$ 。

注: 有如下等价的定义:

 $A \simeq B$ , 当且仅当 $A \vDash B$ 且 $B \vDash A$ 。

任何赋值 v,  $\hat{v}(A) = \hat{v}(B)$ 。



- (1)  $A \rightarrow B \simeq \neg A \vee B$ ;
- (2)  $A \leftrightarrow B \simeq (\neg A \lor B) \land (A \lor \neg B)$ ;
- (1)~(4): 消去→, ↔, ⊕
- (3)  $A \leftrightarrow B \simeq (A \land B) \lor (\neg A \land \neg B);$
- (4)  $A \oplus B \simeq (A \land \neg B) \lor (\neg A \land B) \simeq \neg (A \leftrightarrow B);$

可以说, →, ↔, ⊕可以由¬, ∧, ∨定义。



(1) 
$$A \rightarrow B \simeq \neg A \vee B$$
;

(2) 
$$A \leftrightarrow B \simeq (\neg A \lor B) \land (A \lor \neg B)$$
;

(3) 
$$A \leftrightarrow B \simeq (A \land B) \lor (\neg A \land \neg B);$$

(4) 
$$A \oplus B \simeq (A \land \neg B) \lor (\neg A \land B) \simeq \neg (A \leftrightarrow B);$$

(5) 
$$\neg \neg A \simeq A$$
;

(6) 
$$\neg (A_1 \land \dots \land A_n) \simeq \neg A_1 \lor \dots \lor \neg A_n;$$

(7) 
$$\neg (A_1 \lor \ldots \lor A_n) \simeq \neg A_1 \land \ldots \land \neg A_n;$$



(1) 
$$A \rightarrow B \simeq \neg A \vee B$$
;

(2) 
$$A \leftrightarrow B \simeq (\neg A \lor B) \land (A \lor \neg B)$$
;

(3) 
$$A \leftrightarrow B \simeq (A \land B) \lor (\neg A \land \neg B);$$

(4) 
$$A \oplus B \simeq (A \land \neg B) \lor (\neg A \land B) \simeq \neg (A \leftrightarrow B);$$

$$(5) \neg \neg A \simeq A;$$

(6) 
$$\neg (A_1 \land \dots \land A_n) \simeq \neg A_1 \lor \dots \lor \neg A_n;$$

$$(7)$$
 ¬ $(A_1 \lor \ldots \lor A_n) \simeq \neg A_1 \land \ldots \land \neg A_n;$   $(8)$ : 消去 $\land$ 的辖域中的 $\land$ 

(8) 
$$A \wedge (B_1 \vee \ldots \vee B_n) \simeq (A \wedge B_1) \vee \ldots \vee (A \wedge B_n);$$

$$(9)_{2025-9-23} A \vee (B_1 \wedge \ldots \wedge B_n) \simeq (A \vee B_1) \wedge \ldots \wedge (A \vee B_n).$$



(10) 
$$A \vee A \simeq A$$

(11) 
$$A \wedge A \simeq A$$

(12) 
$$A \vee (A \wedge B) \simeq A$$

(13) 
$$A \wedge (A \vee B) \simeq A$$

(14) 
$$A \lor (B \land \neg B \land C) \simeq A$$

$$(15) A \wedge (B \vee \neg B \vee C) \simeq A$$

(10)(11): 重复项

(12)(13): 一个子句的所有文 字出现在另一个子句中

(14)(15): 删去含互补文字的子句



#### 定义1.9(文字,子句).

- (1) 命题符和命题符的否定式称为文字(Literal);
- (2) 以文字为析(合) 取项的析(合) 取式称为析(合)

取子式,简称子式,也称子句(Clause)。



#### 定义1.10(范式 Normal Form).

- (1) 命题A为析取范式(VA-nf, DNF),指A为m个合取子式的析取式,呈形 $V_{i=1}^m(\Lambda_{k=1}^{n_i}P_{i,k})$ 。
- (2)命题A为合取范式( $\Lambda V$ -nf,CNF),指A为 l 个析取子式的合取式,呈形 $\Lambda_{i=1}^l(V_{k=1}^{n_j}Q_{j,k})$ 。

#### 以上

- $\Lambda_{k=1}^n B_k$  为  $(...(((B_1 \wedge B_2) \wedge B_3)... \wedge B_n)...)$  的简写;
- $\bigvee_{k=1}^{n} B_k$  为  $(...(((B_1 \vee B_2) \vee B_3)...\vee B_n)...)$  的简写。



析取范式 $V_{i=1}^m(\Lambda_{k=1}^n P_{i,k})$ 为如下形式:

 $(P_{11} \wedge \ldots \wedge P_{1n_1}) \vee \ldots \vee (P_{m1} \wedge \ldots \wedge P_{mn_m}),$ 

文字

2025-9-23 28



析取范式 $V_{i=1}^m(\Lambda_{k=1}^n P_{i,k})$ 为如下形式:

 $(P_{11} \wedge \ldots \wedge P_{1n_1}) \vee \ldots \vee (P_{m1} \wedge \ldots \wedge P_{mn_m}),$ 

子句



析取范式 $\bigvee_{i=1}^{m} (\bigwedge_{k=1}^{n} P_{i,k})$ 为如下形式:

$$(P_{11} \wedge \ldots \wedge P_{1n_1}) \vee \ldots \vee (P_{m1} \wedge \ldots \wedge P_{mn_m}),$$

一个文字为假,则子句为假; 一个子句为真, 则公式为真

合取范式 $\Lambda_{j=1}^l(\bigvee_{k=1}^n Q_{j,k})$ 为如下形式:

$$(Q_{11} \vee \ldots \vee Q_{1n_1}) \wedge \ldots \wedge (Q_{l1} \vee \ldots \vee Q_{ln_l}).$$

一个文字为假,则子句为假;一个子句为真,则公式为真



#### 例,

- (1) p
- (2)  $\neg p \lor q$
- (3)  $\neg p \land q \land \neg r$
- (4)  $\neg p \lor (q \land \neg r)$
- (5)  $\neg p \land (q \lor \neg r) \land (\neg q \lor r)$



# 命题逻辑

CS与AI中的应用



# 如何表示推理问题?



- 若我们想组织一个聚会,邀请客人有以下的规则:
  - ▶ 1、如果两人是夫妻,则我们要么同时邀请两个人要么都不邀请。
    Alice和Bob是夫妻,Cecile和David是夫妻。
  - 2、如果我们邀请了Alice那么我们也需要邀请Cecile。
  - 3、David和Eva不会同时出席,所以不能同时邀请。
  - ▶ 4、我们想同时邀请Bob和Fred。
- 问:我们如何确定一个邀请名单?

### 如何表示推理问题?



- 命题变元: Alice、Bob、Cecile、David、Eva、Fred;
- 命题逻辑约束:
  - ➤ 1、邀请夫妻: Alice → Bob, Cecile → David
  - ➤ 2、如果Alice则Cecile: Alice → Cecile
  - ➤ 3、要么David要么Eva: ¬(Eva ↔ David)
  - ▶ 4、邀请Bob和Fred: Bob ∧ Fred

# 如何表示推理问题?



- 写成命题逻辑公式:
  - Arr (Alice  $\leftrightarrow$  Bob)  $\land$  (Cecile  $\leftrightarrow$  David)  $\land$  (Alice  $\rightarrow$  Cecile)  $\land$   $\neg$ (Eva  $\leftrightarrow$  David)  $\land$  Bob  $\land$  Fred

- 符合规则的邀请名单,即使得上述公式的为真的一组赋值
  - ▶ 例如,Alice = Bob = Cecile = David = Fred = T, Eva = F

# 可满足性问题



- 给定一个命题公式A,问是否存在一个赋值v,使得 $v \models A$ ?
  - ▶ 此赋值v也被称为问题的一个解

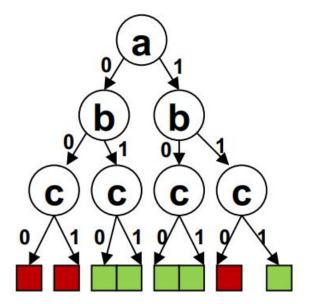
# 可满足性问题



- 给定一个命题公式A,问是否存在一个赋值v,使得 $v \models A$ ?
  - ▶ 此赋值v也被称为问题的一个解

$$F = (a \lor b) \land (\neg a \lor \neg b \lor c)$$

• 对n个变量的问题,一共有 $2^n$ 组可能的赋值



2025-9-23 37

# 可满足性问题

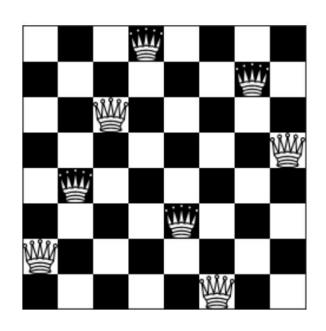


- 给定一个命题公式A,问是否存在一个赋值v,使得 $v \models A$ ?
  - ▶ 此赋值v也被称为问题的一个解

- 命题逻辑公式的可满足性问题(也称布尔可满足性问题,或SAT问题)
  - ➤ 第一个被证明的NP完全问题 (NP-Complete, NPC) (它是NP问题且所有NP问题可以多项式时间归约到它);
  - ▶ 非确定性算法:将问题分解为<u>猜测</u>和<u>验证</u>两个部分;
  - ➢ 验证一个赋值是公式的一个解很容易(多项式时间,即NP);
  - 找到一个解很困难;
  - P⊆NP✓ P=NP? (七个千禧年难题)

2025-9-23







| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | X <sub>17</sub> | X <sub>18</sub>        |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------|
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> | X <sub>27</sub> | X <sub>28</sub>        |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | X <sub>37</sub> | X <sub>38</sub>        |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> | X <sub>47</sub> | X <sub>48</sub>        |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> | X <sub>57</sub> | X <sub>58</sub>        |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> | X <sub>67</sub> | X <sub>68</sub>        |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> | X <sub>77</sub> | <b>X</b> <sub>78</sub> |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> | X <sub>87</sub> | X <sub>88</sub>        |



 $x_{ij} = T$  表示 (i,j) 处有皇后

| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | X <sub>17</sub> | X <sub>18</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> | X <sub>27</sub> | X <sub>28</sub> |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | X <sub>37</sub> | X <sub>38</sub> |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> | X <sub>47</sub> | X <sub>48</sub> |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> | X <sub>57</sub> | X <sub>58</sub> |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> | X <sub>67</sub> | X <sub>68</sub> |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> | X <sub>77</sub> | X <sub>78</sub> |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> | X <sub>87</sub> | X <sub>88</sub> |



 $x_{ij} = T$  表示 (i,j) 处有皇后

不同行:

第 i 行只有一个皇后

| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | X <sub>17</sub> | X <sub>18</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> | X <sub>27</sub> | X <sub>28</sub> |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | X <sub>37</sub> | X <sub>38</sub> |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> | X <sub>47</sub> | X <sub>48</sub> |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> | X <sub>57</sub> | X <sub>58</sub> |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> | X <sub>67</sub> | X <sub>68</sub> |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> | X <sub>77</sub> | X <sub>78</sub> |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> | X <sub>87</sub> | X <sub>88</sub> |



 $x_{ij} = T$  表示 (i,j) 处有皇后

不同行:

第 i 行只有一个皇后

 $\Rightarrow x_{i1},...,x_{i8}$ 中只有一个为真

| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | X <sub>17</sub> | X <sub>18</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> | X <sub>27</sub> | X <sub>28</sub> |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | X <sub>37</sub> | X <sub>38</sub> |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> | X <sub>47</sub> | X <sub>48</sub> |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> | X <sub>57</sub> | X <sub>58</sub> |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> | X <sub>67</sub> | X <sub>68</sub> |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> | X <sub>77</sub> | X <sub>78</sub> |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> | X <sub>87</sub> | X <sub>88</sub> |



### $x_{ij} = T$ 表示 (i,j) 处有皇后

#### 不同行:

第 i 行只有一个皇后

 $\Rightarrow x_{i1},...,x_{i8}$ 中只有一个为真

 $\Rightarrow (x_{i1} \lor x_{i2} \lor \dots \lor x_{i8})$ 

 $\wedge (\neg x_{i1} \vee \neg x_{i2}) \wedge \dots \wedge (\neg x_{i1} \vee \neg x_{i8})$ 

 $\wedge (\neg x_{i2} \vee \neg x_{i3}) \wedge \dots \wedge (\neg x_{i2} \vee \neg x_{i8})$ 

۸...

$$\Lambda (\neg x_{i7} \lor \neg x_{i8})$$

|    | X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | X <sub>17</sub> | X <sub>18</sub> |
|----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|    | X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> | X <sub>27</sub> | X <sub>28</sub> |
|    | X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | X <sub>37</sub> | X <sub>38</sub> |
|    | X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> | X <sub>47</sub> | X <sub>48</sub> |
|    | X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> | X <sub>57</sub> | X <sub>58</sub> |
|    | X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> | X <sub>67</sub> | X <sub>68</sub> |
| 3, | x <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> | X <sub>77</sub> | X <sub>78</sub> |
| 3. | X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> | X <sub>87</sub> | X <sub>88</sub> |



#### $x_{ij} = T$ 表示 (i,j) 处有皇后

不同行:

第 i 行只有一个皇后

 $\Rightarrow x_{i1},...,x_{i8}$ 中只有一个为真

 $\Rightarrow (x_{i1} \lor x_{i2} \lor \dots \lor x_{i8})$ 

 $\wedge (\neg x_{i1} \vee \neg x_{i2}) \wedge \dots \wedge (\neg x_{i1} \vee \neg x_{i8})$ 

 $\wedge (\neg x_{i2} \vee \neg x_{i3}) \wedge \dots \wedge (\neg x_{i2} \vee \neg x_{i8})$ 

۸...

 $\wedge (\neg x_{i7} \vee \neg x_{i8})$ 

|    | X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | X <sub>17</sub> | X <sub>18</sub> |
|----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|    | X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> | X <sub>27</sub> | X <sub>28</sub> |
|    | X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | X <sub>37</sub> | X <sub>38</sub> |
|    | X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> | X <sub>47</sub> | X <sub>48</sub> |
|    | X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> | X <sub>57</sub> | X <sub>58</sub> |
|    | X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> | X <sub>67</sub> | X <sub>68</sub> |
| 3. | X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> | X <sub>77</sub> | X <sub>78</sub> |
| 3, | X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> | X <sub>87</sub> | X <sub>88</sub> |
|    |                 | in and a second | 7               |                 |                 |                 |                 |                 |

不同列

不同对角线

# 拉丁方



• n阶拉丁方:  $n \times n$ 矩阵, 每行每列 $\{1,\ldots,n\}$ 各仅出现一次

| 1 | 2 | 3 |
|---|---|---|
| 2 | 3 | 1 |
| 3 | 1 | 2 |

| 1 | 3 | 2 |
|---|---|---|
| 2 | 1 | 3 |
| 3 | 2 | 1 |

- 引入命题变元 $a_{i,j,k}$ 表示 $a_{i,j}$ 位置是否取值k
- $a_{i,j}$ 位置仅取一个值:  $a_{i,j,1}, a_{i,j,2}, a_{i,j,3}$ 中一个为真
- 第一行各不相同:  $a_{1,1,1}$ ,  $a_{1,2,1}$ ,  $a_{1,3,1}$ 中一个为真, $a_{1,1,2}$ ,  $a_{1,2,2}$ ,  $a_{1,3,2}$ 中一个为真,且 $a_{1,1,3}$ ,  $a_{1,2,3}$ ,  $a_{1,3,3}$ 中一个为真

2025-9-23

# 拉丁方



• n阶拉丁方:  $n \times n$ 矩阵,每行每列 $\{1, ..., n\}$ 各仅出现一次

| 1 | 2 | 3 |
|---|---|---|
| 2 | 3 | 1 |
| 3 | 1 | 2 |

| 1 | 3 | 2 |
|---|---|---|
| 2 | 1 | 3 |
| 3 | 2 | 1 |

• 正交拉丁方问题

| (1,1) | (2,3) | (3,2) |
|-------|-------|-------|
| (2,2) | (3,1) | (1,3) |
| (3,3) | (1,2) | (2,1) |

- 数独问题
- 其它拉丁方问题

不存在 n = 4k + 2 阶的正交拉丁方? (欧拉猜想)

2025-9-23 47



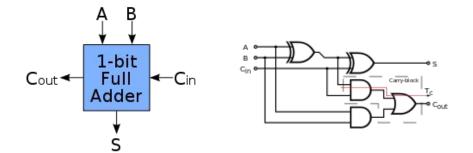
- 四色问题、七桥问题、......
- 0-1整数规划、集合覆盖问题、背包问题、......

• 任何NP问题都可以在多项式时间规约为SAT问题

2025-9-23 48



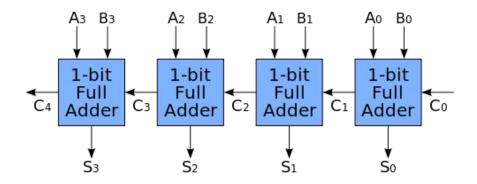
- 加法电路的形式化(1-bit)
  - $\rightarrow$  A + B + C<sub>in</sub> = C<sub>out</sub>S  $\Leftrightarrow$
  - $ightharpoonup C_{out} = (A and B) or (C_{in} and (A or B))$
  - $\gt$  S = A xor B xor C<sub>in</sub>



| Inputs |   | Outputs  |      |   |
|--------|---|----------|------|---|
| A      | В | $c_{in}$ | Cout | 5 |
| 0      | 0 | 0        | 0    | 0 |
| 1      | 0 | 0        | 0    | 1 |
| 0      | 1 | 0        | 0    | 1 |
| 1      | 1 | 0        | 1    | 0 |
| 0      | 0 | 1        | 0    | 1 |
| 1      | 0 | 1        | 1    | 0 |
| 0      | 1 | 1        | 1    | 0 |
| 1      | 1 | 1        | 1    | 1 |



• 加法电路的形式化(n-bit)





● 乘法 ⇔ 移位+加法

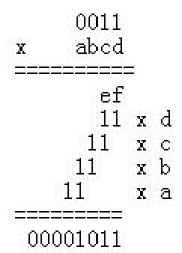
```
1011 (this is 11 in decimal)
x 1110 (this is 14 in decimal)
======

0000 (this is 1011 x 0)
1011 (this is 1011 x 1, shifted one position to the left)
1011 (this is 1011 x 1, shifted two positions to the left)
+ 1011 (this is 1011 x 1, shifted three positions to the left)
========

10011010 (this is 154 in decimal)
```



- 整数除法
  - > 有余数,引入辅助变量表示余数







$$fg$$
 $\downarrow \downarrow$ 
 $y$ 

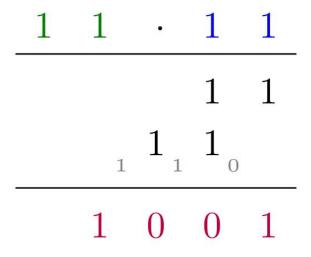
$$f$$
 $g$ 
 $y$ 

 0
 0
 0

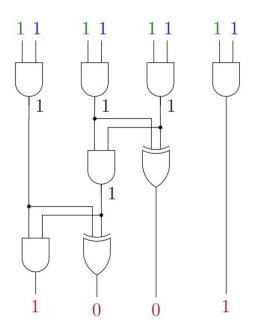
 0
 1
 1

 1
 0
 1

 1
 1
 0



$$3 \cdot 3 = 9$$





$$> s_3 \leftrightarrow g_1 \land g_4$$

$$\triangleright$$
  $s_2 \leftrightarrow g_1 \oplus g_4$ 

$$\triangleright$$
  $s_1 \leftrightarrow g_2 \oplus g_3$ 

$$\rightarrow s_0 \leftrightarrow a_0 \land b_0$$

$$\rightarrow g_1 \leftrightarrow a_1 \land b_1$$

$$\rightarrow g_2 \leftrightarrow a_0 \land b_1$$

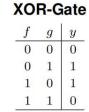
$$\Rightarrow g_3 \leftrightarrow a_1 \land b_0$$

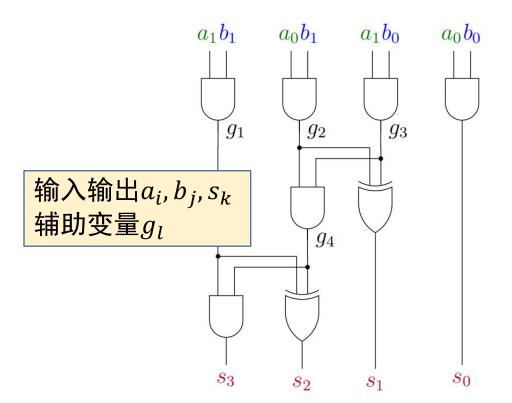
$$\rightarrow g_4 \leftrightarrow g_2 \land g_3$$













$$F = (s_3 \leftrightarrow g_1 \land g_4) \land$$

$$(s_2 \leftrightarrow g_1 \oplus g_4) \land$$

$$(s_1 \leftrightarrow g_2 \oplus g_3) \land$$

$$(s_0 \leftrightarrow a_0 \land b_0) \land$$

$$(g_1 \leftrightarrow a_1 \land b_1) \land$$

$$(g_2 \leftrightarrow a_0 \land b_1) \land$$

 $(g_3 \leftrightarrow a_1 \land b_0) \land$ 

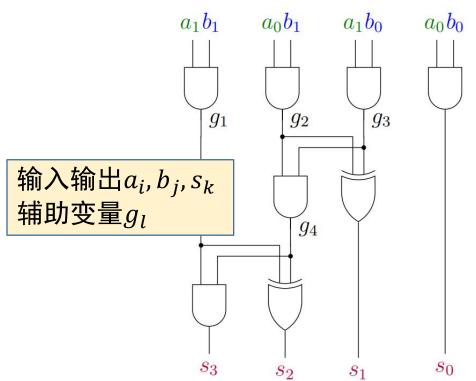
 $(g_4 \leftrightarrow g_2 \land g_3)$ 

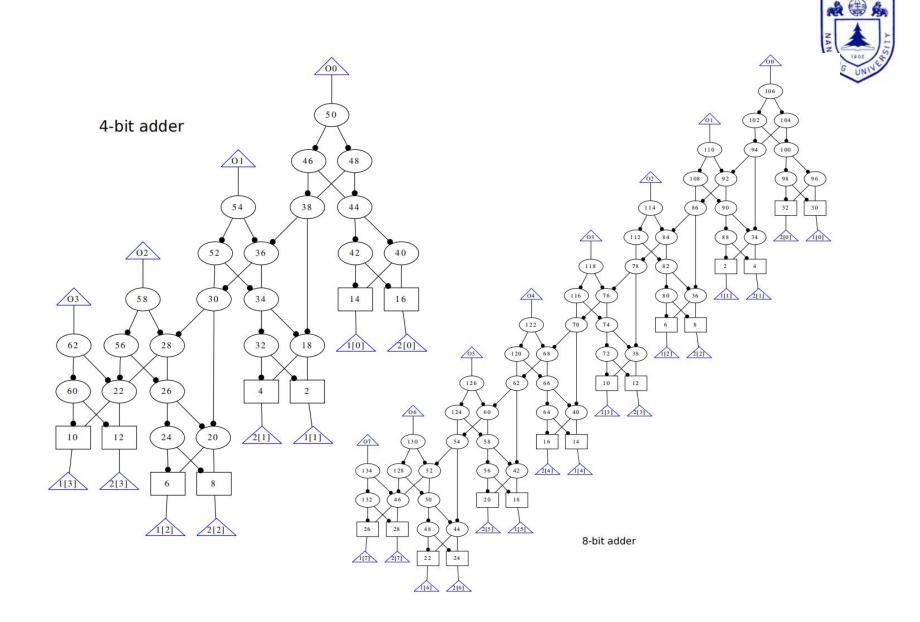


# 



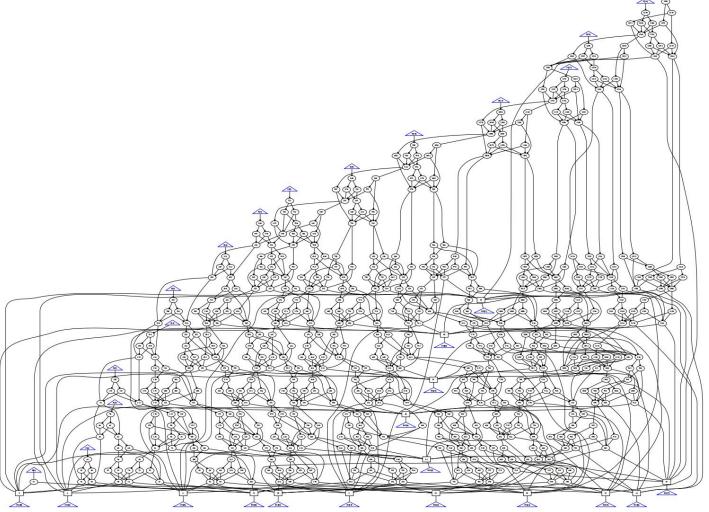
| f | g | y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |





# **Array Ripple Carry Multiplier**





# Wallace-Tree Carry-Lookahead Multiplier







n位乘法运算

命题逻辑公式F(输入输出 $a_i, b_j, s_k$ ,辅助变量 $f_I$ )

n位乘法电路

命题逻辑公式G(输入输出 $a_i,b_j,s_k$ ,辅助变量 $g_i$ )

若任意对 $a_i, b_j, s_k$ 赋值,不满足 $\neg(F \leftrightarrow G)$ ,则电路与运算等价

2025-9-23 59



#### original C code

#### optimized C code

```
if(!a && !b) h();
else if(!a) g();
else f();

if(!a) {
  if(!b) h();
    else g();
} else f();

if(!b) h();
else g();
} else g();
}
```



### 左右是否等效?

#### original C code

```
if(!a && !b) h();
else if(!a) g();
else f();
if(!a) {
 if(!b) h();
 else g();
} else f();
```

### optimized C code

```
if(a) f();
else if(b) g();
else h();
if(a) f();
else {
 if(!b) h();
 else g(); }
```



original 
$$\equiv$$
 if  $\neg a \land \neg b$  then  $h$  else if  $\neg a$  then  $g$  else  $f$ 

$$\equiv (\neg a \land \neg b) \land h \lor \neg (\neg a \land \neg b) \land \text{if } \neg a \text{ then } g \text{ else } f$$

$$\equiv (\neg a \land \neg b) \land h \lor \neg (\neg a \land \neg b) \land (\neg a \land g \lor a \land f)$$

optimized 
$$\equiv$$
 if a then f else if b then g else h  
 $\equiv a \wedge f \vee \neg a \wedge$  if b then g else h  
 $\equiv a \wedge f \vee \neg a \wedge (b \wedge g \vee \neg b \wedge h)$ 

# SAT问题应用



- 有界模型检验 (BMC, 2007 Turing Award)
- 芯片自动化设计 (EDA)
- 程序分析、软件验证
- 自动定理证明
  - Boolean Pythagorean Triples (200TB), Schur Number Five (2PB), Certification: Coq, ACL2, Isabelle
- 规划问题
- 密码学自动化分析

2025-9-23 63