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Bottom-Up Evaluation

Method
    Start with dataset
    Apply rules repeatedly to produce closure
    Repeat up the stratum hierarchy
    Evaluate query on the result

Disadvantages
    Generates large numbers of irrelevant conclusions
    Does not work with infinite extensions 



Method
    Start with query to be answered
    Apply rules repeatedly to reduce to subqueries
    Continue until reaching data level
    Match base level subgoals against dataset

Disadvantages
    Slightly harder to understand
    Sometimes recomputes subgoals
    Susceptible to avoidable infinite loops

Top-Down Evaluation



Top-Down Processing of Ground Goals and Rules

Unification

Top-Down Processing of Goals and Rules with Variables

Programme



Ground Goals and Rules



Given a query, a dataset, and a ruleset, do the following.

(1) If the predicate in the query is a base predicate, 
succeed if and only if query is in dataset.

(2) If the query is a negation, evaluate target and succeed if 
and only if fail to prove.

(3) If the query is a conjunction, succeed iff succeed on all 
conjuncts.

(4) If the predicate in the query is a view predicate, 
evaluate the body of each rule defining that predicate and 
succeed if and only if succeeds on at least one rule.

Sketch of Procedure for Ground Case



Dataset                                Ruleset
  p(a)                    s(c) :- p(a) & q(b)
  p(b)                    s(c) :- p(b) & t(c)
  p(c)                    s(c) :- p(c) & ~q(c)
  q(d)                    t(c) :- p(a) & p(d)

Example



Dataset                                Ruleset                                             
  p(a)                    s(c) :- p(a) & q(b)
  p(b)                    s(c) :- p(b) & t(c)
  p(c)                    s(c) :- p(c) & ~q(c)
  q(d)                    t(c) :- p(a) & p(d)

Top Down Evaluation
                      s(c)?

p(a) & q(b)?       p(b) & t(c)?      p(c) & ~q(c)?
     X                                                                        Success

                       p(a) & p(d)?
                            X

Example



Unification



Unification

Unification is the process of determining whether two 
expressions can be unified, i.e. made identical by 
appropriate substitutions for their variables.

Example: p(a,Y) and p(X,b) can be unified.  If we 
replace X by a and Y by b, we end up with p(a,b) in both 
cases.

Unification



A substitution is a finite set of pairs of variables and terms, 
called replacements.

{X←a, Y←f(b), Z←V}

Domain: {X, Y, Z}
Range:    {a, f(b), V}

NB: Domain elements must be variables.
NB: Replacements may contain variables.

Substitutions



The result of applying a substitution σ to an expression ϕ is 
the expression ϕσ obtained from ϕ by replacing every 
occurrence of every variable in the substitution by its 
replacement. 

q(X,Y) {X←a, Y←f(b), Z←V} = q(a,f(b))
q(X,X) {X←a, Y←f(b), Z←V} = q(a,a)
q(X,W) {X←a, Y←f(b), Z←V} = q(a,W)
q(Z,V) {X←a, Y←f(b), Z←V} = q(V,V)

Application



r(X,Y,Z){x←a, y←f(U), Z←V} = r(a,f(U),V)

r(a,f(U),V){U←d, V←e, Z←g} = r(a,f(d),e)

r(X,Y,Z){X←a, Y←f(d), Z←e, U←d, V←e} = r(a,f(d),e)

Cascaded Substitutions



Composition of Substitutions

The composition of substitution σ and τ is the substitution 
(written compose(σ,τ) or, more simply, στ) obtained by
(1) applying τ to the replacements in σ
(2) adding to σ pairs from τ with different variables
(3) deleting any assignments of a variable to itself.

        {X←a, Y←U, Z←V}{U←d, V←e, Z←g}
            = {X←a, Y←d, Z←e}{U←d, V←e, Z←g}
            = {X←a, Y←d, Z←e, U←d, V←e}

Composition of Substitutions



Unification

A substitution σ is a unifier for an expression ϕ and an 
expression ψ if and only if ϕσ=ψσ.

p(X,Y){X←a, Y←b, V←b} = p(a,b)
p(a,V){X←a, Y←b, V←b} = p(a,b)

If two expressions have a unifier, they are said to be 
unifiable.  Otherwise, they are nonunifiable.

p(X,X)
p(a,b)

Unification



Non-Uniqueness of Unification

Unifier 1:
p(X,Y){X←a, Y←b, V←b} = p(a,b)
p(a,V){X←a, Y←b, V←b} = p(a,b)

Unifier 2:
p(X,Y){X←a, Y←f(W), V←f(W)} = p(a,f(W))
p(a,V){X←a, Y←f(W), V←f(W)} = p(a,f(W))

Unifier 3:
p(X,Y){X←a, Y←V} = p(a,V)
p(a,V){X←a, Y←V} = p(a,V)

Non-Uniqueness of Unification



Most General Unifier

A substitution σ is a most general unifier (mgu) of two 
expressions if and only if it is as general as or more general 
than any other unifier.

Theorem: If two expressions are unifiable, then they have an 
mgu that is unique up to variable permutation.

p(X,Y){X←a, Y←V} = p(a,V)
p(a,V){X←a, Y←V} = p(a,V)

p(X,Y){X←a, V←Y} = p(a,Y)
p(a,V){X←a, V←Y} = p(a,Y)

Most General Unifier



Unification Procedure

One good thing about our language is that there is a simple 
and inexpensive procedure for computing a most general 
unifier of any two expressions if it exists.

Unification Procedure



Each expression is treated as a sequence of its immediate 
subexpressions.

Linear Version:
p(a, f(b, c), d)

Structured Version:
                              

p a d

f b c

Expression Structure



(1) If two expressions being compared are identical, succeed.

(2) If neither is a variable and at least one is a constant, fail.

(3) If one of the expressions is a variable,  proceed as described 
shortly.

(4) If both expressions are sequences, iterate across the 
expressions, comparing each subexpression as described above.

Unification Procedure



If one of the expressions is a variable, check whether the 
variable has a binding in the current substitution. 

(a) If so, try to unify the binding with the other expression.

(b) If no binding, check whether the other expression contains 
the variable.  If the variable occurs within the expression, fail.  
Otherwise, set the substitution to the composition of the old 
substitution and a new substitution in which variable is bound 
to the other expression.

Dealing With Variables



Example
Call: p(X,b), p(a,Y), {}

      Call: p, p, {}
      Exit: {}

      Call: X, a, {}
      Exit: {}{X←a} = {X←a}

      Call: b, Y, {X←a}
      Exit: {X←a} {Y←b} = {X←a, Y←b}

Exit: {X←a, Y←b}

Example



ExampleExample
Call: p(X,X), p(a,Y), {}

      Call: p, p, {}
      Exit: {}

      Call: X, a, {}
      Exit: {}{X←a} = {X←a}

      Call: X, Y, {X←a}
            Call: a, Y, {X←a}
            Exit: {X←a} {Y←a} = {X←a, Y←a}
     Exit: {X←a, Y←a}

Exit: {X←a, Y←a}



ExampleExample
Call: p(X,X), p(a,b), {}

      Call: p, p, {}
      Exit: {}

      Call: X, a, {}
      Exit: {}{X←a} = {X←a}

      Call: X, b, {X←a}
            Call: a, b, {X←a}
            Exit: false
     Exit: false

Exit: false



ExampleExample
Call: p(X,X), p(Y,f(Y)), {}

      Call: p, p, {}
      Exit: {}

      Call: X, Y, {}
      Exit: {}{X←Y} = {X←Y}

      Call: X, f(Y), {X←Y}
            Call: Y, f(Y), {X←Y}
            Exit: false
     Exit: false

Exit: false



Reason

Circularity Problem:
  {X←f(Y), Y←f(Y)}

Unification Problem:
   p(X,X){X←f(Y), Y←f(Y)}       = p(f(Y),f(Y))
   p(Y,f(Y)){X←f(Y), Y←f(Y)} = p(f(Y),f(f(Y)))

Before assigning a variable to an expression, first check 
that the variable does not occur within that expression.

This is called the occur check test.

Prolog does not do the occur check (and is proud of it).
But it can give incorrect answers as a result.

Reason



General Goals and Rules



Procedure without variables uses equality tests.
  p(a,b)
  p(b,c)
  s(a,c) :- p(a,b) & p(b,c)

  s(a,c)?

Procedure with variables uses unification.
  p(a,b)
  p(b,c)
  s(X,Z) :- p(X,Y) & p(Y,Z)

  s(a,c)?

Procedure With Variables



Given an atom with a base relation and a substitution: 

(a) Compare the goal to each factoid in our dataset.

(b) If there is an extension of the given substitution that 
unifies the goal and the factoid, add to our list of answers.

(c) Once all relevant factoids examined, return answers.

Step 1 - Atoms with Base Relations



Goal:             p(X,Y)                  
Substitution: {X←a}
Dataset:         {p(a,b), p(a,c), p(b,c)}

Result:           [{X←a, Y←b}, {X←a, Y←c}]

Example 1 - Atoms with Base Relations



Given a negation and a substitution: 

(a) Execute the procedure on the target of the negation and 
the given substitution.

(b) If the result is empty, return a singleton list containing 
the given substitution, indicating success.

(c) Otherwise, return the empty list of answers, indicating 
failure.

Step 2 - Negations



Goal:             ~p(X,Y)                
Substitution: {X←a, Y←d}
Dataset:         {p(a,b), p(a,c), p(b,c)}
Result:           [{X←a, Y←d}]

Goal:             ~p(X,Y)                
Substitution: {X←a, Y←c}
Dataset:         {p(a,b), p(a,c), p(b,c)}
Result:           []

Example 2 - Negations



Given a conjunction and a substitution: 

(a) Execute our procedure on the first conjunct and the 
given substitution to get a list of answers.

(b) Iterate through the list of substitutions, calling the 
procedure recursively on the remaining conjuncts with each 
substitution in turn.

(c) Collect the answers from recursive calls and return.

Step 3 - Conjunctions



Goal:             p(X,Y) & p(Y,Z)                
Substitution: {X←a}
Dataset:         {p(a,b), p(a,c), p(b,c)}

Call: p(X,Y), {X←a}
Result: [{X←a, Y←b},{X←a, Y←c}]

    Call: p(Y,Z), {X←a, Y←b}
    Result: [{X←a, Y←b, Z←c}]

    Call: p(Y,Z), {X←a, Y←c}
    Result: []

Overall Result: [{X←a, Y←b, Z←c}]

Example 3 - Conjunctions



Given atom with view relation and a substitution: 
(a) Iterate through the rules in our program.
(b) Copy each rule, replacing variables with new variables.
(c) Try to unify the given goal and the new rule head.
(d) Call the procedure recursively on the body of the rule.
(e) Return substitutions from all successful cases.

Step 4 - Atoms with View Relations 



Goal:             q(X,Y)                
Substitution: {X←a}
Rule:             q(X,Z) :- p(X,Y) & p(Y,Z)
Dataset:         {p(a,b), p(a,c), p(b,c)}

Copy of rule:  q(U,W) :- p(U,V) & p(V,W)

Unification:     q(U,W) q(X,Y) {X←a}
Result:            {U←a,W←Y,X←a}

New Goal:             p(U,V) & p(V,W)
New Substitution: {U←a,W←Y,X←a}

Result: [{U←a,W←c,X←a,V←b,Y←c}]

Example 4 - Atoms with View Relations 



Compound terms compound the difficulty.

Rule
  s(X,f(Y,Z)) :- p(X,g(Y)) & p(Y,X)

Query
  s(h(X),X)

Subgoal
  p(h(f(Y,Z)),g(Y)) & p(Y,h(f(Y,Z)))

Compound Terms



Multiple substitutions
   Different substitutions used for goals and rules
   Good: Rules are not copied

Evaluation of conjuncts is pipelined
    Once each answer to a conjunct is computed,
    the other conjuncts are checked immediately;
    then other answers generated and checked.
    Good: Saves work when only few answers needed.
    Good: Avoids problems due to infinite answer sets.

Upshot: This is complicated.  Don't try this at home.  Leave 
it to the professionals.

Efficiency Enhancements



Facts and Rules
  p(a,b)
  p(b,c)
  s(X,Z) :- p(X,Y) & p(Y,Z)

Trace
  Call: s(X,Z)
  | Call: p(X,Y)
  | Exit: p(a,b)
  | Call: p(b,Z)
  | Exit: p(b,c)
  Exit: s(a,c)

Tracing



Facts and Rules
  p(a,b)
  p(b,c)
  s(X,Z) :- p(X,Y) & p(Y,Z)

Trace
  Call: s(X,Z)              Redo: s(X,Z)
  | Call: p(X,Y)            | Redo: p(b,Z)
  | Exit: p(a,b)            | Fail: p(b,Z)
  | Call: p(b,Z)            | Redo: p(X,Y)
  | Exit: p(b,c)            | Exit: p(b,c)
  Exit: s(a,c)              | Call: p(c,Z)
                            | Fail: p(c,Z)
                            Fail: s(X,Z)

Backup Tracing



Summary



Bottom-Up Evaluation
    Easy to understand
    Computes all results
    Computes subresults just once
    Wasteful when want just one or a few answers, not all
    Problematic on logic programs with infinite models

Top-Down Evaluation
    Less waste when want one or a few answers
    More complicated
    Subqueries evaluated multiple times
    Possibility of infinite loops on programs w/ finite models

Comparison of Evaluation Strategies



Bottom-Up Evaluation
    Can be focussed using Magic Sets

Top-Down Evaluation
    Top-Down can avoid duplication through caching
    Infinite Loops can be avoided using iterative deepening

The arms race continues.

But …



Sierra



Sierra is browser-based IDE (interactive development 
environment) for Epilog.

    Saving and loading files

    Viewing and Editing datasets
    Querying datasets
    Transformation tools for datasets

    Interpreter (for view definitions, action definitions)
    Trace capability (useful for debugging rules)
    Analysis tools (error checking and optimizing rules)

http://epilog.stanford.edu/homepage/sierra.php

Sierra


















