Logic Programming
Operation Definitions

Michael Genesereth
Computer Science Department
Stanford University

p(a,b)
p(b,c)
p(c,d)

g(a,c)
g(b,d)

View I

p(a,b)
p(b,c)
p(c,d)

g(a,c)
g(b,d)

VieWI
p(a,b) p(b,a)
p(b,c) . |P(c/b)
p(c,d) Operation p(d,c)

:1 =2

g(a,c) g(c,a)
g(b,d) g(d,b)
ViewI IVieW
p(a,b) p(b,a)
p(b,c) . |P(c/b)
p(c,d) Operation p(d,c)

:1 =2

Operation Definitions

View Definitions

r(X,Y) :- p(X,Y) & ~q(Y)
s(X,Y) := r(X,Y) & r(Y¥,2)

Operation Definitions

flip(X) :: p(X) & ~g(X) ==> ~p(X) & g(X)
flop(X) :: r(X,Y) ==> flip(X) & flop(Y)

Program Sheets

(| NONX) O |v 0 127.0.0.1 ¢ th | 2 [
Al Program Requirements Quarters: autumn winter ~ spring
- Take at least 6 courses
- Take at most 3 courses per quarter
— CS 124 1 CS 131 @ CS 157 — CS 223A
— CS 224N 1 CS 225A CS 227B CS 228
1 CS 229 1 CS 231N CS 238 CS 273A
CS 273B CS 276 CS 279 CS 331B
) Course Units Total: 13 Professor # Courses
Focus on Al Topics CS 157 N 3
CS 227B O 3 2
CS 228 (O 8
CS 331B O, 4 1

I Natural Language Processing
I Computational Biology Computer Vision
I nformation Retrieval I Logic
I Vachine Learning @@ Natural Language Processing
I Robotics

Demonstration

Portico (Symbium

[NON] £l Not Secure — complaw.stanford.edu © t] i

Portico

Use sliders to adjust view. Click and drag to move building. Click Larger, Smaller, Taller, Shorter to adjust size.

Larger Smaller Turn Stop Taller Shorter

Item Data Standard | Actual | Allowed | Status Item | Min | Max
Footprint 160000 | 168000 v Home x | 200 600

Zone R-1

©

Demonstration

Trifecta

| NON J [v 0 127.0.0.1 ¢

¢
¢
¢

=
i3

Deck

LK

L

Player Score

50 50

Demonstration

Solar System

Demonstration

Syntax

Operation Constants

Operation constants represent operations.
tick - tick of the clock
click - click a button on a web page
stack - place one block on another
mark - place a specific mark in a row and a column

Same spelling conventions as other constants.
Like constructors, and predicates, each has a specific arity.

tick/0
click/1
stack/2
mark/3

An action 1s an application of an operation to objects.

In what follows, we denote actions using a syntax similar to
that of compound terms, viz. an n-ary operation constant
followed by n terms enclosed in parentheses (as appropriate)
and separated by commas.

Examples:
tick
click(a)
stack(a,b)
mark(x,2,3)

Syntactically, actions are treated as terms.

Operation Definition

c(a) :: p(a,b) & g(a) ==> ~g(a) & c(b)
head conditions effects
(action) (ordinary literals) (base literals or actions)

c(X) :: p(X,Y) & g(X) ==> ~q(X) & c(Y)

A operation rule is safe if and only if every variable in every
literal on the right hand side appears in the head or in a
positive literal on the left hand side. Also, every variable in
a negative literal on the left hand side appears in a prior
positive literal.

Safe Operation Rule
c(X)
p(X,Y) & ~g(X) ==>
~P(X,Y) & g(X) & c(Y)

Unsafe Operation Rule
c(X)
p(X,Y) & ~q(2) ==>
~P(X,Y) & q(W) & c(Y)

Degenerate Rules

Degenerate Rule

c(X) :: true ==> ~p(X) & g(X)

Shorthand

c(X) :: ~p(X) & q(X)

Dynamic Logic Programs

An operation definition 1s a finite collection of operation
rules with the same operation in the head.

Example

c(X) :: p(X) & g(X)
c(X) :: ~r(X) ==> ~p(X) & r(X)

A dynamic logic program 1s a collection of view definitions
and operation definitions.

Semantics

Given a dynamic logic program, the result of applying an
action to a dataset is the dataset that results from

(1) deleting all of the negative effects of the action
and then

(2) adding in all of the positive effects.

Active and Inactive Rule Instances

Given a ruleset €2 with dataset A and a set I' of actions, an
instance of an operation rule in €2 is active if and only if

(1) the head of the rule 1s in I
(2) the conditions of the rule are all true in A.

Otherwise, the instance i1s inactive.

Data: p(a),p(b),p(c),qa(a),a(b),a(c),r(b)

Rule:
u(X) :: p(X) & g(X) & ~r(X) ==> ~p(X) & r(X)

Action: u(a)

Active Instance:
u(a) :: p(a) & g(a) &

!
!
Q

|

I
\%

!

'O
V)
o4
!
V)

Inactive Instances:
u(b) :: p(b) & g(b) & ~r(b)
u(c) :: p(c) & g(c) & ~r(c)

\Y,

~p(b) & r(b)
~p(c) & r(c)

\Y,

Expansion

r

I'he expansion™® of an action set with respect to a rule set 1s
the set of all effects in any active instance of any operation
definition.

The positive updates of an action with respect to a rule set
are the positive literals in the expansion.

The negative updates of an action with respect to a rule set
are the negative literals in the expansion.

*Simple version

Data: p(a),p(b),p(c), da(a),q(b),q(c), r(b)

Rule:
u(X) :: p(X) & g(X) & ~r(X) ==> ~p(X) & r(X)

Action: u(a)
Active Instance:

u(a) :: p(a) & g(a) & ~r(a) ==> ~p(a) & r(a)

Expansion: ~p(a), r(a)
Negative Update: p(a)
Positive Update: r (a)

Given a rule set, the result of applying an action set to
dataset A is the set consisting of all factoids in A minus the
negative updates plus the positive updates.

A - negatives U positives

Data: p(a),p(b),p(c), da(a),q(b),q(c), r(b)

Rule:
u(X) :: p(X) & g(X) & ~r(X) ==> ~p(X) & r(X)

Action: u(a)

Negative Updates: p(a)
Positive Updates: r (a)

Result: p(b),p(c), dg(a),q(b),q(c), r(a),r(b)

Multiple Rules

Dataset: p(a),p(b),p(c), d(a),da(b),a(c), r(b)

Rule:
u(X) :: p(X) & g(X) & ~r(X) ==> ~p(X)
u(x) :: p(X) & qg(X) & ~r(X) ==> r(X)

Action: u(a)

Negative effects: p(a)
Positive effects: r(a)

Result: p(b),p(c), dg(a),q(b),q(c), r(a),r(b)

Dataset: {p(a),p(b),p(c), d(a),qa(b),q(c)}

Rule:
u(x) :: p(X) & gq(X) ==> ~r(X)
u(X) s p(X) & g(X) ==> r(X)

Action: u(a)

Negative effects: r (a)
Positive effects: r(a)

Result: p(a),p(b),p(c), d(a),qa(b),d(c), r(a)

Simultaneous Actions

Data: p(a),p(b),p(c), da(a),q(b),q(c), r(b)

Rule:
u(X) 2 p(X) & g(X) & ~r(X) ==> ~p(X) & r(X)

Actions: u(a),u(b),u(c)

Active Instances:
u(a) :: p(a) & g(a) & ~r(a) ==> ~p(a) & r(a)
u(c) :: p(c) & g(c) & ~r(c) ==> ~p(c) & r(c)

Inactive Instance:
u(b) :: p(b) & g(b) & ~r(b) ==> ~p(b) & r(b)

Simultaneous Actions

Data: p(a),p(b),p(c), da(a),qa(b),q(c), r(b)

Rule:
u(X) :: p(X) & g(X) & ~r(X) ==> ~p(X) & r(X)

Actions: u(a),u(b),u(c)

Expansion: ~p(a), ~p(c), r(a), r(c)
Negative Updates: p(a),p(c)
Positive Updates: r(a), r(c)

Result: p(b), q(a),a(b),a(c), r(a),r(b),r(c)

Derived Actions

Data: p(a),p(b),p(c), da(a),qa(b),q(c), r(b)

Rule:
u(X) :: p(X) & g(X) ==> ~p(X) & r(X) & u(c)

Input Action: u(a) Derived action: u(c)
Expansion: ~p(a),~p(c),r(a),r(c),u(a),u(c)
Negative Updates: {p(a), p(c)}

Positive Updates: {r(a), r(c)}

Result: p(b), aq(a),a(b),qa(c), r(a),r(b),r(c)

Expansion

Given a rule set €2 and a dataset A a set I of actions,
consider the following series.

To=T1
I'n+1 = the set of all effects of I in any active rule instance

The expansion* of I" with respect to €2 and A is the fixpoint
of this series.

The positive updates of an action with respect to a rule set
are the positive literals in the full expansion.

The negative updates of an action with respect to a rule set
are the negative literals in the full expansion.

*FExact version

Interchange

function interchange ()
{x = vy;
y = X}

[%, Y]
[3, 4]

interchange()

[X, Y]
[4, 4]

function interchange ()
{var z = X;
X = V;
y = 2z}

Interchange

interchange ::
val(x,X) & val(y,Y) ==>
~val(x,X) & ~val(y,Y) &
val(x,Y) & val(y,X)

val(x,3)
val(y,4)
Execute: interchange

val(x,4)
val(y,3)

Production Systems

A production system is a set of condition-action rules. On
each step 1n the execution of a production system, an active
rule 1s chosen and the actions are performed. The cycle then
repeats on the new state.

if p(X), then del p(X) and add g(X)
1if q(X), then del g(X) and add p(X)

Before: {p(a),a(b)}
Step 1: {a(a),a(b)}
Step 2: {p(a),qa(b)} or {p(b),q(a)}

When do we stop?

Dynamic Logic Programs

Dynamic logic programs differ from production systems in
that all active transition rules “fire” at the same time. (1) All
updates are computed before any changes are made, and (2)
all changes are made simultaneously.

tick :: p(X) ==> ~p(X) & g(X)
tick :: g(X) ==> ~g(X) & p(X)

Before: {p(a), q(b)}
After: {p(b), dg(a)}

Blocks World

Blocks World

oy

External Actions

A
B D
C E
-]
u(a ,i?/ u(d,e)
A
B D B

Describing States

A
clear(a)
B D on(a,b)
on(b,c)
C E on(d,e)

-] coe
u(a,b)

M clear(a)
B D table(a)
clear(b)
C|A|E on(b,c)

on(d,e)

Operation Definitions

Operations:
u(x,y) means that x 1s moved from y to the table.
s (x,y) means that x 1s moved from the table to y.

Operation Definitions:
u(Xx,Y)
clear(X) & on(X,Y)
==> ~on(X,Y) & table(X) & clear(Y)

Operation Definitions

Operations:
u(x,y) means that x 1s moved from y to the table.
s (x,y) means that x 1s moved from the table to y.

Operation Definitions:
u(Xx,Y)
clear(X) & on(X,Y)
==> ~on(X,Y) & table(X) & clear(Y)

s(X,Y)
table(X) & clear(X) & clear(Y)
==> ~table(X) & ~clear(Y) & on(X,Y)

The Game of Life

Rules of the Game

(1) Any live cell with two or three live neighbors lives on to
the next generation.

(2) Any live cell with fewer than two live neighbors dies (as
if caused by underpopulation).

(3) Any live cell with more than three live neighbors dies (as
if by overpopulation).

(4) Any dead cell with exactly three live neighbors becomes
a live cell (as if by reproduction).

Vocabulary

Symbols: c11, cl12, ..

Unary Predicates:
on - cell 1s live
cell - true of cells

Binary Predicates:
neighbor - cells are neighbors

Any live cell with fewer than two live neighbors dies.

tick ::

on(Y) & countofall(X,neighbor(X,Y)&on(X),0)
==> ~on(Y)

tick ::

on(Y) & countofall(X,neighbor(X,Y)&on(X),1)
==> ~on(Y)

Any live cell with more than three live neighbors dies.

tick ::
on(Y) &
countofall (X,neighbor(X,Y)&on(X),N) &
leq(4,N)
==> ~on(Y)

Transition Rules

Any dead cell with exactly three live neighbors becomes live.

tick ::
cell(Y) & ~on(Y) &
countofall (X,neighbor(X,Y)&on(X),3)
==> on(Y)

Demonstration

Tic Tac Toe

cell(l,1,x)
cell(l,2,b)
cell(1l,3,b)
cell(2,1,b)
cell(2,2,0)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control (o)

Legal Moves

legal(M,N) :- cell(M,N,Db)

State: Legal Moves:
cell(1l,1,x) mark(1l,2)
cell(l,2,b))(mark(1l,3)
cell(1l,3,b) mark(2,1)
cell(2,1,b) O mark(2,3)
cell(2,2,0) mark(3,1)
cell(2,3,b) mark(3,2)
cell(3,1,b) X
cell(3,2,b)
cell(3,3,x)

control (o)

mark (M, N)
control (

mark(M,N)
control (

mark (M, N)
control (

O) N ee D oo

cell(1l,1,x)
cell(1l,2,b)
cell(1l,3,b)
cell(2,1,b)
cell(2,2,0)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control (o)

Actions

==> ~cell(M,N,b) & cell(M,N,Z)

==> ~control(x) & control(o)

==> ~control(o) & control(x)

mark(1l,3)

cell(1l,1,x)
cell(1l,2,b)
cell(1l,3,0)
cell(2,1,b)
cell(2,2,0)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control (x)

Supporting Concepts

row(M,zZ) :- cell(M,1,Z) & cell(M,2,Z) & cell(M,3,2)
col(M,Z2) :- cell(l1l,N,Z2) & cell(2,N,Z) & cell(3,N,Z)
diag(Z) :- cell(l,1,Z2) & cell(2,2,Z) & cell(3,3,2)
diag(Zz) :- cell(1,3,Z2) & cell(2,2,Z) & cell(3,1,2)

line(Z) :- row(M,Z)
line(Z) :- col(M,Z)
line(Z) :- diag(Z)

win(x) :- line(Xx)
win(o) :- line(0)

terminal :- win(Z2)
terminal :-
evaluate(countofall([M,N],cell(M,N,b)),0)

Example

0 Not Secure — mming.stanford.edu &

Tic Tac Toe

Click in a clear square
to mark that square.

X

o

O | X

Player: x

Reset

50 50

]

Demonstration

Assignments

Assignment - Sierra

The goal of this exercise 1s for you to familiarize yourself
with the Sierra capabilities for editing and using action
definitions. Go to http://epilog.stanford.edu and click on the
Sierra link.

In a separate window, open the documentation for Sierra. To
access the documentation, go to http://epilog.stanford.edu,
click on Documentation, and then click on the Sierra item
on the resulting drop-down menu.

Read though Sections 7 and 8 of the documentation and
reproduce the examples in the Sierra window you opened
earlier. Once you have done this, experiment on your own.
Try different data and different actions.

Assignment - Nineboard Tic Tac Toe

SRS E8 258
e
SHS HED S

http://logicprogramming.stanford.edu/assignments/nineboard/index.html

Pelican Hunters

Waa s

o

0

@55’ =
= N 5
A ‘j‘

—— ——
0 =S ESS 0
FSy FSy
P 2
ES FSy
P 22
ESY >

Player: indy

Step Play Reset

http://logicprogramming.stanford .edu/assignments/pelicanhunters/index.html

ooo

[] ® < M v 1ts/logicprogramming/assignments/programsheets/starter.html - & M N

STANFORD UNIVERSITY
Computer Science Department
Program Sheet

CS 221 CS 254
CS 223 CS 261
CS 227 CS 264
CS 228 CS 272
CS 229 CS 273

Requirements: Theory Courses: Prerequisites:
CS 103 required. CS 154 CS 109 is a prerequisite for CS 229
One theoretical course. CS 157 CS 145 is a prerequisite for CS 345
CS 109 or CS157. CS 161 CS 154 is a prerequisite for CS 254
Prerequisites satisfied. CS 254 CS 157 is a prerequisite for CS 227
At least five courses. CS 157 is a prerequisite for CS 345

http://logicprogramming.stanford.edu/assignments/programsheets/index.html

Schedule

Course| Room Time

cs151 | [v

cs157 | 3 3

cs161 | 3 I s
Schedule 2100 2200 2300
morning | 4 I $ I 3
afternoon| 2 4| 2
evening | s 4| 3

http://logicprogramming.stanford.edu/assignments/schedule/index.html

Term Project Proposal

Term Project

