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Query Semantics

Dataset: {p(b), p(c), p(d), q(d)}

Rule:
goal(X) :- p(X) & ~q(X)

Instances:
goal(a) :- p(a) & ~q(a)
goal(b) :- p(b) & ~q(b)
goal(c) :- p(c) & ~q(c)
goal(d) :- p(d) & ~q(d)

Result: {goal(b), goal(c)}



Query Semantics

Dataset: {p(b), p(c), p(d), q(d)}

Rule:
goal(f(X)) :- p(X) & ~q(X)

Instances:
goal(a) :- p(a) & ~q(a)

goal(f(a)) :- p(f(a)) & ~q(f(a))
goal(f(f(a))) :- p(f(f(a))) & ~q(f(f(a)))

…

Result: {goal(b), goal(c)}
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Evaluating Ground Queries



Evaluation of Ground Queries

Given a query rule, call the procedure eval on the body.  The 
result is a boolean.  The result is the singleton set of the head 
if true; else, the empty set. 

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Query:  goal(c) :- p(c,d) & ~p(d,c)
Body:    p(c,d) & ~p(d,c)
Result:  true

Answer: {goal(c)}

For ground queries, there is just one instance.  Duh.



(1) If the body of a query rule is an atom, we check whether that 
atom is contained in our dataset. If so, the body is true.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query:  goal(a) :- p(a,b)
Result: {goal(a)}

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query:  goal(a) :- p(b,a)
Result: {}

Evaluating Atoms



(2) If the body is a negation, we check whether the atom is contained 
in our dataset. If so, the body is false. If the atom is not contained in 
our dataset, then the body is true.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query:  goal(b) :- ~p(b,c)
Result: {}

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query:  goal(b) :- ~p(c,b)
Result: {goal(b)}

Evaluating Negations



(3) If the body is a conjunction of literals, we execute this procedure 
on the first conjunct. If the answer is true, we move on to the next 
conjunct and so forth until we are done. If the answer to any one of 
the conjuncts is false, then the value of the body as a whole is false.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query:  goal(c) :- p(c,d) & ~p(d,c)
Result: {goal(c)}

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query:  goal(c) :- p(c,d) & p(d,c)
Result: {}

Evaluating Conjunctions



The value of a query with multiple rules is the union of the 
values of each of the rules in the query. 

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Query:   goal(a) :- p(a,b)
goal(b) :- ~p(b,c)
goal(c) :- p(c,d) & ~p(d,c)

Result: {goal(a)}  ∪  {}  ∪  {goal(c)}
             {goal(a), goal(c)}

Evaluation of Ground Queries



Matching



Unification

Matching is the process of determining whether a pattern 
(an expression with or without variables) matches an 
instance (an expression without variables), i.e. whether the 
two expressions can be made identical by appropriate 
substitutions for the variables in the pattern.

Unification



A substitution is a finite set of pairs of variables and terms, 
called replacements.

{X←a, Y←b}

The result of applying a substitution σ to an expression φ is 
the expression φσ obtained from φ by replacing every 
occurrence of every variable with a binding in the 
substitution by the term to which it is bound. 

p(X,b){X←a, Y←b} = p(a,b)
q(X,Y,X){X←a, Y←b} = q(a,b,a)

Substitutions



Most General Unifier

A substitution σ is a matcher for a pattern and an instance if 
and only if applying the substitution to the pattern results in 
the given instance.

p(X,b){X←a, Y←b} = p(a,b)

q(X,Y,X){X←a, Y←b} = q(a,b,a)

Here, {X←a, Y←b} is a matcher for p(X,b) and p(a,b).
It is also a matcher for q(X,Y,X) and q(a,b,a).

Matcher



(1) If the pattern is a symbol and the instance is the same symbol, then the 
procedure succeeds, returning the unmodified substitution as result.  If the 
pattern is a symbol and the instance is a different symbol or a compound 
expression, then the procedure fails.

(2) If the pattern is a variable with a binding, we compare the binding for 
the variable with the given instance. If they are identical, the procedure 
succeeds, returning the unmodified substitution as result; otherwise it 
fails.  If the pattern is a variable without a binding, we include a binding 
for the variable in the given instance and we return that substitution as a 
result.

(3) If the pattern is a compound expression and the instance is a 
compound expression of the same length, we iterate across the pattern and 
the instance.  If the pattern is a compound expression and the instance is a 
symbol or a compound expression of a different length, we fail.

Matching Procedure



Example
Compare: p(X,Y), p(a,b), {}
      Compare: p, p, {}
      Result: {}                           N.B.: {} is not the same as false.
      Compare: X, a, {}
      Result: {X←a}
      Compare: Y, b, {X←a}
      Result: {X←a, Y←b}
Result: {X←a, Y←b}

Example



Example
Compare: p(X,X), p(a,a), {}
      Compare: p, p, {}
      Result: {}
      Compare: X, a, {}
      Result: {X←a}
      Compare: X, a, {X←a}
          Compare: a, a, {X←a}
          Result: {X←a}
      Result: {X←a}
Result: {X←a}

Example



Example
Compare: p(X,X), p(a,b), {}
      Compare: p, p, {}
      Result: {}
      Compare: X, a, {}
      Result: {X←a}
      Compare: X, b, {X←a}
          Compare: a, b, {X←a}
          Result: false
     Result: false
Result: false

Example



Evaluation with Variables



Evaluation with Variables

Given a query rule, call the procedure eval (to be described) 
on the body and an empty substitution.  The result is a list of 
substitutions that satisfy the body.  The value of the rule is 
obtained by applying the substitutions to the head of the rule. 

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query:  goal(Y) :- p(a,Y) & p(Y,Z)

     Call eval:   p(a,Y) & p(Y,Z), {}
  Exit eval:  {{Y←b, Z←c}, {Y←c, Z←d}}

Value of query: {goal(b), goal(c)}



(1) If the expression is an atom, we try matching the atom to the 
factoids in our dataset. For each factoid that matches the atom, we 
add the corresponding substitution to our answer set; and we return 
the set of all substitutions obtained in this way.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Call eval: p(a,Y), {}
Exit eval: {{Y←b}, {Y←c}} (two results)

Evaluating Atoms



(2) If the expression is a negation, we call eval on the target of the 
negation and the given substitution. If the result is a non-empty set, 
then the negation is false and we return the empty set. If the result of 
the recursive call is the empty set, then the negation is true and we 
return the singleton set containing the input substitution as a result.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Call eval: ~p(Y,d), {Y←b}
Exit eval: {{Y←b}} (just one result)

Call eval: ~p(Y,d), {Y←c}
Exit eval: {} (no results)

Evaluating Negations



(3) If the expression is a conjunction, we call eval on the first 
conjunct and the given substitution. We iterate over the list of 
answers, for each calling eval on the remaining conjuncts.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Call eval: p(a,Y) & ~p(Y,d), {}
    Call eval: p(a,Y), {}
    Exit eval: {{Y←b}, {Y←c}}

    Call eval: ~p(Y,d), {Y←b}
    Exit eval: {{Y←b}} (just one result)
    Call eval: ~p(Y,d), {Y←c}
    Exit eval: {} (no results)

Exit eval: {{Y←b}} (just one result)

Evaluating Conjunctions



Evaluation with Variables

Given a query rule, call the procedure eval (to be described) 
on the body and an empty substitution.  The result is a list of 
substitutions that satisfy the body.  The value of the rule is 
obtained by applying the substitutions to the head of the rule. 

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query:  goal(Y) :- p(a,Y) & ~p(Y,d)

Call eval:   p(a,Y) & ~p(Y,d), {}
Exit eval:  {{Y←b}}

Answer: {goal(b)}



Computational Analysis



Worst Case Analysis based on number of unifications
     n objects in Herbrand Universe
     
Assumptions:
    All rules applied
    Subgoals processed left to right

(1) We will first consider analysis with no indexing.
(2) Then we will look at analysis with indexed data.

Optimizations not considered (until next lesson):
    Dropping redundant rules or subgoals
    Reordering of subgoals
    Caching

Assumptions



Example

goal(a,c) :- p(a,Y) & p(Y,c)

Cost of computing whether goal(a,c) is true

Example



Example

goal(a,c) :- p(a,Y) & p(Y,c)

Cost of computing whether goal(a,c) is true

n^2 + n*n^2 = n^2 + n^3

Suppose n = 3

3^2 + 3*3^2 = 3^2 + 3^3 = 36

Example



Example

goal(X,Z) :- p(X,Y) & p(Y,Z)

Cost of computing all instances of goal

Example



Example

goal(X,Z) :- p(X,Y) & p(Y,Z)

Cost of computing all instances of goal

n^2 + n^2*n^2 = n^2 + n^4

Suppose n = 3

3^2 + 3^2*3^2 = 3^2 + 3^4 = 90

Example



In full indexing, each factoid appears on the list of factoids 
associated with each constant in that factoid.

Example: {p(a,b), p(b,c), q(b), q(c)}

Index on p: {p(a,b), p(b,c)}
Index on q: {q(b), q(c)}

Index on a: {p(a,b)}
Index on b: {p(a,b), p(b,c), q(b)}
Index on c: {p(b,c), q(c)}

NB: No compound indices (e.g. all factoids with a and b).

Full Indexing



Example:
    p(a,a)          p(b,a)          p(c,a)
    p(a,b)          p(b,b)          p(c,b)
    p(a,c)          p(b,c)          p(c,c)

Index on p: {p(a,a),  ... ,  p(c,c)}
Index on a: {p(a,a), p(a,b), p(a,c), p(b,a), p(c,a)}
Index on b: {p(a,b), p(b,a), p(b,b), p(b,c), p(c,b)}
Index on c: {p(a,c), p(b,c), p(c,a), p(c,b), p(c,c)}

Worst Case



Example
goal(a,c) :- p(a,Y) & p(Y,c)

Cost of computing goal(a,c) without indexing
n^2 + n*n^2 = n^2 + n^3

Suppose n = 3
3^2 + 3*3^2 = 3^2 + 3^3 = 36

Cost of computing whether goal(a,c) with indexing
(2n-1) + n*(2n-1) = 2n^2 + n - 1

Suppose n = 3
2*3^2 + 3 - 1 = 18 + 2 = 20

Example with Indexing



Example
goal(X,Z) :- p(X,Y) & p(Y,Z)

Cost of computing goal(X,Z)without indexing
n^2 + n^2*n^2 = n^2 + n^4

Suppose n = 3
3^2 + 3^2*3^2 = 3^2 + 3^4 = 90

Cost of computing all instances with indexing:
n^2 + n^2*(2n-1) = n^2 + 2n^3 - n^2 = 2n^3

Suppose n = 3
2*3^3 = 54

Example with Indexing











Pipelining



Normal Evaluation of Conjuncts: (1) Call eval on the first conjunct 
and a given substitution. (2) Collect all answers.  (3) Then iterate 
over answers, for each calling eval on the remaining conjuncts.

All answers to the first conjunct are computed before working on 
subsequent conjuncts.

Pipelined Evaluation of Conjuncts: (1) Call eval on the first 
conjunct and a given substitution. (2) Compute just one substitution.  
(3) Call eval on remaining conjuncts with the resulting substitution.  
Once done, back up and compute another solution to the first 
conjunct and repeat.

One answer to the first conjunct is computed and then used before 
generating additional answers to the first conjunct.

Basic Idea



Dataset: {p(a,b), p(b,c), q(b), q(c)}

Call eval: p(X,Y) & q(Y), {}
    Call eval: p(X,Y), {}
    Exit eval: {{X←a,Y←b}, {X←b,Y←c}}

    Call eval: q(Y), {X←a,Y←b}
    Exit eval: {{X←a,Y←b}}
    Call eval: q(Y), {X←b,Y←c}
    Exit eval: {{X←b,Y←c}}

Exit eval: {{X←a,Y←b}, {X←b,Y←c}}

Normal Evaluation



Dataset: {p(a,b), p(b,c), q(b), q(c)}

Call eval: p(X,Y) & q(Y), {}
    Call eval: p(X,Y), {}
    Exit eval: {X←a,Y←b}
    Call eval: q(Y), {X←a,Y←b}
    Exit eval: {X←a,Y←b}

    Redo eval: p(X,Y), {}
    Exit eval: {X←b,Y←c}
    Call eval: q(Y), {X←b,Y←c}
    Exit eval: {X←b,Y←c}

Exit eval: {{X←a,Y←b}, {X←b,Y←c}}

Pipelined Evaluation














