
Logic Programming
Operation Definitions

Michael Genesereth
Computer Science Department

Stanford University

Datasets

p(a,b)  
p(b,c)
p(c,d)

Views

p(a,b)  
p(b,c)
p(c,d)

g(a,c)  
g(b,d)

View

Operations

p(a,b)  
p(b,c)
p(c,d)

p(b,a)  
p(c,b)
p(d,c)

g(a,c)  
g(b,d)

View

Operation

t=1 t=2

Operations

p(a,b)  
p(b,c)
p(c,d)

p(b,a)  
p(c,b)
p(d,c)

g(a,c)  
g(b,d)

g(c,a)  
g(d,b)

View View

Operation

t=1 t=2

Operation Definitions

View Definitions

 r(X,Y) :- p(X,Y) & ~q(Y)
 s(X,Y) :- r(X,Y) & r(Y,Z)

Operation Definitions

 flip(X) :: p(X) & ~q(X) ==> ~p(X) & q(X)
 flop(X) :: r(X,Y) ==> flip(X) & flop(Y)

Demonstration

Program Sheets

Demonstration

Portico (Symbium)

Demonstration

Trifecta

Demonstration

Solar System

Syntax

Operation constants represent operations.
 tick - tick of the clock
 click - click a button on a web page
 stack - place one block on another
 mark - place a specific mark in a row and a column

Same spelling conventions as other constants.
Like constructors, and predicates, each has a specific arity.

 tick/0
 click/1
 stack/2
 mark/3

Operation Constants

An action is an application of an operation to objects.

In what follows, we denote actions using a syntax similar to
that of compound terms, viz. an n-ary operation constant
followed by n terms enclosed in parentheses (as appropriate)
and separated by commas.

Examples:
 tick
 click(a)
 stack(a,b)
 mark(x,2,3)

Syntactically, actions are treated as terms.

Actions

 c(a) :: p(a,b) & q(a) ==> ~q(a) & c(b)

 head conditions effects
(action) (ordinary literals) (base literals or actions)

{ {

Operation Definition
{

Variables

 c(X) :: p(X,Y) & q(X) ==> ~q(X) & c(Y)

A operation rule is safe if and only if every variable in every
literal on the right hand side appears in the head or in a
positive literal on the left hand side. Also, every variable in
a negative literal on the left hand side appears in a prior
positive literal.

Safe Operation Rule
 c(X) ::
 p(X,Y) & ~q(X) ==>
 ~p(X,Y) & q(X) & c(Y)

Unsafe Operation Rule
 c(X) ::
 p(X,Y) & ~q(Z) ==>
 ~p(X,Y) & q(W) & c(Y)

Safety

Degenerate Rule

 c(X) :: true ==> ~p(X) & q(X)

Shorthand

 c(X) :: ~p(X) & q(X)

Degenerate Rules

An operation definition is a finite collection of operation
rules with the same operation in the head.

Example
 c(X) :: p(X) & q(X)
 c(X) :: ~r(X) ==> ~p(X) & r(X)

A dynamic logic program is a collection of view definitions
and operation definitions.

Dynamic Logic Programs

Semantics

Given a dynamic logic program, the result of applying an
action to a dataset is the dataset that results from

(1) deleting all of the negative effects of the action

and then

(2) adding in all of the positive effects.

Intuition

Given a ruleset Ω with dataset Δ and a set Γ of actions, an
instance of an operation rule in Ω is active if and only if

(1) the head of the rule is in Γ

(2) the conditions of the rule are all true in Δ.

Otherwise, the instance is inactive.

Active and Inactive Rule Instances

Data: p(a), p(b), p(c), q(a),q(b),q(c),r(b)

Rule:
 u(X) :: p(X) & q(X) & ~r(X) ==> ~p(X) & r(X)

Action: u(a)

Active Instance:
 u(a) :: p(a) & q(a) & ~r(a) ==> ~p(a) & r(a)

Inactive Instances:
 u(b) :: p(b) & q(b) & ~r(b) ==> ~p(b) & r(b)
 u(c) :: p(c) & q(c) & ~r(c) ==> ~p(c) & r(c)

Example

The expansion* of an action set with respect to a rule set is
the set of all effects in any active instance of any operation
definition.

The positive updates of an action with respect to a rule set
are the positive literals in the expansion.

The negative updates of an action with respect to a rule set
are the negative literals in the expansion.

Expansion

*Simple version

Data: p(a), p(b), p(c), q(a),q(b),q(c), r(b)

Rule:
 u(X) :: p(X) & q(X) & ~r(X) ==> ~p(X) & r(X)

Action: u(a)

Active Instance:
 u(a) :: p(a) & q(a) & ~r(a) ==> ~p(a) & r(a)

Expansion: ~p(a), r(a)
Negative Update: p(a)
Positive Update: r(a)

Example

Given a rule set, the result of applying an action set to
dataset Δ is the set consisting of all factoids in Δ minus the
negative updates plus the positive updates.

Δ - negatives ∪ positives

Result

Data: p(a), p(b), p(c), q(a),q(b),q(c), r(b)

Rule:
 u(X) :: p(X) & q(X) & ~r(X) ==> ~p(X) & r(X)

Action: u(a)

Negative Updates: p(a)
Positive Updates: r(a)

Result: p(b), p(c), q(a), q(b), q(c), r(a), r(b)

Example

Dataset: p(a), p(b), p(c), q(a),q(b),q(c), r(b)

Rule:
 u(X) :: p(X) & q(X) & ~r(X) ==> ~p(X)
 u(X) :: p(X) & q(X) & ~r(X) ==> r(X)

Action: u(a)

Negative effects: p(a)
Positive effects: r(a)

Result: p(b), p(c), q(a), q(b), q(c), r(a), r(b)

Multiple Rules

Dataset: {p(a), p(b), p(c), q(a),q(b),q(c)}

Rule:
 u(X) :: p(X) & q(X) ==> ~r(X)
 u(X) :: p(X) & q(X) ==> r(X)

Action: u(a)

Negative effects: r(a)
Positive effects: r(a)

Result: p(a), p(b), p(c), q(a), q(b), q(c), r(a)

Weird Case

Data: p(a), p(b), p(c), q(a),q(b),q(c), r(b)

Rule:
 u(X) :: p(X) & q(X) & ~r(X) ==> ~p(X) & r(X)

Actions: u(a), u(b), u(c)

Active Instances:
 u(a) :: p(a) & q(a) & ~r(a) ==> ~p(a) & r(a)
 u(c) :: p(c) & q(c) & ~r(c) ==> ~p(c) & r(c)

Inactive Instance:
 u(b) :: p(b) & q(b) & ~r(b) ==> ~p(b) & r(b)

Simultaneous Actions

Data: p(a), p(b), p(c), q(a),q(b),q(c), r(b)

Rule:
 u(X) :: p(X) & q(X) & ~r(X) ==> ~p(X) & r(X)

Actions: u(a), u(b), u(c)

Expansion: ~p(a), ~p(c), r(a), r(c)
Negative Updates: p(a), p(c)
Positive Updates: r(a), r(c)

Result: p(b), q(a), q(b), q(c), r(a), r(b),r(c)

Simultaneous Actions

Data: p(a), p(b), p(c), q(a),q(b),q(c), r(b)

Rule:
 u(X) :: p(X) & q(X) ==> ~p(X) & r(X) & u(c)

Input Action: u(a) Derived action: u(c)

Expansion: ~p(a),~p(c),r(a),r(c),u(a),u(c)
Negative Updates: {p(a), p(c)}
Positive Updates: {r(a), r(c)}

Result: p(b), q(a), q(b), q(c), r(a), r(b),r(c)

Derived Actions

Given a rule set Ω and a dataset Δ a set Γ of actions,
consider the following series.

Γ0 = Γ
Γn+1 = the set of all effects of Γ in any active rule instance

The expansion* of Γ with respect to Ω and Δ is the fixpoint
of this series.

The positive updates of an action with respect to a rule set
are the positive literals in the full expansion.

The negative updates of an action with respect to a rule set
are the negative literals in the full expansion.

Expansion

*Exact version

function interchange ()
 {x = y;
 y = x}

[x, y]
[3, 4]

interchange()

[x, y]
[4, 4]

function interchange ()
 {var z = x;
 x = y;
 y = z}

Interchange

interchange ::
 val(x,X) & val(y,Y) ==>
 ~val(x,X) & ~val(y,Y) &
 val(x,Y) & val(y,X)

val(x,3)  
val(y,4)

Execute: interchange

val(x,4)
val(y,3)

Interchange

A production system is a set of condition-action rules. On
each step in the execution of a production system, an active
rule is chosen and the actions are performed. The cycle then
repeats on the new state.

 if p(X), then del p(X) and add q(X)
 if q(X), then del q(X) and add p(X)

Before: {p(a),q(b)}
Step 1: {q(a),q(b)}
Step 2: {p(a),q(b)} or {p(b),q(a)}

When do we stop?

Production Systems

Dynamic logic programs differ from production systems in
that all active transition rules “fire” at the same time. (1) All
updates are computed before any changes are made, and (2)
all changes are made simultaneously.

 tick :: p(X) ==> ~p(X) & q(X)
 tick :: q(X) ==> ~q(X) & p(X)

Before: {p(a), q(b)}
After: {p(b), q(a)}

Dynamic Logic Programs

Blocks World

Blocks World

External Actions

C

B

A

E

D

C

B

A

EDC

B

A E

D

u(a,b) u(d,e)

 clear(a)
 on(a,b)
 on(b,c)
 on(d,e)
 ...

 clear(a)
 table(a)
 clear(b)
 on(b,c)
 on(d,e)
 ...

Describing States

C

B

A

E

D

C

B

A E

D

u(a,b)

Operations:
 u(x,y) means that x is moved from y to the table.
 s(x,y) means that x is moved from the table to y.

Operation Definitions:
 u(X,Y) ::
 clear(X) & on(X,Y)
 ==> ~on(X,Y) & table(X) & clear(Y)

Operation Definitions

Operations:
 u(x,y) means that x is moved from y to the table.
 s(x,y) means that x is moved from the table to y.

Operation Definitions:
 u(X,Y) ::
 clear(X) & on(X,Y)
 ==> ~on(X,Y) & table(X) & clear(Y)

 s(X,Y) ::
 table(X) & clear(X) & clear(Y)
 ==> ~table(X) & ~clear(Y) & on(X,Y)

Operation Definitions

The Game of Life

World

(1) Any live cell with two or three live neighbors lives on to
the next generation.

(2) Any live cell with fewer than two live neighbors dies (as
if caused by underpopulation).

(3) Any live cell with more than three live neighbors dies (as
if by overpopulation).

(4) Any dead cell with exactly three live neighbors becomes
a live cell (as if by reproduction).

Rules of the Game

Symbols: c11, c12, …

Unary Predicates:
 on - cell is live
 cell - true of cells

Binary Predicates:
 neighbor - cells are neighbors

Vocabulary

Any live cell with fewer than two live neighbors dies.
tick ::
 on(Y) & countofall(X,neighbor(X,Y)&on(X),0)
 ==> ~on(Y)

tick ::
 on(Y) & countofall(X,neighbor(X,Y)&on(X),1)
 ==> ~on(Y)

Starvation

Any live cell with more than three live neighbors dies.
tick ::
 on(Y) &
 countofall(X,neighbor(X,Y)&on(X),N) &
 leq(4,N)
 ==> ~on(Y)

Overcrowding

Any dead cell with exactly three live neighbors becomes live.
tick ::
 cell(Y) & ~on(Y) &
 countofall(X,neighbor(X,Y)&on(X),3)
 ==> on(Y)

Transition Rules

Example

Demonstration

Tic Tac Toe

X
O

X

States

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control(o)

Legal Moves:
 mark(1,2)
 mark(1,3)
 mark(2,1)
 mark(2,3)
 mark(3,1)
 mark(3,2)

Legal Moves

X
O

X

legal(M,N) :- cell(M,N,b)

State:
 cell(1,1,x)
 cell(1,2,b)
 cell(1,3,b)
 cell(2,1,b)
 cell(2,2,o)
 cell(2,3,b)
 cell(3,1,b)
 cell(3,2,b)
 cell(3,3,x)
 control(o)

 mark(1,3)

State UpdateActions

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control(o)

cell(1,1,x)
cell(1,2,b)
cell(1,3,o)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control(x)

mark(M,N) ::
 control(Z) ==> ~cell(M,N,b) & cell(M,N,Z)
mark(M,N) ::
 control(x) ==> ~control(x) & control(o)
mark(M,N) ::
 control(o) ==> ~control(o) & control(x)

row(M,Z) :- cell(M,1,Z) & cell(M,2,Z) & cell(M,3,Z)
col(M,Z) :- cell(1,N,Z) & cell(2,N,Z) & cell(3,N,Z)
diag(Z) :- cell(1,1,Z) & cell(2,2,Z) & cell(3,3,Z)
diag(Z) :- cell(1,3,Z) & cell(2,2,Z) & cell(3,1,Z)

line(Z) :- row(M,Z)
line(Z) :- col(M,Z)
line(Z) :- diag(Z)

win(x) :- line(x)
win(o) :- line(o)

terminal :- win(Z)
terminal :-
 evaluate(countofall([M,N],cell(M,N,b)),0)

Supporting Concepts

Example

Demonstration

Assignments

The goal of this exercise is for you to familiarize yourself
with the Sierra capabilities for editing and using action
definitions. Go to http://epilog.stanford.edu and click on the
Sierra link.

In a separate window, open the documentation for Sierra. To
access the documentation, go to http://epilog.stanford.edu,
click on Documentation, and then click on the Sierra item
on the resulting drop-down menu.

Read though Sections 7 and 8 of the documentation and
reproduce the examples in the Sierra window you opened
earlier. Once you have done this, experiment on your own.
Try different data and different actions.

Assignment - Sierra

Assignment - Nineboard Tic Tac Toe

http://logicprogramming.stanford.edu/assignments/nineboard/index.html

http://logicprogramming.stanford.edu/assignments/pelicanhunters/index.html

http://logicprogramming.stanford.edu/assignments/programsheets/index.html

Schedule

http://logicprogramming.stanford.edu/assignments/schedule/index.html

Term Project

Term Project Proposal

