
Logic Programming
View Definitions

Michael Genesereth
Computer Science Department

Stanford University



Kinship Dataset

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,cat)
parent(bea,coe)



More Comprehensive Dataset

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,cat)
parent(bea,coe)

grandparent(art,cal)
grandparent(art,cam)
grandparent(art,cat)
grandparent(art,coe)



Views as Named Queries

goal(X,Z) :- parent(X,Y) & parent(Y,Z)

grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)



Deduction

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,cat)
parent(bea,coe)

+
  grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)

=
grandparent(art,cal)
grandparent(art,cam)
grandparent(art,cat)
grandparent(art,coe)

Base relation

View relation



Benefits

    Economy - fewer facts need to be stored

    Less chance of getting out of sync

    View definitions work for any number of objects

*  More expressive (e.g. recursive definitions) *



Syntax



A constant is a string of lower case letters, digits, 
underscores, and periods or a string of ascii characters 
within double quotes.

   joe, bill, cs151, 3.14159
  person, worksfor, office
    the_house_that_jack_built,
    “Mind your p’s & q’s!”

A variable is either a lone underscore or a string of letters, 
digits, underscores beginning with an upper case letter.

X   Y23   Somebody  _

Constants and Variables

Same
as

 before



Symbols
  art
  bob

Variables
  X
  Y23

Compound Terms
  pair(art,bob)
  pair(X,Y23)
  pair(pair(art,bob),pair(X,Y23))

Terms

Same
as

 before



Atoms
  p(a,b)
  p(a,X)
  p(Y,c)

Negations
  ~p(a,b)

Literals (atoms or negations of atoms)
  p(a,Y)
  ~p(a,Y)

An atom is a positive literal.
A negations is a negative literal.

Atoms, Negations, and Literals

Same
as

 before



                                           subgoal      subgoal

r(a,b) :- p(a,b) & ~q(b)
 

        head    body

{
{ {

Ground Rules

{



                                           subgoal      subgoal

r(X,Z) :- p(X,Y) & ~q(Y)
 

        head    body

{ {
{ {

Rules

(1) Named queries (not just goal).
(2) Body may mention view relations as well as base relations.



A ruleset is a set of rules.

Example:
r(X,Y) :- p(X,Y) & ~q(Y)

p(X,Y) :- f(X,Y)
p(X,Y) :- m(X,Y)

A ruleset by itself is sometimes called an open logic 
program.

Rulesets



Multiple Relations
  f(X,Y) :- p(X,Y) & q(X)
  m(X,Y) :- p(X,Y) & ~q(X)

View Relations in Subgoals
  g(X,Z) :- f(X,Y) & p(Y,Z)

Recursive Relations
  a(X,Z) :- p(X,Z)
  a(X,Z) :- p(X,Y) & a(Y,Z)

Features of Rulesets 



Closed Logic Program

A closed logic program is a dataset together with a ruleset.

Ruleset
  s(X,Y) :- p(X,Y)
  s(X,Y) :- q(X,Y)
  t(X,Y) :- s(X,Y) & ~r(Y)

Dataset
  p(a,b)
  p(a,c)
  q(b,c)
  r(a)
  r(c)



Well-Formed Closed Logic Programs

Three requirements:

  Compatibility

  Global safety

  Stratification



Requirement #1 - Compatibility

A ruleset is compatible with a dataset if and only if

(1) all words shared between the dataset and the ruleset are 
of the same type (symbol, constructor, predicate)

(2) all constructors and predicates have the same arity

(3) no predicate in the dataset appears in the head of a rule.

The vocabulary of a basic logic program is the union of the 
vocabularies of the dataset and the logic program.



Compatibility

Compatible Ruleset and Dataset:

  g(X,Z) :- p(X,Y) & p(Y,Z)

  p(a,b)
  p(b,c)

Non-compatible Ruleset and Dataset:

  g(X,Z) :- p(X,Y) & p(Y,Z)

  p(a,b)
  g(b,c)



A rule is locally safe if and only if every variable in the 
head appears in some positive subgoal in the body and 
every variable in a negative subgoal appears in a prior 
positive subgoal.  

Safe Rule:
r(X,Z) :- p(X,Y) & p(Y,Z) & ~q(X,Z)

Unsafe Rules:
r(X,Z) :- p(X,Y) & p(Y,X)
r(X,Y) :- p(X,Y) & ~q(Y,Z)
r(X,Z) :- p(X,Y) & ~q(Y,Z)

Requirement #2 - Safety



In Logic Programming, it is common to divide relations 
into three types - input relations (i.e. base relations), 
intermediate relations, and output relations (query 
relations).

Locally Unsafe Rule:

r(X,Z) :- p(X,Y) & ~q(Y,Z)

Globally Safe Program: 

    goal(X) :- r(X,b) & r(Y,c) & r(X,Y)
    r(X,Z) :- p(X,Y) & ~q(Y,Z)

Global Safety



We say that a set of view definitions is stratified if and only if its 
rules can be partitioned into strata in such a way that  (1) every 
stratum contains at least one rule, (2) the rules defining relations 
that appear in positive goals of a rule appear in the same stratum as 
that rule or in some lower stratum, (3) the rules defining relations 
that appear in negative subgoals of a rule occur in some lower 
stratum (not the same stratum).

What???

Requirement #3 - Stratification



Two Stages:

   Semipositive Programs

   Stratified Programs

Understanding Stratification



Semantics of 
Semipositive Programs*

*The Easy Case



Semipositive Programs

A semipositive program is one in which negations apply 
only to base relations, i.e. there are no subgoals with negated 
views.

Example:
  r(X) :- p(X,Y) & q(Y)
  q(Y) :- m(Y,Z) & ~n(Z)

Non-Example:
  r(X) :- p(X,Y) & ~q(Y)
  q(Y) :- m(Y,Z) & ~n(Z)



An instance of a rule is a rule in which all variables have 
been consistently replaced by ground terms.

Rule
r(X,Y) :- p(X,Y) & ~q(Y)

Herbrand Universe
{a, b}

Instances
r(a,a) :- p(a,a) & ~q(a)
r(a,b) :- p(a,b) & ~q(b)
r(b,a) :- p(b,a) & ~q(a)
r(b,b) :- p(b,b) & ~q(b)

Instances



Rule Application

The result of applying a rule r to a dataset Δ (written 
v(r,Δ)) is the set of all ψ such that

1) ψ is the head of an arbitrary instance of r,

(2) every positive subgoal in the instance is a member of Δ, 

(3) no negative subgoal in the instance is a member of Δ. 



Ruleset                                                    Dataset
  p(X) :- edge(X,Y)                  edge(a,b)
  q(X,Y) :- edge(X,Y)                edge(b,c)
  q(X,Y) :- edge(Y,X)                edge(c,d)
  r(X,Y) :- edge(X,Y) & edge(Y,X)    edge(d,c)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Result
  p(a)        
  p(b)        
  p(c)        
  p(d)        

Example



Closure

The closure of a semipositive program Ω on a dataset Δ 
(written C(Ω,Δ)) is the result of repeatedly applying the 
rules in Ω to Δ as follows.

Δ 0 = Δ
Δ n+1 = ∪ v(r, Δ 0 ∪ ... ∪ Δ n) for all r in Ω

C(Ω,Δ) = ∪Δ i.

In other words, C(Ω,Δ) is the fixpoint of v.



Ruleset                                                    Dataset
  p(X) :- edge(X,Y)                  edge(a,b)
  q(X,Y) :- edge(X,Y)                edge(b,c)
  q(X,Y) :- edge(Y,X)                edge(c,d)
  r(X,Y) :- edge(X,Y) & edge(Y,X)    edge(d,c)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Closure
  edge(a,b)        
  edge(b,c)        
  edge(c,d)        
  edge(d,c)        

Example



Ruleset                                                    Dataset
  p(X) :- edge(X,Y)                  edge(a,b)
  q(X,Y) :- edge(X,Y)                edge(b,c)
  q(X,Y) :- edge(Y,X)                edge(c,d)
  r(X,Y) :- edge(X,Y) & edge(Y,X)    edge(d,c)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Closure
  edge(a,b)        
  edge(b,c)        
  edge(c,d)        
  edge(d,c)        

Example



Ruleset                                                    Dataset
  p(X) :- edge(X,Y)                  edge(a,b)
  q(X,Y) :- edge(X,Y)                edge(b,c)
  q(X,Y) :- edge(Y,X)                edge(c,d)
  r(X,Y) :- edge(X,Y) & edge(Y,X)    edge(d,c)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Closure
  edge(a,b)        
  edge(b,c)        
  edge(c,d)        
  edge(d,c)        
  p(a)             
  p(b)             
  p(c)      
  p(d)

Example



Ruleset                                                    Dataset
  p(X) :- edge(X,Y)                  edge(a,b)
  q(X,Y) :- edge(X,Y)                edge(b,c)
  q(X,Y) :- edge(Y,X)                edge(c,d)
  r(X,Y) :- edge(X,Y) & edge(Y,X)    edge(d,c)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Closure
  edge(a,b)    q(a,b)
  edge(b,c)    q(b,c)
  edge(c,d)    q(c,d)
  edge(d,c)    q(d,c)
  p(a)         q(b,a)
  p(b)         q(c,b)
  p(c)      
  p(d)

Example



Ruleset                                                    Dataset
  p(X) :- edge(X,Y)                  edge(a,b)
  q(X,Y) :- edge(X,Y)                edge(b,c)
  q(X,Y) :- edge(Y,X)                edge(c,d)
  r(X,Y) :- edge(X,Y) & edge(Y,X)    edge(d,c)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Closure
  edge(a,b)    q(a,b)   
  edge(b,c)    q(b,c)   
  edge(c,d)    q(c,d)   
  edge(d,c)    q(d,c)   
  p(a)         q(b,a)
  p(b)         q(c,b)
  p(c)         r(c,d)
  p(d)         r(d,c)

Example



Ruleset                                                    Dataset
  p(X) :- edge(X,Y)                  edge(a,b)
  q(X,Y) :- edge(X,Y)                edge(b,c)
  q(X,Y) :- edge(Y,X)                edge(c,d)
  r(X,Y) :- edge(X,Y) & edge(Y,X)    edge(d,c)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Closure
  edge(a,b)    q(a,b)    s(a,b)
  edge(b,c)    q(b,c)    s(b,c)
  edge(c,d)    q(c,d)    s(c,d)
  edge(d,c)    q(d,c)    s(d,c)
  p(a)         q(b,a)
  p(b)         q(c,b)
  p(c)         r(c,d)
  p(d)         r(d,c)

Example



Ruleset                                                    Dataset
  p(X) :- edge(X,Y)                  edge(a,b)
  q(X,Y) :- edge(X,Y)                edge(b,c)
  q(X,Y) :- edge(Y,X)                edge(c,d)
  r(X,Y) :- edge(X,Y) & edge(Y,X)    edge(d,c)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Closure
  edge(a,b)    q(a,b)    s(a,b)
  edge(b,c)    q(b,c)    s(b,c)
  edge(c,d)    q(c,d)    s(c,d)
  edge(d,c)    q(d,c)    s(d,c)
  p(a)         q(b,a)    s(a,c)
  p(b)         q(c,b)    s(b,d)
  p(c)         r(c,d)    s(c,c)
  p(d)         r(d,c)    s(d,d)

Example



Ruleset                                                    Dataset
  p(X) :- edge(X,Y)                  edge(a,b)
  q(X,Y) :- edge(X,Y)                edge(b,c)
  q(X,Y) :- edge(Y,X)                edge(c,d)
  r(X,Y) :- edge(X,Y) & edge(Y,X)    edge(d,c)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Closure
  edge(a,b)    q(a,b)    s(a,b)
  edge(b,c)    q(b,c)    s(b,c)
  edge(c,d)    q(c,d)    s(c,d)
  edge(d,c)    q(d,c)    s(d,c)
  p(a)         q(b,a)    s(a,c)
  p(b)         q(c,b)    s(b,d)
  p(c)         r(c,d)    s(c,c)
  p(d)         r(d,c)    s(d,d)
                         s(a,d)

Example



*Buckle your seat belts.

Semantics of 
Stratified Programs*



Dataset
p(a,b)
p(b,a)

Rule
r(X) :- p(X,Y) & ~r(Y)

Instances
r(a) :- p(a,a) & ~r(a)
r(a) :- p(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)
r(b) :- p(b,b) & ~r(b)

Possible Closures (depending on order of application)
              p(a,b)      p(a,b)
              p(b,a)      p(b,a)
              r(a)        r(b) 

Potential Problem



The dependency graph for a set of rules is a directed graph in 
which (1) the nodes are the relations mentioned in the head and 
bodies of the rules and (2) there is an arc from a node p to a 
node q whenever p occurs with the body of a rule in which q is 
in the head.

    r(X,Y) :- p(X,Y) & q(X,Y)
    s(X,Y) :- r(X,Y)
    s(X,Z) :- r(X,Y) & t(Y,Z)
    t(X,Z) :- s(X,Y) & s(Y,X)

A set of rules is recursive if it contains a cycle.  Otherwise, it is 
non-recursive.

r

p q

s

t

Dependency Graph



The negation in a set of rules is said to be stratified if 
and only if there is no recursive cycle in the dependency 
graph involving a negation.  

Stratified Negation:
r(X,Z) :- p(X,Y)
r(X,Z) :- r(X,Y) & r(Y,Z)

Negation that is not stratified:
r(X,Z) :- p(X,Y)
r(X,Z) :- p(X,Y) & ~r(Y,Z)

All negations must be stratified.

Stratified Negation

p

r

p

r ~



We say that a set of view definitions is stratified if and only if 
its rules can be partitioned into strata in such a way that

(1) every stratum contains at least one rule

(2) the rules defining relations that appear in positive goals of a 
rule appear in the same stratum as that rule or in some lower 
stratum

(3) the rules defining relations that appear in negative subgoals 
of a rule occur in some lower stratum (not the same stratum)

Alternative Definition



Example
  r(X,Y) :- q(X,Y)
  r(X,Z) :- q(X,Y) & r(Y,Z)
  s(X,Y) :- p(X) & p(Y) & ~r(X,Y)

Non-example
  r(X,Y) :- p(X) & p(Y) & q(X,Y)
  s(X,Y) :- r(X,Y) & ~s(Y,X)

Examples

Stratum Rules
2 s(X,Y) :- p(X) & p(Y) & ~r(X,Y)

1 r(X,Y) :- q(X,Y)
r(X,Z) :- q(X,Y) & r(Y,Z)



Extension

The extension of a logic program Ω with strata Ω1, …, Ωk on 
a dataset Δ (written E(Ω,Δ)) is the result of repeatedly 
applying the rules in Ω1, …, Ωk to Δ as follows.

Γ0 = Δ
Γn+1 = Γn ∪ C(Ωn+1,Γn)

The extension of a program with k strata is Γk.



Ruleset
  p(X) :- edge(X,Y)
  q(X,Y) :- edge(X,Y)
  q(X,Y) :- edge(Y,X)
  r(X,Y) :- edge(X,Y) & edge(Y,X)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)
  t(X,Y) :- p(X) & p(Y) & ~s(X,Y)

Dataset
  edge(a,b)
  edge(b,c)
  edge(c,d)
  edge(d,c)

Example



Stratum 2 Rules
  t(X,Y) :- p(X) & p(Y) & ~s(X,Y)

Stratum 1 Rules
  p(X) :- edge(X,Y)
  q(X,Y) :- edge(X,Y)
  q(X,Y) :- edge(Y,X)
  r(X,Y) :- edge(X,Y) & edge(Y,X)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Example



Stratum 1 Rules
  p(X) :- edge(X,Y)
  q(X,Y) :- edge(X,Y)
  q(X,Y) :- edge(Y,X)
  r(X,Y) :- edge(X,Y) & edge(Y,X)
  s(X,Y) :- edge(X,Y)
  s(X,Z) :- edge(X,Y) & s(Y,Z)

Closure
  edge(a,b)    q(a,b)    s(a,b)
  edge(b,c)    q(b,c)    s(b,c)
  edge(c,d)    q(c,d)    s(c,d)
  edge(d,c)    q(d,c)    s(d,c)
  p(a)         q(b,a)    s(a,c)
  p(b)         q(c,b)    s(b,d)
  p(c)         r(c,d)    s(c,c)
  p(d)         r(d,c)    s(d,d)
                         s(a,d)

Example



Stratum 2 Rule
  t(X,Y) :- p(X) & p(Y) & ~s(X,Y)

Closure
  edge(a,b)    q(a,b)    s(a,b)    t(a,a)
  edge(b,c)    q(b,c)    s(b,c)    t(b,a)
  edge(c,d)    q(c,d)    s(c,d)    t(b,b)
  edge(d,c)    q(d,c)    s(d,c)    t(c,a)
  p(a)         q(b,a)    s(a,c)    t(c,b)
  p(b)         q(c,b)    s(b,d)    t(d,a)
  p(c)         r(c,d)    s(c,c)    t(d,b)
  p(d)         r(d,c)    s(d,d)
                         s(a,d)

Example



Properties

The extension of every stratified logic program is unique.  
Multiple stratifications are sometimes possible, but all 
produce the same result.

Extension of stratified logic program without constructors is 
finite.  Without recursion it can be computed in polynomial 
time.  With recursion, can be computed in exponential time.

Extension of a stratified logic program with constructors 
may be infinite.  The extension is still well-defined but not 
completely computable.



Alternative Semantics*

*Warning: Complicated**

** But beautiful!



The Herbrand universe for a closed logic program is the 
set of all ground terms that can be formed from the symbols 
and constructors in the vocabulary.

The Herbrand base for a closed logic program is the set of 
all ground atoms that can be formed from the vocabulary.

An interpretation of a closed logic program is an arbitrary 
subset of the program’s Herbrand base.

A model of a closed logic program is an interpretation that 
satisfies the program (definition to follow).

Definitions



An instance of a rule is a rule in which all variables have 
been consistently replaced by ground terms.

Rule
r(X,Y) :- p(X,Y) & ~q(Y)

Herbrand Universe
{a, b}

Instances
r(a,a) :- p(a,a) & ~q(a)
r(a,b) :- p(a,b) & ~q(b)
r(b,a) :- p(b,a) & ~q(a)
r(b,b) :- p(b,b) & ~q(b)

Instances



Semantics

Suppose Γ is an interpretation.

Γ satisfies a ground atom φ if and only if φ is in Γ.

Γ satisfies a ground negation ~φ if and only if φ is not in Γ. 

Γ satisfies a ground rule φ :- φ1 & ... & φn if and only if Γ 
satisfies φ whenever it satisfies φ1, ... , φn.

An interpretation Γ satisfies a closed logic program (i.e. a 
dataset + a ruleset) if and only if (1) all of the elements of 
the constituent dataset are included in Γ and (2) Γ satisfies 
all instances of all of the rules in the constituent ruleset.



Example

Dataset
  p(a,b)
  p(b,c)
  p(c,d)
  p(d,c)

Ruleset
  r(X,Y) :- p(X,Y) & ~p(Y,X)

Model 
  p(a,b)
  p(b,c)
  p(c,d)
  p(d,c)
  r(a,b)
  r(b,c)



Non-Examples

Dataset
  p(a,b)
  p(b,c)
  p(c,d)
  p(d,c)

Ruleset
  r(X,Y) :- p(X,Y) & ~p(Y,X)

Not Models
  p(a,b)       p(a,b)       p(a,b)
  p(b,c)       p(b,c)       p(b,c)
  p(c,d)       p(c,d)       p(c,d)
  p(d,c)       p(d,c)       p(d,c)
               r(a,b)       r(b,c)                           



Multiple Models

Dataset
  p(a,b)
  p(b,c)
  p(c,d)
  p(d,c)

Ruleset
  r(X,Y) :- p(X,Y) & ~p(Y,X)

 Models
  p(a,b)       p(a,b)       p(a,b)
  p(b,c)       p(b,c)       p(b,c)
  p(c,d)       p(c,d)       p(c,d)
  p(d,c)       p(d,c)       p(d,c)
  r(a,b)       r(a,b)       r(a,b)
  r(b,c)       r(b,c)       r(b,c)
               r(c,d)       r(d,c)

p(a,b)
p(b,c)
p(c,d)
p(d,c)
r(a,b)
r(b,c)
r(c,d)
r(d,c)
r(a,b)
r(b,c)
r(c,d)
r(d,c)
r(a,b)
r(b,c)
r(c,d)
r(d,c)
r(a,b)
r(b,c)
r(c,d)
r(d,c)



So What?

We want our definitions to be if and only if.  We want to 
include among our conclusions only those facts that must be 
true given our data and rules. 

    All factoids in dataset must be true.
    All factoids required by rules must be true.
    Arbitrary factoids should be excluded.

What we want is logical entailment.  A factoid is logically 
entailed by a closed logic program if and only if it is true in 
every model of the program, i.e. the set of conclusions is 
exactly the intersection of all models of the program.



Minimal Models

A model D of a logic program P is minimal if and only if no 
proper subset of D is a model of P.

Models
  p(a,b)
  p(b,c)
  p(c,d)
  p(d,c)
  r(a,b)
  r(b,c)

If a program has just one minimal model, then every factoid 
true in that model is trivially true in every minimal model. 

p(a,b)
p(b,c)
p(c,d)
p(d,c)
r(a,b)
r(b,c)
r(c,d)

p(a,b)
p(b,c)
p(c,d)
p(d,c)
r(a,b)
r(b,c)
r(d,c)



Uniqueness

A logic program that does not contain any negations has a 
unique minimal model.

If a program is semipositive, it has a unique minimal model.

Hooray!



Multiple Minimal Models

A logic program that does not contain any negations has a 
unique minimal model.

If a program is semipositive, it has a unique minimal model.

A logic program with negations that is not semipositive can 
have more than one minimal model (in addition to multiple 
non-minimal models).

Uh-oh!



Dataset
p(a,b)
p(b,a)

Rule
r(X) :- p(X,Y) & ~r(Y)

Interpretations:
    p(a,b)      p(a,b)      p(a,b)      p(a,b)
    p(b,a)      p(b,a)      p(b,a)      p(b,a)
                r(a)        r(b)        r(a)
                                        r(b)

Non Semipositive Programs



Dataset
p(a,b)
p(b,a)

Rule
r(X) :- p(X,Y) & ~r(Y)

Instances
r(a) :- p(a,a) & ~r(a)
r(a) :- p(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)
r(b) :- p(b,b) & ~r(b)

Interpretations:
    p(a,b)      p(a,b)      p(a,b)      p(a,b)
    p(b,a)      p(b,a)      p(b,a)      p(b,a)
                r(a)        r(b)        r(a)
                                        r(b)

Multiple Minimal Models



Dataset
p(a,b)
p(b,a)

Rule
r(X) :- p(X,Y) & ~r(Y)

Minimal Models:
    p(a,b)      p(a,b)      p(a,b)      p(a,b)
    p(b,a)      p(b,a)      p(b,a)      p(b,a)
                r(a)        r(b)        r(a)
                                        r(b)

Is r(a) true or not?  What about r(b)?
NB: The intersection of all models is not a model!

So What?



Stratified Negation

A logic program that does not contain any negations has a 
unique minimal model.

If a program is semipositive, it has a unique minimal model.

A logic program with negations that is not semipositive can 
have more than one minimal model (in addition to multiple 
non-minimal models).

If a logic program with negation is stratified, then it has a 
unique minimal model.



Prolog






