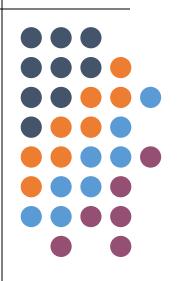


一阶逻辑



例子

2

- 所有的牛都有角(前提)有些动物是牛(前提)因此,所有动物有角(结论)
- 推理不正确

例子

- 所有的牛都有角(前提)有些动物是牛(前提)因此,所有动物有角(结论)
- 推理不正确

- 量词
 - 超出命题逻辑语言的表达能力
 - ▶ p为"所有的牛都有角", q为"有些动物是牛", r为"所有动物有角"
 - $(p \land q) \rightarrow r$,无法判断推理的正确性
- 谓词
 - > "xx有角", "xx是牛"

一阶逻辑

语法

定义1.11. 一阶语言的字母表由以下两个集合组成:

(1) 逻辑符集合:

变元集 V: 可数无穷集 $V = \{x_0, ..., x_n, ...\}$

联结词: ¬ ∧ ∨ →

量词:∀∃

等词: ≐

辅助符:().,

(2) 非逻辑符集合 ℒ由以下组成:

定义1.11. 一阶语言的字母表由以下两个集合组成:

(1) 逻辑符集合:

变元集 V: 可数无穷集 $V = \{x_0, ..., x_n, ...\}$

联结词: ¬ ∧ ∨ →

量词:∀∃

等词: ≐

辅助符:().,

(2) 非逻辑符集合 \mathcal{L} 由以下组成:

1. 与命题符不同

|V| = |N|

定义1.11. 一阶语言的字母表由以下两个集合组成:

(1) 逻辑符集合:

变元集 V: 可数无穷集 $V = \{x_0, ..., x_n, ...\}$

联结词: ¬ ∧ V → 1. 与命题符不同

量词: ∀ ∃ 完全子集{¬,→} 2. |V| = |N|

等词: ≐

辅助符:().,

(2) 非逻辑符集合 \mathcal{L} 由以下组成:

定义1.11. 一阶语言的字母表由以下两个集合组成:

(1) 逻辑符集合:

变元集 V: 可数无穷集 $V = \{x_0, ..., x_n, ...\}$

联结词: ¬ ∧ V → 1. 与命题符不同

量词: ∀ ∃ 完全子集{¬,→} 2. |V| = |N|

等词: ≐

与联结词↔不同

辅助符: () . ,

(2) 非逻辑符集合 \mathcal{L} 由以下组成:

- (2) 非逻辑符集合 ℒ由以下组成:
 - (a) \mathcal{L}_c 由可数(包括0个)常元符组成, $\mathcal{L}_c = \{c_0, c_1, \ldots\}$ 。
- (b) \mathcal{L}_f (函数集)由可数**函数符**组成, $\mathcal{L}_f = \{f_0, f_1, \dots\}$,对每个函数符f,赋予一个正整数 $\mu(f)$,为f的元数。
- (c) \mathcal{L}_P (谓词集)由可数**谓词符**组成, $\mathcal{L}_P = \{P_0, P_1, \dots\}$,对每个谓词符P,赋予一个非负整数 $\mu(P)$,为P的元数。

- (2) 非逻辑符集合 ℒ由以下组成:
 - (a) \mathcal{L}_c 由可数(包括0个)常元符组成, $\mathcal{L}_c = \{c_0, c_1, \ldots\}$ 。
- (b) \mathcal{L}_f (函数集)由可数**函数符**组成, $\mathcal{L}_f = \{f_0, f_1, \dots\}$,对每个函数符f,赋予一个正整数 $\mu(f)$,为f的元数。
- (c) \mathcal{L}_P (谓词集)由可数**谓词符**组成, $\mathcal{L}_P = \{P_0, P_1, \dots\}$,对每个谓词符P,赋予一个非负整数 $\mu(P)$,为P的元数。
 - 1. 谓词也称关系符号
 - 2. 等词≐是一个特别的谓词
 - $3. \mu(P) = 0$ 时,称P为命题符
 - $4. L_f$ 和 L_P 可以为空集

例,初等算术语言A:

常元符集为 {0};

函数符集为 $\{S, +, \cdot\}$;

谓词符集为 {<}。

例,初等算术语言A:

常元符集为 {0};

函数符集为 $\{S, +, \cdot\}$;

谓词符集为 {<}。

S为后继函数(一元)S(n) = n + 1(语义层面)

A的表达式(符号串):

$$\forall x \cdot (x, 0) \doteq 0$$

$$\exists \forall S(+(x_0,x_1))$$

例,初等算术语言A:

常元符集为 {0};

函数符集为 $\{S, +, \cdot\}$;

谓词符集为 {<}。

S为后继函数(一元) S(n) = n + 1(语义层面)

A的表达式(符号串):

$$\forall x \cdot (x, 0) \doteq 0$$

$$\exists \forall S(+(x_0,x_1))$$

$$(x,0) \doteq 0$$

$$x \cdot 0 \doteq 0$$

例,初等算术语言A:

常元符集为 {0};

函数符集为 $\{S, +, \cdot\}$;

谓词符集为 {<}。

S为后继函数(一元) S(n) = n + 1(语义层面)

A的表达式(符号串):

$$\forall x \cdot (x, 0) \doteq 0$$

$$\exists \forall S(+(x_0,x_1))$$

$$(x,0) \doteq 0$$

$$x \cdot 0 \doteq 0$$

表达式不一定是公式

例,群论语言⑤:

常元符集为 $\{e\}$;

函数符集为 $\{\cdot$ (二元), $^{-1}$ (一元) $\}$ 。

您的表达式:

$$\forall x. (\cdot (x, e) \doteq x \land \cdot (e, x) \doteq x)$$

项(term)

定义1.12(项). 项是指由以下的(i)~(iii)(有限次使用)生成。

- (i) 每个变元符为项;
- (ii) 每个常元符为项;
- (iii) 若f为n元函数, t_1,\ldots,t_n 为项,则 $f(t_1,\ldots,t_n)$ 为项。

归纳定义

定义1.13(公式).原子公式由以下(i)(ii)(有限次)生成。

- (i) 若 s 和 t 为项,则 (s = t) 为原子公式。
- (ii) 若R为n元谓词符,且 t_1, \ldots, t_n 为项,则 $R(t_1, \ldots, t_n)$ 为原子公式。

公式由以下(i)~(iv)(有限次使用)生成。

- (i) 原子公式为公式;
- (ii) 若A为公式,则($\neg A$)为公式;
- (iii) 若A, B为公式,则(A * B)为公式,其中*∈ { Λ , \forall , \rightarrow };
- (iv) 若A, B为公式且x为变元,则 $\forall x. A$ 和 $\exists x. B$ 为公式。

定义1.13(公式).原子公式由以下(i)(ii)(有限次)生成。

- (i) 若 s 和 t 为项,则 (s = t) 为原子公式。
- (ii) 若R为n元谓词符,且 t_1, \ldots, t_n 为项,则 $R(t_1, \ldots, t_n)$ 为原子公式。

公式由以下(i)~(iv)(有限次使用)生成。

- (i) 原子公式为公式;
- (ii) 若A为公式,则($\neg A$)为公式;

若f和g为函数符,

 $\neg f(x) \times$

 $f(x) \wedge g(x,y) \times$

- (iii) 若A,B为公式,则(A*B)为公式,其中*∈ { Λ, V, \rightarrow };
- (iv) 若A, B为公式且x为变元,则 $\forall x. A$ 和 $\exists x. B$ 为公式。

定义1.13(公式).原子公式由以下(i)(ii)(有限次)生成。

- (i) 若 s 和 t 为项,则 (s = t) 为原子公式。
- (ii) 若R为n元谓词符,且 t_1, \ldots, t_n 为项,则 $R(t_1, \ldots, t_n)$ 为原子公式。

公式由以下(i)~(iv)(有限次使用)生成。

- (i) 原子公式为公式;
- (ii) 若A为公式,则($\neg A$)为公式;

- 1. 等词和谓词作用在项上。
- 2. 联结词和量词只能作用 在公式上。
- (iii) 若A,B为公式,则(A*B)为公式,其中*∈ { Λ, V, \rightarrow };
- (iv) 若A, B为公式且x为变元,则 $\forall x. A$ 和 $\exists x. B$ 为公式。

定义1.13(公式).公式由以下(i)~(v)(有限次)生成。

- (i) 若 s 和 t 为项,则 (s = t) 为公式。
- (ii) 若R为n元谓词符,且 t_1, \ldots, t_n 为项,则 $R(t_1, \ldots, t_n)$ 为公式。
 - (iii) 若A为公式,则($\neg A$)为公式;
 - (iv) 若A, B为公式,则(A * B)为公式,其中 $* ∈ \{ \land , \lor , \rightarrow \};$
 - (v) 若A, B为公式且x为变元,则 $\forall x$. A和 $\exists x$. B为公式。

例,群论语言⑤:

常元符集为 $\{e\}$;

函数符集为 {· (二元), ⁻¹(一元)}。

⑤的表达式:

$$\forall x. (\cdot (x, e) \doteq x \land \cdot (e, x) \doteq x)$$
$$(\forall x. ((\cdot (x, e) \doteq x) \land (\cdot (e, x) \doteq x)))$$

公式

例, 群论语言 6:

常元符集为 $\{e\}$;

函数符集为 $\{\cdot$ (二元) $,^{-1}$ (一元) $\}$ 。

$$(\forall x. ((\cdot (x, e) \doteq x) \land (\cdot (e, x) \doteq x)))$$

为阅读方便,用m和i分别表示函数·和⁻¹。

$$(\forall x. ((m(x,e) \doteq x) \land (m(e,x) \doteq x)))$$

$$(\forall x. ((m(x,e) \doteq x) \land (m(e,x) \doteq x)))$$

$$((m(x,e) \doteq x) \land (m(e,x) \doteq x))$$

$$(m(x,e) \doteq x)$$
 $(m(e,x) \doteq x)$

$$m(x,e)$$
 x $m(e,x)$ x

由下向上生成。

例子

所有的牛都有角(前提)有些动物是牛(前提)因此、所有动物有角(结论)

对于所有x,如果x是牛,则x有角,并且存在y,y是动物,且y是牛,则对于所有z,如果z是动物,则z有角。

• 谓词: P(x)表示x是牛,Q(x)表示x有角,R(x)表示x是动物。 $((\forall x. (P(x) \to Q(x))) \land (\exists y. (R(y) \land P(y))) \to (\forall z. (R(z) \to Q(z))))$

一阶逻辑

语义

定义(结构)1.14. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二元组 (M,I),这里

- (1) *M* 为非空集, 称为论域;
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$;
 - (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
 - (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
 - (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)1.14. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二

元组 (M,I), 这里

- (1) M 为非空集, 称为**论域**;
- (2) I 为 \mathcal{L} 的映射,称为**定义域**,其满足:
 - (a) $\forall c \in \mathcal{L}_c$, 有 $I(c) \in M$;

初等算术语言A:

常元符集 $\mathcal{L}_c = \{0\}$;

函数符集 $\mathcal{L}_f = \{S, +, \cdot\};$

谓词符集 $\mathcal{L}_P = \{<\}$ 。

- (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
- (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{\mathsf{T}, \mathsf{F}\}$
- (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)1.14. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二

元组 (M,I), 这里

- (1) M 为非空集, 称为论域:
- (2) I 为 \mathcal{L} 的映射,称为**定义域**,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$;

初等算术语言A:

常元符集 $\mathcal{L}_c = \{0\}$;

函数符集 $\mathcal{L}_f = \{S, +, \cdot\};$

谓词符集 $\mathcal{L}_P = \{<\}$ 。

- (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
- $(c) \forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
- $(d) \forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

令
$$\mathbb{N} = (N, I)$$
, 其满足 $N = \{0,1,2,...\}$, $I(0) = 0$, $I(S) = suc$,

I(+)=+, $I(\cdot)=\times$,I(<)=<,称 \mathbb{N} 为初等算术的标准模型

定义(结构)1.14. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二元组 (M,I),这里

(1) M 为非空集, 称为论域;

- $I:\mathcal{L} \to ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$;
 - (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
 - (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
 - (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)1.14. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 M 为二元组 (M,I),这里

(1) M 为非空集, 称为论域;

- $I:\mathcal{L}\to ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$;
 - (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
 - (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
 - (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)1.14. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二 元组 (M,I), 这里

(1) M 为非空集, 称为论域:

- $I:\mathcal{L}\to ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$; $\mathcal{L}_c \to M$
 - (b) $\forall f \in \mathcal{L}_f \, \square \, \mu(f) = n > 0$,有 $I(f): M^n \to M$;
 - (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
 - (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

- **定义(结构)1.14.** 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二 元组 (M,I), 这里
 - (1) M 为非空集, 称为论域:

 $I:\mathcal{L} \rightarrow ?$

- (2) *I* 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$; $\mathcal{L}_c \to M$

(b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$; $\mathcal{L}_f \to F$

- (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
- (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)1.14. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二 元组 (M,I), 这里

(1) *M* 为非空集, 称为论域;

- $I:\mathcal{L} \rightarrow ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$; $\mathcal{L}_c \to M$

- (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$; $\mathcal{L}_f \to F$

- (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
- (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。 $\mathcal{L}_P \to \mathbf{B} \cup M^n$

定义(结构)1.14. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二 元组 (M,I), 这里

(1) *M* 为非空集, 称为论域;

- $I:\mathcal{L}\to ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$; $\mathcal{L}_c \to M$

- (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$; $\mathcal{L}_f \to F$

- (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
- (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。 $\mathcal{L}_P \to \mathbf{B} \cup \mathcal{M}$

 $I(P) = \langle t_1, \dots, t_n \rangle \in \mathcal{M}$ 例如,"<"可由{〈0,1〉,〈0,2〉,〈1,2〉,...}表示

约定: c_M 表示 I(c), f_M 表示 I(f), 且 P_M 表示 I(P)。

 \mathcal{L} 的结构给出了 \mathcal{L} 的元素的解释。

 \triangleright $I: \mathcal{L} \to M \cup F \cup \mathbf{B} \cup \mathcal{M}$

习惯上,用论域 M 代表结构 M,即对 M 和 M 不加以区分。

赋值与模型

定义1.15. 设 $V = \{x_0, x_1, ..., x_n, ... | n \in N \}$ 为一阶语言 \mathcal{L} 的变元集,M 为一个 \mathcal{L} -结构。

- (1) 一个 M 上的赋值 σ 为从 V 到 M 的映射,即 $\sigma: V \to M$;
- (2) \mathcal{L} 的一个模型为二元组 (\mathbb{M}, σ),

这里 M 为 \mathcal{L} -结构且 σ 为 M 上的赋值。

赋值与模型

定义1.15. 设 $V = \{x_0, x_1, ..., x_n, ... | n \in N\}$ 为一阶语言 \mathcal{L} 的变元集,M 为一个 \mathcal{L} -结构。

- (1) 一个 M 上的赋值 σ 为从 V 到 M 的映射,即 $\sigma: V \to M$;
- (2) \mathcal{L} 的一个模型为二元组 (\mathbb{M} , σ), 也写成 (M, σ) 这里 \mathbb{M} 为 \mathcal{L} -结构且 σ 为 M 上的赋值。

赋值与模型

- **定义1.15.** 设 $V = \{x_0, x_1, ..., x_n, ... | n \in N\}$ 为一阶语言 \mathcal{L} 的变元集,M 为一个 \mathcal{L} -结构。
 - (1) 一个 M 上的赋值 σ 为从 V 到 M 的映射,即 $\sigma: V \to M$;
 - (2) \mathcal{L} 的一个模型为二元组 (\mathbb{M}, σ), 也写成 (M, σ) 这里 \mathbb{M} 为 \mathcal{L} -结构且 σ 为 M 上的赋值。

(\mathcal{A} 的模型) 对于 $\mathbb{N} = (N, I)$,其满足 $N = \{0, 1, 2, ...\}$,…… 令 $\sigma(x_n) = n$, (N, σ) 为 \mathcal{A} 的模型。

定义1.16(项的解释). 设为 (M,σ) 一个 \mathcal{L} -模型,t 为项,项

t的解释 $t_{M[\sigma]}$ 归纳定义如下:

 $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;

(2) $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;

(3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

定义1.16(项的解释).设为 (M,σ) 一个 \mathcal{L} -模型,t 为项,项 t的解释 $t_{M[\sigma]}$ 归纳定义如下:

 $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;

 c_M 为I(c), f_M 为I(f)

- (2) $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

2025-9-25 40

定义1.16(项的解释).设为 (M,σ) 一个 \mathcal{L} -模型,t 为项,项 t的解释 $t_{M[\sigma]}$ 归纳定义如下:

 $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;

 c_M 为I(c), f_M 为I(f)

- (2) $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

例,对 \mathcal{A} 的模型 (N,σ) ,求 $(+(x_1,S(x_7)))_{N[\sigma]}$ 。

$$x_1 + S(x_7)$$

定义1.16(项的解释).设为(M,σ)一个 \mathcal{L} -模型, t 为项, 项 t的解释 $t_{M[\sigma]}$ 归纳定义如下:

 $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;

 c_M 为I(c), f_M 为I(f)

- (2) $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

例,对 \mathcal{A} 的模型 (N,σ) ,求 $(+(x_1,S(x_7)))_{N[\sigma]}$ 。

$$(+(x_1,S(x_7)))_{N[\sigma]} = (x_1)_{N[\sigma]} + (S(x_7))_{N[\sigma]}$$

$$I(+) = +$$

$$I(S) = suc$$

$$\sigma(x_1) = 1$$

$$\sigma(x_7) = 7$$

$$= \sigma(x_1) + suc(\sigma(x_7)) = 1 + suc(7) = 9$$

定义1.16(项的解释). 设为 (M,σ) 一个 \mathcal{L} -模型,t 为项,项 t的解释 $t_{M[\sigma]}$ 归纳定义如下:

- $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;
- $(2) c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

引理3.14. $t_{M[\sigma]} \in M$ 。

定义1.16(项的解释). 设为 (M,σ) 一个 \mathcal{L} -模型, t 为项, 项

t的解释 $t_{M[\sigma]}$ 归纳定义如下:

$$(1) x_{M[\sigma]} = \sigma(x)$$
,这里 $x \in V$;

$$(2)$$
 $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;

初等算术语言A:

常元符集 $\mathcal{L}_c = \{0\}$;

函数符集 $\mathcal{L}_f = \{S, +, \cdot\};$

谓词符集 $\mathcal{L}_P = \{<\}$ 。

(3)
$$(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$$

引理1.17. $t_{M[\sigma]} \in M$ 。

对项t的结构作归纳。

1.
$$(x_i)_{N[\sigma]} = \sigma(x_i) = i$$
;

$$2.0_{N[\sigma]} = I(0) = 0;$$

3.
$$(S(x_i))_{N[\sigma]} = suc(\sigma(x_i)) = \sigma(x_i) + 1$$
;

4.
$$(+(x_i, x_j))_{N[\sigma]} = \sigma(x_i) + \sigma(x_j);$$

5.
$$(\cdot (x_i, x_j))_{N[\sigma]} = \sigma(x_i) \times \sigma(x_j)$$
.

联结词的解释

我们把联结词解释为B上的函数:

(1) 对¬的解释 B_{\neg} : **B** → **B**:

X	T	F
$B_{\neg}(X)$	F	Т

(2) 对 \land 的解释 B_{\land} :

X	Y	$B_{\wedge}(X,Y)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Λ	T	F
Т	Т	F
F	F	F

联结词的解释

(3) 对V的解释B_V:

X	Y	$B_{\vee}(X,Y)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

V	T	F
Т	Т	Т
F	Т	F

(4) 对→的解释 B_{\rightarrow} :

X	Y	$B_{\rightarrow}(X,Y)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

\rightarrow	Т	F
Т	Т	F
F	Т	Т

联结词的解释

(3) 对 \vee 的解释 B_{\vee} :

X	Y	$B_{\vee}(X,Y)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

与命题逻辑的语义是一致的

V	T	F
Т	Т	Т
F	Т	F

(4) 对→的解释 B_{\rightarrow} :

X	Y	$B_{\rightarrow}(X,Y)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

\rightarrow	T	F
Т	T	F
F	Т	Т

定义1.18(公式的解释).设(M,σ)为一个 \mathcal{L} -模型,A为公式, 公式A的解释 $A_{M[\sigma]}$ 归纳定义如下:

$$(1) (P(t_1,\ldots,t_n))_{M[\sigma]} = \begin{cases} T, & \langle (t_1)_{M[\sigma]},\ldots,(t_n)_{M[\sigma]} \rangle \in P_M; \\ F, & \langle (t_1)_{M[\sigma]},\ldots,(t_n)_{M[\sigma]} \rangle \notin P_M. \end{cases}$$

$$(2) (t_1 \doteq t_2))_{M[\sigma]} = \begin{cases} T, & (t_1)_{M[\sigma]} = (t_2)_{M[\sigma]}; \\ F, & (t_1)_{M[\sigma]} \neq (t_2)_{M[\sigma]}. \end{cases}$$

$$(3) (\neg A)_{M[\sigma]} = \mathbf{B}_{\neg}(A_{M[\sigma]}).$$

(4)
$$(A * B)_{M[\sigma]} = \mathbf{B}_*(A_{M[\sigma]}, B_{M[\sigma]}).$$

(5)
$$(\forall x. A)_{M[\sigma]} = \begin{cases} T, \ \forall x \in M, A_{M[\sigma[x:=a]]} = T; \\ F, \ &$$
 否则.

(6) $(\exists x. A)_{M[\sigma]} = \begin{cases} T, \ \forall x \in M, A_{M[\sigma[x:=a]]} = T; \\ F, \ &$ 否则.

$$(6) (\exists x. A)_{M[\sigma]} = \begin{cases} T, & \exists a \in M, A_{M[\sigma[x:=a]]} = T, \\ F, & \text{否则}. \end{cases}$$

定义1.18(公式的解释).设(M,σ)为一个 \mathcal{L} -模型,A为公式, 公式A的解释 $A_{M[\sigma]}$ 归纳定义如下:

$$(1) (P(t_1,\ldots,t_n))_{M[\sigma]} = \begin{cases} T, & \langle (t_1)_{M[\sigma]},\ldots,(t_n)_{M[\sigma]} \rangle \in P_M; \\ F, & \langle (t_1)_{M[\sigma]},\ldots,(t_n)_{M[\sigma]} \rangle \notin P_M. \end{cases}$$

(2)
$$(t_1 \doteq t_2)_{M[\sigma]} = \begin{cases} T, & (t_1)_{M[\sigma]} = (t_2)_{M[\sigma]}; \\ F, & (t_1)_{M[\sigma]} \neq (t_2)_{M[\sigma]}. \end{cases}$$

$$(3) (\neg A)_{M[\sigma]} = \mathbf{B}_{\neg}(A_{M[\sigma]}).$$

$$(5) (\forall x. A)_{M[\sigma]} = \begin{cases} T, & \forall \alpha \in M, A_{M[\sigma[x:=\alpha]]} = T; \\ F, &$$
 否则.

$$(3) (\neg A)_{M[\sigma]} = \mathbf{B}_{\neg}(A_{M[\sigma]}).$$

$$(4) (A * B)_{M[\sigma]} = \mathbf{B}_{*}(A_{M[\sigma]}, B_{M[\sigma]}).$$

$$(5) (\forall x. A)_{M[\sigma]} = \begin{cases} T, \ \forall a \in M, A_{M[\sigma[x:=a]]} = T; \\ F, \ \text{否则}. \end{cases}$$

$$(6) (\exists x. A)_{M[\sigma]} = \begin{cases} T, \ \exists a \in M, A_{M[\sigma[x:=a]]} = T; \\ F, \ \text{否则}. \end{cases}$$

引理1.19. 对任何公式A, $A_{M[\sigma]} \in \mathbf{B} = \{T, F\}$ 。 对公式A的结构作归纳。

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\forall x_3. (x_3 < x_1 + x_4)$$

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\dot{\mathbb{R}}(\forall x_3.(<(x_3,+(x_1,x_4))))_{N[\sigma]}.$$
 $\forall x_3.(x_3 < x_1 + x_4)$

$$\forall x_3. (x_3 < x_1 + x_4)$$

$$= \begin{cases} T, \ \, \forall \forall a \in \mathbb{N}, (<(x_3, +(x_1, x_4)))_{\mathbb{N}[\sigma[x_3:=a]]} = T; \\ F, \ \, \mathbf{否则}. \end{cases}$$

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\forall x_3. (x_3 < x_1 + x_4)$$

$$= \begin{cases} T, & \forall a \in \mathbb{N}, (<(x_3, +(x_1, x_4)))_{\mathbb{N}[\sigma[x_3:=a]]} = T; \\ F, & \text{ } \mathbf{G} \mathbb{M}. \end{cases}$$

其中
$$(<(x_3, +(x_1, x_4)))_{N[\sigma[x_3:=a]]}$$

$$= \begin{cases} T, & \langle (x_3)_{N[\sigma[x_3:=a]]}, (+(x_1, x_4))_{N[\sigma[x_3:=a]]} \rangle \in <_N; \\ F, &$$
 否则.

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\forall x_3. (x_3 < x_1 + x_4)$$

$$= \begin{cases} T, \ \, \forall \forall a \in \mathbb{N}, (<(x_3, +(x_1, x_4)))_{\mathbb{N}[\sigma[x_3:=a]]} = T; \\ F, \ \, \mathbf{否则}. \end{cases}$$

其中
$$(<(x_3,+(x_1,x_4)))_{N[\sigma[x_3:=a]]}$$

$$(x_3)_{N[\sigma[x_3:=a]]} = (\sigma[x_3:=a])(x_3) = a$$

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\dot{\mathbb{R}}(\forall x_3.(<(x_3,+(x_1,x_4))))_{N[\sigma]}.$$
 $\forall x_3.(x_3 < x_1 + x_4)$

$$\forall x_3 . (x_3 < x_1 + x_4)$$

$$= \begin{cases} T, \ \, \forall \forall a \in \mathbb{N}, (<(x_3, +(x_1, x_4)))_{\mathbb{N}[\sigma[x_3:=a]]} = T; \\ F, \ \, \mathbf{否则}. \end{cases}$$

其中
$$(<(x_3,+(x_1,x_4)))_{N[\sigma[x_3:=a]]}$$

$$= \begin{cases} T, & \langle (x_3)_{N[\sigma[x_3:=a]]}, (+(x_1, x_4))_{N[\sigma[x_3:=a]]} \rangle \in <_N; \\ F, & \text{ Town.} \end{cases}$$

$$(x_3)_{N[\sigma[x_3:=a]]} = (\sigma[x_3:=a])(x_3) = a$$

$$(+(x_1, x_4))_{N[\sigma[x_3:=a]]} = (\sigma[x_3:=a])(x_1) + (\sigma[x_3:=a])(x_4)$$

= 1 + 4 = 5

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\forall x_3. (x_3 < x_1 + x_4)$$

$$= \begin{cases} T, \ \, \forall \forall a \in \mathbb{N}, (<(x_3, +(x_1, x_4)))_{\mathbb{N}[\sigma[x_3:=a]]} = T; \\ F, \ \, \mathbf{否则}. \end{cases}$$

其中
$$(<(x_3,+(x_1,x_4)))_{N[\sigma[x_3:=a]]} = \begin{cases} T, & a < 5; \\ F, & 否则. \end{cases}$$

可满足

定义1.20. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集,

 (M,σ) 为 \mathcal{L} -模型。

 $M \not\models_{\sigma} A 指 A_{M[\sigma]} = F$

- (1) A 对于 (M, σ) 可满足,记为 $M \models_{\sigma} A$,指 $A_{M[\sigma]} = T$;
- (2) A 可满足指存在 (M, σ) 使得 M⊨ $_{\sigma}A$;
- (3) $M \models A$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} A$;

可满足

定义1.20. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集,

 (M,σ) 为 \mathcal{L} -模型。

$$M
ot \in_{\sigma} A$$
 指 $A_{M[\sigma]} = F$

- (1) A 对于 (M, σ) 可满足,记为 $M \models_{\sigma} A$,指 $A_{M[\sigma]} = T$;
- (2) A 可满足指存在 (M,σ) 使得 $M \models_{\sigma} A$; $M \not\models A$ 指 $\exists \sigma, A_{M[\sigma]} = F$
- (3) $M \models A$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} A$;
- (4) Γ 对于 (M, σ) 可满足,记为 $M \models_{\sigma} \Gamma$ 指对 $\forall A \in \Gamma$, $M \models_{\sigma} A$;
- (5) Γ 可满足指存在 (M, σ) 使得 M \models σ Γ ;
- (6) $M \models \Gamma$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} \Gamma$ 。

可满足

定义1.20. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集,

 (M,σ) 为 \mathcal{L} -模型。

$$M \not\models_{\sigma} A 指 A_{M[\sigma]} = F$$

- (1) A 对于 (M,σ) 可满足,记为 $M \models_{\sigma} A$,指 $A_{M[\sigma]} = T$;
- (2) A 可满足指存在 (M,σ) 使得 $M \models_{\sigma} A$; $M \not\models A$ 指 $\exists \sigma, A_{M[\sigma]} = F$
- (3) $M \models A$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} A$;
- (4) Γ 对于 (M, σ) 可满足,记为 $M \models_{\sigma} \Gamma$ 指对 $\forall A \in \Gamma$, $M \models_{\sigma} A$;
- (5) Γ 可满足指存在 (M, σ) 使得 M \models σ Γ ;
- (6) $M \models \Gamma$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} \Gamma$ 。

$$M
ot\models_{\sigma} \Gamma$$
 指 $\exists A \in \Gamma$, $A_{M[\sigma]} = F$

 $M \not\models \Gamma$ 指 $\exists \sigma$, $M \not\models_{\sigma} \Gamma$

永真

定义1.21. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集, (M,σ) 为 \mathcal{L} -模型。

(1) A永真,记为⊨ A,指对于任何模型 (M, σ) 有 M⊨ $_{\sigma}A$;

(2) Γ 永真,记为⊨ Γ ,指对于任何模型 (M, σ) 有 M⊨ $_{\sigma}\Gamma$ 。

定义1.22. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集, (M,σ) 为 \mathcal{L} -模型。A为 Γ 的**语义结论**,记为 $\Gamma \vDash A$,指对于任何模型 (M,σ) ,若 $M \vDash_{\sigma} \Gamma$,则 $M \vDash_{\sigma} A$ 。

- $\Gamma \nvDash A$ 表示 $\Gamma \vDash A$ 不成立
 - ▶ 即存在模型 (M, σ) ,使得 $M \models_{\sigma} \Gamma$, $M \not\models_{\sigma} A$
- $\emptyset \models A \text{ iff } A \hat{\lambda} \hat{A}, \mathbb{D} \models A$
- $\Xi \Gamma \models A \perp \Gamma \models \neg A$, 则称 $\Gamma \overline{\Lambda} \overline{\Lambda} = \overline{\Lambda} \overline{\Lambda}$

- 例, $\mathcal{A} \models F$,
 - ➤ 若A为平面几何公理系统
 - ▶ 则F为平面几何中可由公理推出的命题

 \mathcal{A} 是一致的,即没有矛盾

- 例, $\mathcal{A} \models F$,
 - ➤ 若A为平面几何公理系统
 - ▶ 则F为平面几何中可由公理推出的命题

- 例, ZFC ⊨ F
 - ▶ 其中,ZFC为集合论公理系统ZF与选择公理AC的并集
 - ➤ 则F为可由ZFC推出的命题

2025-9-25 63

- 例,给定样本集合E,背景知识集合B,求假设H,使得 $B,H \models E$
- 此即归纳逻辑程序的机器学习问题。