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Series Foreword 

The logic programming approach to computing investigates the use of 
logic as a programming language and explores computational models 
based on controlled deduction. 

The field of logic programming has seen a tremendous growth in the 
last several years, both in depth and in scope. Thls growth is reflected in 
the number of articles, journals, theses, books, workshops, and confer- 
ences devoted to the subject. The MIT Press series in logic programming 
was created to accommodate t h s  development and to nurture it. It is 
dedicated to the publication of hgh-quality textbooks, monographs, col- 
lections, and proceedings in logic programming. 

Ehud Shapiro 
The Weizmann Institute of Science 
Rehovot, Israel 



Foreword 

Programming in Prolog opens the mind to a new way of loolung at com- 
puting. There is a change of perspective which every Prolog programmer 
experiences when first getting to know the language. 

I shall never forget my first Prolog program. The time was early 1974. 
I had learned about the abstract idea of logic programming from Bob 
Kowalski at Edinburgh, although the name "logic programming" had not 
yet been coined. The main idea was that deduction could be viewed as a 
form of computation, and that a declarative statement of the form 

P if Q and R and S .  

could also be interpreted procedurally as 

To solve P, solve Q and R and S. 

Now I had been invited to Marseilles. Here, Alain Colmerauer and his col- 
leagues had devised the language Prolog based on the logic programming 
concept. Somehow, this realization of the concept seemed to me, at first 
sight, too simpleminded. However, Gerard Battani and Henri Meloni had 
implemented a Prolog interpreter in Fortran (their first major exercise in 
programming, incidentally). Why not give Prolog a try? 

I sat at a clattering teletype connected down an ordinary telephone line 
to an IBM machine far away in Grenoble. I typed in some rules defining 
how plans could be constructed as sequences of actions. There was one 
important rule, modeled on the SRI planner Strips, whlch described how 
a plan could be elaborated by adding an action at the end. Another rule, 
necessary for completeness, described how to elaborate a plan by insert- 
ing an action in the middle of the plan. As an example for the planner to 



xxviii Foreword Foreword 

work on, I typed in facts about some simple actions in a "blocks world" 
and an initial state of t h s  world. I entered a description of a goal state to 
be acheved. Prolog spat back at me: 

meaning it couldn't find a solution. Could it be that a solution was not 
deducible from the axioms I had supplied? Ah, yes, I had forgotten to 
enter some crucial facts. I tried again. Prolog was quiet for a long time 
and then responded: 

DEBORDEMENT DE PILE 

Stack overflow! I had run into a loop. Now a loop was conceivable since 
the space of potential plans to be considered was infinite. However, I had 
taken advantage of Prolog's procedural semantics to organize the axioms 
so that shorter plans ought to be generated first. Could somethng else 
be wrong? After a lot of head scratching, I finally realized that I had 
rnistyped the names of some variables. I corrected the mistakes, and 
tried again. 

Lo and behold, Prolog responded almost instantly with a correct plan 
to achieve the goal state. Magic! Declaratively correct axioms had assured 
a correct result. Deduction was being harnessed before my very eyes 
to produce effective computation. Declarative programming was truly 
programming on a higher plane! I had dimly seen the advantages in 
theory. Now Prolog had made them vividly real in practice. Never had I 
experienced such ease in getting a complex program coded and running. 

Of course, I had taken care to formulate the axioms and organize them 
in such a way that Prolog could use them effectively. I had a general 
idea of how the axioms would be used. Nevertheless it was a surprise 
to see how the axioms got used in practice on particular examples. It 
was a delightful experience over the next few days to explore how Prolog 
actually created these plans, to correct one or two more bugs in my facts 
and rules, and to further refine the program. 

Since that time, Prolog systems have improved significantly in terms of 
debugging environments, speed, and general robustness. The techniques 
of using Prolog have been more fully explored and are now better un- 
derstood. And logic programming has blossomed, not least because of 
its adoption by the Japanese as the central focus of the Fifth Generation 
project. 

After more than a decade of growth of interest in Prolog, it is a great 
pleasure to see the appearance of ths  book. Hitherto, knowledge of how 
to use Prolog for serious programming has largely been communicated 
by word of mouth. T h s  textbook sets down and explains for the first 
time in an accessible form the deeper principles and techniques of Prolog 
programming. 

The book is excellent for not only conveying what Prolog is but also ex- 
plaining how it should be used. The key to understanding how to use 
Prolog is to properly understand the relationship between Prolog and 
logic programming. This book takes great care to elucidate the relation- 
s hip. 

Above all, the book conveys the excitement of using Prolog-the thrill 
of declarative programming. As the authors put it, "Declarative program- 
ming clears the mind." Declarative programming enables one to concen- 
trate on the essentials of a problem without getting bogged down in 
too much operational detail. Programming should be an intellectually 
rewarding activity. Prolog helps to make it so. Prolog is indeed, as the 
authors contend, a tool for thinking. 

David H. D. Warren 
Manchester, England, September 1986 



Preface 

Seven years have passed since the first edition of The Ar t  of Prolog was 
published. In that time, the perception of Prolog has changed markedly. 
While not as widely used as the language C, Prolog is no longer regarded 
as an exotic language. An abundance of books on Prolog have appeared. 
Prolog is now accepted by many as interesting and useful for certain 
applications. Articles on Prolog regularly appear in popular magazines. 
Prolog and logic programming are part of most computer science and 
engineering programs, although perhaps in a minor role in an artificial 
intelligence or programming languages class. The first conference on 
Practical Applications of Prolog was held in London in April 1992. A 
standard for the language is likely to be in place in 1994. A future for 
Prolog among the programming languages of the world seems assured. 

In preparing for a second edition, we had to address the question of 
how much to change. I decided to listen to a request not to make the new 
edition into a new book. This second edition is much like the first, al- 
though a number of changes are to be expected in a second edition. The 
typography of the book has been improved: Program code is now in a dis- 
tinctive font rather than in italics. Figures such as proof trees and search 
trees are drawn more consistently. We have taken the opportunity to be 
more precise with language usage and to remove minor inconsistencies 
with hyphenation of words and similar details. All known typograph- 
cal errors have been fmed. The background sections at the end of most 
chapters have been updated to take into account recent, important re- 
search results. The list of references has been expanded considerably. 
Extra, more advanced exercises, whch have been used successfully in my 
Prolog classes, have been added. 
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Let us take an overview of the specific changes to each part in turn. 
Part IV, Applications, is unchanged apart from minor corrections and 
tidylng. Part I, Logic Programs, is essentially unchanged. New programs 
have been added to Chapter 3 on tree manipulation, including heapifying 
a binary tree. Extra exercises are also present. 

Part 11, The Prolog Langauge, is primarily affected by the imminence of 
a Prolog standard. We have removed all references to Wisdom Prolog in 
the text in preparation for Standard Prolog. It has proved impossible to 
guarantee that this book is consistent with the standard. Reaching a stan- 
dard has been a long, difficult process for the members of the committee. 
Certain predicates come into favor and then disappear, making it difficult 
for the authors of a text to know what to write. Furthermore, some of the 
proposed I/O predicates are not available in current Prologs, so it is im- 
possible to run all the code! Most of the difficulties in reaching a Prolog 
standard agreeable to all interested parties have been with builtin or sys- 
tem predicates. This book raises some of the issues involved in adding 
builtins to Prolog but largely avoids the concerns by using pure Prolog as 
much as possible. We tend not to give detailed explanations of the con- 
troversial nonlogical behaviors of some of the system predicates, and we 
certainly do not use odd features in our code. 

Part 111, Advanced Programming Techniques, is the most altered in this 
second edition, whlch perhaps should be expected. A new chapter has 
been added on program transformation, and many of the other chapters 
have been reordered. The chapters on Interpreters and Logic Grammars 
have extensive additions. 

Many people provided us feedback on the first edition, almost all of 
it very positive. I thank you all. Three people deserve special thanks 
for talung the trouble to provide long lists of suggestions for improve- 
ments and to point out embarrassingly long lists of typos in the first 
edition: Norbert Fuchs, Harald Sclndergaard, and Stanley Selkow. The 
following deserve mention for pointing out mistakes and typos in the 
various printings of the first edition or making constructive comments 
about the book that led to improvements in later printings of the first 
edition and for t h s  second edition. The list is long, my memory some- 
times short, so please forgive me if I forget to mention anyone. Thanks 
to Hani Assiryani, Tim Boemker, Jim Brand, Bill Braun, Pu Chen, Yves 
Deville, George Ernst, Claudia Giinther, Ann Halloran, Sundar Iyengar, 
Gary Kacmarcik, Mansoor Khan, Sundeep Kumar, Arun Lakhotia, Jean- 

Louis Lassez, Charlie Linville, Per Ljung, David Maier, Fred Mailey, Martin 
Marshall, Andre Mesarovic, Dan Oldham, Scott Pierce, Lynn Pierce, David 
Pedder, S. S. Ramakrishnan, Chet Ramey, Marry Silverstein, Bill Sloan, Ron 
Taylor, Rodney Topor, R. J. Wengert, Ted Wright, and Nan Yang. For the 
former students of CMPS411, I hope the extra marks were sufficient re- 
ward. 

Thanks to Sarah Fliegelmann and Venkatesh Srinivasan for help with 
entering changes to the second edition and TeXing numerous drafts. 
Thanks to Phil Gannon and Zoe Sterling for helpful discussions about the 
figures, and to Joe Gelles for drawing the new figures. For proofreading 
the second edition, thanks to Kathy Kovacic, David Schwartz, Ashish Jain, 
and Venkatesh Srinivasan. Finally, a warm thanks to my editor, Terry 
Ehling, who has always been very helpful and very responsive to queries. 

Needless to say, the support of my family and friends is the most 
important and most appreciated. 

Leon Sterling 
Cleveland, January 1993 



Preface to First Edition 

The origins of this book lie in graduate student courses aimed at teach- 
ing advanced Prolog programming. A wealth of techniques has emerged 
in the fifteen years since the inception of Prolog as a programming lan- 
guage. Our intention in this book has been to make accessible the pro- 
gramming techniques that kindled our okvn excitement, imagination, and 
involvement in this area. 

The book fills a general need. Prolog, and more generally logic pro- 
gramming, has received wide publicity in recent years. Currently avail- 
able books and accounts, however, typically describe only the basics. All 
but the simplest examples of the use of Prolog have remained essentially 
inaccessible to people outside the Prolog community. 

We emphasize throughout the book the distinction between logic pro- 
gramming and Prolog programming. Logic programs can be understood 
and studied, using two abstract, machine-independent concepts: truth 
and logical deduction. One can ask whether an axiom in a program is 
true, under some interpretation of the program symbols; or whether a 
logical statement is a consequence of the program. These questions can 
be answered independently of any concrete execution mechanism. 

On the contrary, Prolog is a programming language, borrowing its basic 
constructs from logic. Prolog programs have precise operational mean- 
ing: they are instructions for execution on a computer-a Prolog ma- 
chine. Prolog programs in good style can almost always be read as log- 
ical statements, thus inheriting some of the abstract properties of logic 
programs. Most important, the result of a computation of such a Pro- 
log program is a logical consequence of the axioms in it. Effective Prolog 
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programming requires an understanding of the theory of logic program- 
ming. 

The book consists of four parts: logic programming, the Prolog lan- 
guage, advanced techniques, and applications. The first part is a self- 
contained introduction to logic programming. It consists of five chapters. 
The first chapter introduces the basic constructs of logic programs. Our 
account differs from other introductions to logic programming by ex- 
plaining the basics in terms of logical deduction. Other accounts explain 
the basics from the background of resolution from which logic program- 
ming originated. we have found the former to be a more effective means 
of teaching the material, which students find intuitive and easy to under- 
stand. 

The second and thlrd chapters of Part I introduce the two basic styles 
of logic programming: database programming and recursive program- 
ming. The fourth chapter discusses the computation model of logic pro- 
gramming, introducing unification, while the fifth chapter presents some 
theoretical results hithout proofs. In developing t h ~ s  part to enable the 
clear explanation of advanced techniques, we have introduced new con- 
cepts and reorganized others, in particular, in the discussion of types 
and termination. Other issues such as complexity and correctness are 
concepts whose consequences ha\re not yet been fullj. del~eloped in the 
logic programming research communitj.. 

The second part is an introduction to Prolog. It consists of Chapters 6 
through 13. Chapter 6 discusses the computation model of Prolog in 
contrast to logic programming, and gi\.es a comparison between Prolog 
and conventional programming languages such as Pascal. Chapter 7 dis- 
cusses the differences between composing Prolog programs and logic 
programs. Examples are gi\,en of basic programming techniques. 

The next fi\re chapters introduce system-provided predicates that are 
essential to make Prolog a practical programming language. We clas- 
sify Prolog system predicates into four categories: those concerned 
with efficient arithmetic, structure inspection, meta-logical predicates 
that discuss the state of the computation, and extra-logical predicates 
that achieve side effects outside the computation model of logic pro- 
gramming. One chapter is devoted to the most notorious of Prolog 
extra-logical predicates, the cut. Basic techniques using these system 
predicates are explained. The final chapter of the section gives assorted 
pragmatic programming tips. 

Preface to First Edition 

The main part of the book is Part 111. We describe advanced Prolog 
programming techniques that have evolved in the Prolog programming 
community, illustrating each with small yet powerful example programs. 
The examples typify the applications for which the technique is useful. 
The six chapters cover nondeterministic programming, incomplete data 
structures, parsing with DCGs, second-order programming, search tech-. 
niques, and the use of meta-interpreters. 

The final part consists of four chapters that show how the material in 
the rest of the book can be combined to build application programs. A 
common request of Prolog n e ~ ~ o m e r s  is to see larger applications. They 
understand how to write elegant short programs but have difficulty in 
building a major program. The applications covered are game-playing 
programs, a prototype expert system for evaluating requests for credit, a 
symbolic equation solver, and a compiler. 

During the development of the book, it has been necessary to reorga- 
nize the foundations and basic examples existing in the folklore of the 
logic programming community. Our structure constitutes a novel frame- 
work for the teaching of Prolog. 

Material from this book has been used successfully for several courses 
on logic programming and Prolog: in Israel, the United States, and Scot- 
land. The material more than suffices for a one-semester course to first- 
year graduate students or advanced undergraduates. There is consider- 
able scope for instructors to particularize a course to suit a special area 
of interest. 

A recommended division of the book for a 13-week course to senior un- 
dergraduates or first-year graduates is as follows: 4 weeks on logic pro- 
gramming, encouraging students to develop a declarative style of writing 
programs, 4 weeks on basic Prolog programming, 3 weeks on advanced 
techniques, and 2 weeks on applications. The advanced techniques 
should include some discussion of nondeterminism, incomplete data 
structures, basic second-order predicates, and basic meta-interpreters. 
Other sections can be covered instead of applications. Application areas 
that can be stressed are search techniques in artificial intelligence, build- 
ing expert systems, writing compilers and parsers, symbol manipulation, 
and natural language processing. 

There is considerable flexibility in the order of presentation. The ma- 
terial from Part I should be covered first. The material in Parts I11 and IV 
can be interspersed with the material in Part I1 to show the student how 
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larger Prolog programs using more advanced techniques are composed 
in the same style as smaller examples. 

Our assessment of students has usually been 50 percent by homework 
assignments throughout the course, and 50 percent by project. Our expe- 
rience has been that students are capable of a significant programming 
task for their project. Examples of projects are prototype expert systems, 
assemblers, game-playing programs, partial evaluators, and implementa- 
tions of graph theory algorithms. 

For the student who is studying the material on her own, we strongly 
advise reading through the more abstract material in Part I. A good Pro- 
log programming style develops from thinking declaratively about the 
logic of a situation. The theory in Chapter 5, however, can be skipped 
until a later reading. 

The exercises in the book range from very easy and well defined to 
difficult and open-ended. Most of them are suitable for homework exer- 
cises. Some of the more open-ended exercises were submitted as course 
projects. 

The code in this book is essentially in Edinburgh Prolog. The course has 
been given where students used several different variants of Edinburgh 
Prolog, and no problems were encountered. All the examples run on 
Wisdom Prolog, whlch is discussed in the appendixes. 

We acknowledge and thank the people who contributed directly to the 
book. We also thank, collectively and anonymously, all those who indi- 
rectly contributed by influencing our programming styles in Prolog. Im- 
provements were suggested by Lawrence Byrd, Oded Maler, Jack Minker, 
Richard O'Keefe, Fernando Pereira, and several anonymous referees. 

We appreciate the contribution of the students who sat through 
courses as material from the book was being debugged. The first author 
acknowledges students at the University of Edinburgh, the Weizmann 
Institute of Science, Tel Aviv University, and Case Western Reserve Uni- 
versity. The second author taught courses at the Weizmann Institute and 
Hebrew University of Jerusalem, and in industry. 

We are grateful to many people for assisting in the technical aspects 
of producing a book. We especially thank Sarah Fliegelmann, who pro- 
duced the various drafts and camera-ready copy, above and beyond the 
call of duty. Thls book might not have appeared without her tremendous 
efforts. Arvind Bansal prepared the index and helped with the references. 
Yehuda Barbut drew most of the figures. Max Goldberg and Shmuel Safra 

prepared the appendix. The publishers, MIT Press, were helpful and sup- 
portive. 

Finally, we acknowledge the support of family and friends, without 
which nothmg would get done. 

Leon Sterling 
1986 



Introduction 

The inception of logic is tied with that of scientific thinking. Logic pro- 
vides a precise language for the explicit expression of one's goals, knowl- 
edge, and assumptions. Logic provides the foundation for deducing 
consequences from premises; for studying the truth or falsity of state- 
ments given the truth or falsity of other statements; for establishing the 
consistency of one's claims; and for \,erif>.ing the validity of one's argu- 
ments. 

Computers are relati\rely new in our intellectual history. Similar to 
logic, they are the object of scientific study and a powerful tool for 
the advancement of scientific endeavor. Like logic, computers require 
a precise and explicit statement of one's goals and assumptions. Un- 
like logic, which has developed with the power of human thinking as the 
only external consideration, the development of computers has been gov- 
erned from the start by severe technological and engineering constraints. 
Although computers were intended for use by humans, the difficul- 
ties in constructing them were so dominant that the language for 
expressing problems to the computer and instructing it how to solve 
them was designed from the perspective of the engineering of the com- 
puter alone. 

Almost all modern computers are based on the early concepts of von 
Neumann and his colleagues, which emerged during the 1940s. The von 
Neumann machine is characterized by a large uniform store of memory 
cells and a processing unit with some local cells, called registers. The 
processing unit can load data from memory to registers, perform arith- 
metic or logical operations on registers, and store values of registers 
back into memory. A program for a von Neumann machine consists of 
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a sequence of instructions to perform such operations, and an additional 
set of control instructions, which can affect the next instruction to be 
executed, possibly depending on the content of some register. 

As the problems of building computers were gradually understood and 
solved, the problems of using them mounted. The bottleneck ceased to 
be the inability of the computer to perform the human's instructions but 
rather the inability of the human to instruct, or program, the computer. 
A search for programming languages convenient for humans to use be- 
gan. Starting from the language understood directly by the computer, 
the machine language, better notations and formalisms were developed. 
The main outcome of these efforts was languages that were easier for 
humans to express themselves in but that still mapped rather directly 
to the underlying machine language. Although increasingly abstract, the 
languages in the mainstream of development, starting from assembly 
language through Fortran, Algol, Pascal, and Ada, all carried the mark 
of the underlying machine-the von Neumann architecture. 

To the uninitiated intelligent person who is not familiar with the en- 
gineering constraints that led to its design, the von Neumann machine 
seems an arbitrary, even bizarre, device. Thinking in terms of its con- 
strained set of operations is a nontrivial problem, which sometimes 
stretches the adaptiveness of the human mind to its limits. 

These characteristic aspects of programming von Neumann computers 
led to a separation of work: there were those who thought how to solve 
the problem, and designed the methods for its solution, and there were 
the coders, who performed the mundane and tedious task of translating 
the instructions of the designers to instructions a computer can use. 

Both logic and programming require the explicit expression of one's 
knowledge and methods in an acceptable formalism. The task of making 
one's knowledge explicit is tedious. However, formalizing one's knowl- 
edge in logic is often an intellectually rewarding activity and usually 
reflects back on or adds insight to the problem under consideration. In 
contrast, formalizing one's problem and method of solution using the 
von Neumann instruction set rarely has these beneficial effects. 

We believe that programming can be, and should be, an intellectu- 
ally rewarding activity; that a good programming language is a powerful 
conceptual tool-a tool for organizing, expressing, experimenting with, 
and even communicating one's thoughts; that treating programming as 

"coding," the last, mundane, intellectually trivial, time-consuming, and 
tedious phase of solving a problem using a computer system, is perhaps 
at the very root of what has been known as the "software crisis." 

Rather, we think that programming can be, and should be, part of 
the problem-solving process itself; that thoughts should be organized as 
programs, so that consequences of a complex set of assumptions can be 
investigated by "running1' the assumptions; that a conceptual solution to 
a problem should be developed hand-in-hand with a working program 
that demonstrates it and exposes its different aspects. Suggestions in 
this direction have been made under the title "rapid prototyping." 

To achieve this goal in its fullest-to become true mates of the human 
thinking process-computers have still a long way to go. However, we 
find it both appropriate and gratifying from a historical perspective that 
logic, a companion to the human thinking process since the early days of 
human intellectual history, has been discovered as a suitable stepping- 
stone in this long journey. 

Although logic has been used as a tool for designing computers and for 
reasoning about computers and computer programs since almost their 
beginning, the use of logic directly as a programming language, termed 
logic programming, is quite recent. 

Logic programming, as well as its sister approach, functional program- 
ming, departs radically from the mainstream of computer languages. 
Rather then being derived, by a series of abstractions and reorganiza- 
tions, from the von Neumann machine model and instruction set, it is 
derived from an abstract model, which has no direct relation to 'or de- 
pendence on to one machine model or another. It is based on the belief 
that instead of the human learning to think in terms of the operations 
of a computer that which some scientists and engineers at some point 
in history happened to find easy and cost-effective to build, the com- 
puter should perform instructions that are easy for humans to provide. 
In its ultimate and purest form, logic programming suggests that even 
explicit instructions for operation not be given but rather that the knowl- 
edge about the problem and assumptions sufficient to solve it be stated 
explicitly, as logical axioms. Such a set of axioms constitutes an alterna- 
tive to the conventional program. The program can be executed by pro- 
viding it with a problem, formalized as a logical statement to be proved, 
called a goal statement. The execution is an attempt to solve the prob- 
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lem, that is, to prove the goal statement, given the assumptions in the 
logic program. 

A distinguishing aspect of the logic used in logic programming is that 
a goal statement typically is existentially quantified: it states that there 
exist some individuals with some property. An example of a goal state- 
ment is, "there exists a list X such that sorting the list [3,1,21 gives X." 
The mechanism used to prove the goal statement is constructive. If suc- 
cessful, it provides the identity of the unknown individuals mentioned in 
the goal statement, which constitutes the output of the computation. In 
the preceding example, assuming that the logic program contains appro- 
priate axioms defining the sort relation, the output of the computation 
would be X = [ l ,  2 ,3] .  

These ideas can be summarized in the following two metaphorical 
equations: 

program = set of axioms. 

computation = constructive proof of a goal statement from the progrum. 

The ideas behind these equations can be traced back as far as intuition- 
istic mathematics and proof theory of the early twentieth century. They 
are related to Hilbert's program, to base the entire body of mathemati- 
cal knowledge on logical foundations and to provide mechanical proofs 
for its theories, starting from the axioms of logic and set theory alone. 
It is interesting to note that the failure of this program, from which en- 
sued the incompleteness and undecidability results of Godel and Turing, 
marks the beginning of the modern age of computers. 

The first use of this approach in practical computing is a sequel to 
Robinson's unification algorithm and resolution principle, published in 
1965. Se\-era1 hesitant attempts were made to use this principle as a basis 
of a computation mechanism, but they did not gain any momentum. 
The beginning of logic programming can be attributed to Kowalski and 
Colmerauer. Kowalski formulated the procedural interpretation of Horn 
clause logic. He showed that an axiom 

A if BI and B2 and . . . and B, 

can be read and executed as a procedure of a recursive programming 
language, where A is the procedure head and the B, are its body. In 
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addition to the declarative reading of the clause, A is true if the B, are 
true, it can be read as follows: To solve (execute) .4, solve (execute) B1 and 
B, and . . . and B,,. In this reading, the proof procedure of Horn clause 
logic is the interpreter of the language, and the unification algorithm, 
which is at the heart of the resolution proof procedure, performs the 
basic data manipulation operations of variable assignment, parameter 
passing, data selection, and data construction. 

At the same time, in the early 1970s, Colmerauer and his group at 
the University of Marseilles-Aix developed a specialized theorem prover, 
written in Fortran, which they used to implement natural language pro- 
cessing systems. The theorem pro\,er, called Prolog (for Programmation 
en Logique), embodied Kowalski's procedural interpretation. Later, van 
Emden and Kowalski de\.eloped a formal semantics for the language of 
logic programs, showing that its operational, model-theoretic, and fix- 
point semantics are the same. 

In spite of all the theoretical work and the exciting ideas, the logic pro- 
gramming approach seemed unrealistic. At the time of its inception, re- 
searchers in the United States began to recognize the failure of the "next- 
generation .41 languages," such as Micro-Planner and Conniver, which de- 
veloped as a substitute for Lisp. T'he main claim against these languages 
was that they were hopelessl~, inefficient, and very difficult to control. 
Given their bitter experience with logic-based high-level languages, it is 
no great surprise that IJ.S. artificial intelligence scientists, when hearing 
about Prolog, thought that the Europeans were o\.er-excited o\er what 
they, the Americans, had already suggested, tried, and disco~~ered not to 
work. 

In that atmosphere the Prolog-10 compiler was almost an imaginary 
being. Developed in the mid to late 1!370s by D a ~ i d  H. Ll. Warren and 
his colleagues, this efhcient implementation of Prolog dispelled all the 
myths about the impracticality of logic programming. That compiler, still 
one of the finest implementations of Prolog around, delivered on pure 
list-processing programs a performance comparable to the best Lisp sys- 
tems available at the time. Furthermore, the compiler itself was written 
almost entirely in Prolog, suggesting that classic programming tasks, not 
just sophisticated A1 applications, could benefit from the power of logic 
programming. 
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The impact of this implementation cannot be overemphasized. Without 
it, the accumulated experience that has led to this book would not have 
existed. 

In spite of the promise of the ideas, and the practicality of their im- 
plementation, most of the Western computer science and A1 research 
community was ignorant, openly hostile, or, at best, indifferent to logic 
programming. By 1980 the number of researchers actively engaged in 
logic programming were only a few dozen in the United States and about 
one hundred around the world. 

No doubt, logic programming would have remained a fringe activity 
in computer science for quite a while longer hadit not been for the an- 
nouncement of the Japanese Fifth Generation Project, which took place 
in October 1981. Although the research program the Japanese presented 
was rather baggy, faithful to their tradition of achieving consensus at 
almost any cost, the important role of logic programming in the next 
generation of computer systems was made clear. 

Since that time the Prolog language has undergone a rapid transition 
from adolescence to maturity. There are numerous commercially avail- 
able Prolog implementations on most computers. A large number of Pro- 
log programming books are directed to different audiences and empha- 
size different aspects of the language. And the language itself has more 
or less stabilized, having a de facto standard, the Edinburgh Prolog fam- 
ily. 

The maturity of the language means that it is no longer a concept for 
scientists yet to shape and define but rather a given object, with vices 
and virtues. It is time to recognize that, on the one hand, Prolog falls 
short of the high goals of logic programming but, on the other hand, is a 
powerful, productive, and practical programming formalism. Given the 
standard life cycle of computer programming languages, the next few 
years will reveal whether these properties show their merit only in the 
classroom or prove useful also in the field, where people pa)- money to 
solve problems the)- care about. 

What are the current active subjects of research in logic programming 
and Prolog? Answers to this question can be found in the regular sci- 
entific journals and conferences of the field; the Logic Programming 
Journal, the Journal of New Generation Computing, the International 
Conference on Logic Programming, and the IEEE Symposium on Logic 

Programming as well as in the general computer science journals and 
conferences. 

Clearly, one of the dominant areas of interest is the relation between 
logic programming, Prolog, and parallelism. The promise of parallel com- 
puters, combined with the parallelism that seems to be available in the 
logic programming model, have led to numerous attempts, still ongoing, 
to execute Prolog in parallel and to devise novel concurrent program- 
ming languages based on the logic programming computation model. 
This, however, is a subject for another book. 



I Logic Programs 

A logic program is a set of axioms, or rules, defining relations between 
objects. A computation of a logic program is a deduction of conse- 
quences of the program. A program defines a set of consequences, whlch 
is its meaning. The art of logic programming is constructing concise and 
elegant programs that have the desired meaning. 

Leonardo Da Vinci. Old Man thinking. Pen and ink (slightly enlarged). About 
1 5  10. Windsor Castle, Royal Library. 



Basic Constructs 

The basic constructs of logic programming, terms and statements, are 
inherited from logic. There are three basic statements: facts, rules, and 
queries. There is a single data structure: the logical term. 

- -- - - -  -- -- - -- 

1.1 Facts 

The simplest kind of statement is called a fact. Facts are a means of 
stating that a relation holds between objects. An example is 

father (abraham, isaac) 

This fact says that Abraham is the father of Isaac, or that the relation fa- 
ther holds between the individuals named abraham and isaac. Another 
name for a relation is a predicate. Names of individuals are known as 
atoms. Similarly, plus ( 2 , 3 , 5 )  expresses the relation that 2 plus 3 is 5. 
The familiar plus relation can be realized via a set of facts that defines 
the addition table. An initial segment of the table is 

plus (O,O, 0) . plus (0, I, I) . plus (0,2,2) . plus (0,3,3) . 
plus(I,O,l). plus(l,l,2). plus(1,2,3). plus(1,3,4). 

A sufficiently large segment of this table, which happens to be also a 
legal logic program, will be assumed as the definition of the plus relation 
throughout this chapter. 

The syntactic conventions used throughout the book are introduced as 
needed. The first is the case convention. It is significant that the names 
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father (terach, abraham) 
father (terach ,nachor) . 
f ather(terach,haran) . 
f ather(abraham, isaac) . 
father(haran,lot) . 
f ather(haran,milcah) . 
father(haran, yiscah) . 

mother (sarah, isaac) . 

male (terach) . 
male (abraham) . 
male (nachor) . 
male (haran) . 
male(isaac). 
male(1ot). 

female (sarah) . 
female (milcah) . 
female(yiscah). 

Program 1.1 A biblical family database 

of both predicates and atoms in facts begin \vith a lowercase letter rather 
than an uppercase letter. 

A finite set of facts constitutes a program. This is the simplest form 
of logic program. A set of facts is also a description of a situation. This 
insight is the basis of database programming, to be discussed in the next 
chapter. ,4n example database of famil) relationships from the Bible is 
given as Program 1.1. The predicates fa ther ,  mother, male, and female 
express the obvious relationships. 

-- 

Queries 

The second form of statement in a logic program is a query. Queries are 
a means of retrieving information from a logic program. A query asks 
whether a certain relation holds between objects. For example, the query 
father(abraham, isaac)?  asks whether the fa ther  relationship holds 
between abraham and isaac. Given the facts of Program 1.1, the answer 
to this query is yes. 

Syntactically, queries and facts look the same, but they can be distin- 
guished by the context. When there is a possibility of confusion, a termi- 
nating period will indicate a fact, while a terminating question mark will 
indicate a query. We call the entity without the period or question mark 
a goal. A fact P. states that the goal P is true. A query P? asks whether 
the goal P is true. A simple query consists of a single goal. 

Answering a query with respect to a program is determining whether 
the query is a logical consequence of the program. We define logical 
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consequence incrementally through this chapter. Logical consequences 
are obtained by applying deduction rules. The simplest rule of deduction 
is identity: from P deduce P. A query is a logical consequence of an 
identical fact. 

Operationally, answering simple queries using a program containing 
facts like Program 1.1 is straightforward. Search for a fact in the program 
that implies the query. If a fact identical to the query is found, the answer 
is yes. 

The answer no is given if a fact identical to the query is not found, 
because the fact is not a logical consequence of the program. This answer 
does not reflect on the truth of the query; it merely says that we failed to 
prove the query from the program. Both the queries female (abraham) ? 

and plus ( I ,  I, 2)  ? will be answered no with respect to Program 1.1. 

- - -- - - - -- - - 

1.3 The Logical Variable, Substitutions, and Instances 

A logical variable stands for an unspecified individual and is used ac- 
cordingly. Consider its use in queries. Suppose we want to know of 
whom abraham is the father. One way is to ask a series of queries, 
f ather(abraham, l o t ) ? ,  f ather(abraham,milcah)?, . . . , fa ther  
(abraham, isaac)?,  . . . until an answer yes is given. A variable allows 
a better way of expressing the query as fa ther  (abraham, X) ?, to which 
the answer is X=isaac. Used in this way, variables are a means o f  sum- 
marizing many queries. A query containing a variable asks whether there 
is a value for the variable that makes the query a logical consequence of 
the program, as explained later. 

Variables in logic programs behave differently from variables in con- 
ventional programming languages. They stand for an unspecified but sin- 
gle entity rather than for a store location in memory. 

Having introduced variables, we can define a term, the single data 
structure in logic programs. The definition is inductive. Constants and 
variables are terms. Also compound terms, or structures, are terms. 
A compound term comprises a functor (called the principal functor 
of the term) and a sequence of one or more arguments, which are 
terms. A functor is characterized by its name, which is an atom, and 
its arity, or number of arguments. Syntactically, compound terms have 
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the form f ( t l , tz , .  . .,t,), where the functor has name f and is of arity 
n, and the t, are the arguments. Examples of compound terms include 
s(O), hot(milk), name(john,doe), list(a,list(b,nil)), foo(X), and 
tree(tree(nil,3,nil), 5 , R ) .  

Queries, goals, and more generally terms where variables do not occur 
are called ground. Where variables do occur, they are called nonground. 
For example, f oo (a, b) is ground, whereas bar (XI is nonground. 

Definition 
A substitution is a finite set (possibly empty) of pairs of the form XI = t i ,  
where XI is a variable and t, is a term, and X, # X, for every i f j, and XI 
does not occur in t,, for any i and j. 

An example of a substitution consisting of a single pair is {X=isaac}. 
Substitutions can be applied to terms. The result of applying a substi- 
tution 19 to a term A, denoted by A8 ,  is the term obtained by replacing 
every occurrence of X by t in A, for every pair X = t in 8 .  

The result of applying {X=isaac} to the term father (abraham, X) is 
the term father (abraham, isaac). 

Definition 
A is an instance of B if there is a substitution 8 such that A = B e .  w 

The goal father (abraham, isaac) is an instance of father (abraham, 
X) by this definition. Similarly, mother (sarah, isaac) is an instance of 
mother (X,Y) under the substitution {X=sarah,Y=isaac}. 

- -- - 

1.4 Existential Queries 

Logically speaking, variables in queries are existentially quantified, which 
means, intuitively, that the query father (abraham, X) ? reads: "Does 
there exist an X such that abraham is the father of X?" More generally, 
a query p(T,,Tl,. . .,T,)?, which contains the variables XI,&,. . .,Xk reads: 
"Are there XI,XZ,. . .,Xk such that p(Tl,T2,. . .,T,)?" For convenience, exis- 
tential quantification is usually omitted. 

The next deduction rule we introduce is generalization. An existential 
query P is a logical consequence of an instance of it, PO, for any substi- 
tution 8 .  The fact father (abraham, isaac) implies that there exists an X 
such that father (abraham, X) is true, namely, X=isaac. 

Operationally, to answer a nonground query using a program of facts, 
search for a fact that is an instance of the query. If found, the answer, 
or solution, is that instance. A solution is represented in this chapter by 
the substitution that, if applied to the query, results in the solution. The 
answer is no if there is no suitable fact in the program. 

In general, an existential query may have several solutions. Program 
1.1 shows that Haran is the father of three children. Thus the query 
father (haran,)()? has the solutions {X=lot}, {X=milcah), {X=yiscah}. 
Another query with multiple solutions is plus (X, Y, 4) ? for finding num- 
bers that add up to 3.  Solutions are, for example, {X=O, Y=4} and {X=l, 
Y=3}. Note that the different variables X and Y correspond to (possibly) 
different objects. 

An interesting variant of the last query is plus (X ,X ,4)?, which insists 
that the two numbers that add up to 4 be the same. It has a unique 
answer {X=2}. 

1.5 Universal Facts 

Variables are also useful in facts. Suppose that all the biblical characters 
like pomegranates. Instead of including in the program an appropriate 
fact for every individual, 

a fact 1 ikes (X, pomegranates) can say it all. Used in this way, variables 
are a means of summarizing many facts. The fact times (0, X ,  0) summa- 
rizes all the facts stating that 0 times some number is 0. 

Variables in facts are implicitly universally quantified, which means, 
intuitively, that the fact likes(X,pomegranates) states that for all X, 
X likes pomegranates. In general, a fact p(Tl,. . .,T,) reads that for all 
XI,. . .,Xk, where the X, are variables occurring in the fact, p(Tl,. . .,T,) 
is true. Logically, from a universally quantified fact one can deduce 
any instance of it. For example, from likes (X, pomegranates), deduce 
likes(abraham,pomegranates). 
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This is the third deduction rule, called instantiation. From a universally 
quantified statement P, deduce an instance of it, P Q ,  for any substitution 
0. 

As for queries, two unspecified objects, denoted by variables, can be 
constrained to be the same by using the same variable name. The fact 
p l u s  (0 ,  X, X) expresses that 0 is a left identity for addition. It reads that 
for all values of X, 0  plus X is X. A similar use occurs when translating the 
English statement "Everybody likes himself" to l i k e s  (X, X). 

Answering a ground query with a universally quantified fact is straight- 
forward. Search for a fact for which the query is an instance. For example, 
the answer to p l u s  ( 0 , 2 , 2 )  ? is yes, based on the fact p lus  (0 ,X, X I .  An- 
swering a nonground quer)? using a nonground fact involves a new defi- 
nition: a common instance of two terms. 

Definition 
C is a common instance of '4 and B if it is an instance of A and an instance 
of B, in other words, if there are substitutions 0 ,  and 0, such that C=AOI 
is syntactically identical to B O l .  

For example, the goals p l u s  (O,3, Y) and p lus  (0 ,  X ,  X) have a com- 
mon instance p l u s ( 0 , 3 , 3 ) .  When the substitution {Y=31 is applied to 
p l u s  ( 0 , 3 ,  Y) and the substitution {X=3) is applied to p lus  (0 ,  X, X I ,  both 
yield p l u s  ( 0 , 3 , 3 ) .  

In general, to ansn,er a query using a fact, search for a common in- 
stance of the querj. and fact. The anslver is the common instance, if one 
exists. Otherwise the answer is no. 

Answering an existential querJr ~vith a universal fact using a common 
instance invol~~es two logical deductions. The instance is deduced from 
the fact by the rule of instantiation, and the query is deduced from the 
instance b ~ .  the rule of generalization. 

-- pp - - -- -- - - 

1.6 Conjunctive Queries and Shared Variables 

An important extension to the queries discussed so far is conjunctive 
queries. Conjunctive queries are a conjunction of goals posed as a query, 
for example, f a t h e r  ( te rach ,X)  , f a t h e r  (X ,Y)? or in general, a,. . .,a?. 
Simple queries are a special case of conjunctive queries when there is a 

single goal. Logically, it asks whether a conjunction is deducible from the 
program. We use "," throughout to denote logical and. Do not confuse 
the comma that separates the arguments in a goal with commas used to 
separate goals, denoting conjunction. 

In the simplest conjunctive queries all the goals are ground, for exam- 
ple, f a t h e r  (abraham, i s a a c )  , male ( l o t )  ?. The answer to this query us- 
ing Program 1 . I  is clearly yes because both goals in the query are facts in 
the program. In general, the query a,. . .,&?, where each a is a ground 
goal, is answered yes with respect to a program P if each is implied by 
P. Hence ground conjunctive queries are not very interesting. 

Conjunctive queries are interesting when there are one or more shared 
variables, variables that occur in two different goals of the query. An ex- 
ample is the query f a t h e r  (haran ,  X) ,male (XI ?. The scope of a variable 
in a conjunctive query, as in a simple query, is the whole conjunction. 
Thus the quer)? p(X),q(X)P reads: "Is there an X such that both p(X) and 
q ( X ) ? "  

Sharcd variables arc used as  a means of constraining a simple query 
by restricting the range of a variable. We have already seen an example 
cvith the query p lus  (X , X ,4)?, where the solution of numbers adding 
up to 4 was restricted to the numbers being the same. Consider the 
querl, f a t h e r  (haran ,  X) ,male (XI ?. Here solutions to the query f a -  
t h e r  (haran ,  X) ? are restricted t o  children that are male. Program 1.1 
shows there is only one solution, iX=lotl .  Alternatively, this query can 
be viewed as restricting solutions to the query male (XI ? to individuals 
n7ho have Haran for a father. 

A slightly different use of a shared variable can be seen in the query 
f a t h e r  ( te rach ,X)  , f a t h e r  (X,Y)?. On the one hand, it restricts the sons 
of t e r a c h  to those who are themselves fathers. On the other hand, it con- 
siders individuals Y, whose fathers are sons of t e r ach .  There are several , 
solutions, for example, 1 X=abraham, Y=isaac} and {X=haran, Y=lot 1. j 

A conjunctive query is a logical consequence of a program P if all the ! 
goals in the conjunction are consequences of P, where shared variables 
are instantiated to the same values in different goals. A sufficient condi- 
tion is that there be a ground instance of the query that is a consequence 
of P. This instance then deduces the conjuncts in the query via general- 
ization. 

The restriction to ground instances is unnecessary and will be lifted in 
Chapter 4 when we discuss the computation model of logic programs. 

PROYECTO
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We employ this restriction in the meantime to simplify the discussion in 
the coming sections. 

Operationally, to solve the conjunctive query A1,A2,. . .,A,? using a pro- 
gram P, find a substitution B such that AIB and . . . and A,B are ground 
instances of facts in P. The same substitution applied to all the goals en- 
sures that instances of variables are common throughout the query. For 
example, consider the query f a t h e r  (haran,  X) ,male (XI ? with respect 
to Program 1.1. Applying the substitution {X=lot) to the query gives 
the ground instance f a t h e r  (ha ran , lo t )  ,male( lo t )? ,  which is a conse- 
quence of the program. 

Interesting conjunctive queries are defining relationships in their own 
right. The query f a t h e r  (haran,X) ,male(X)? is asking for a son of Ha- 
ran. The query f a t h e r  ( t e rach ,  X) , f a t h e r  (X , Y) ? is asking about grand- 
children of Terach. This brings us to the third and most important state- 
ment in logic programming, a rule, which enables us to define new rela- 
tionships in terms of existing relationships. 

Rules are statements of the form: 

where n 2 0. The goal A is the head of the rule, and the conjunction of 
goals B,,.  . .,B, is the body of the rule. Rules, facts, and queries are also 
called Horn clauses, or clauses for short. Note that a fact is just a special 
case of a rule when n = 0. Facts are also called unit clauses. We also 
have a special name for clauses with one goal in the body, namely, when 
n = 1. Such a clause is called an iterative clause. As for facts, variables 
appearing in rules are universally quantified, and their scope is the whole 
rule. 

A rule expressing the son relationship is 

SOII(X, Y) - f a t h e r  (Y ,X) , male (X) . 

Similarly one can define a rule for the daughter relationship: 

daughter ( x ,  Y) - f a t h e r  (Y ,  X)  , female (X) 

Basic Constructs 

A rule for the grandfather relationship is 

Rules can be viewed in two ways. First, they are a means of ex- 
pressing new or complex queries in terms of simple queries. A query 
son (X , haran) ? to the program that contains the preceding rule for son 
is translated to the query f a ther(haran,  X) ,male (X)? according to the 
rule, and solved as before. A new query about the son relationship has 
been built from simple queries involving f a t h e r  and male relationships. 
Interpreting rules in this way is their procedural reading. The procedural 
reading for the grandfather rule is: "To answer a query Is X the grand- 
father o f  Y?, answer the conjunctive query Is X the father o f  Z and Z the 
father o f  Y?." 

The second view of rules comes from interpreting the rule as a logical 
axiom. The backward arrow -is used to denote logical implication. The 
son rule reads: "X is a son of Y if Y is the father of X and X is male." 
In this view, rules are a means of defining new or complex relationships 
using other, simpler relationships. The predicate son has been defined in 
terms of the predicates f a t h e r  and male. The associated reading of the 
rule is known as the declarative reading. The declarative reading of the 
grandfather rule is: "For all X, Y ,  and Z ,  X is the grandfather of Y if X 
is the father of Z and Z is the father of Y." 

Although formally all variables in a clause are universally quantified, 
we will sometimes refer to variables that occur in the body of the clause, 
but not in its head, as if they are existentially quantified inside the body. 
For example, the grandfather rule can be read: "For all X and Y ,  X is the 
grandfather of Y if there exists a Z such that X is the father of Z and Z 
is the father of Y." The formal justification of this verbal transformation 
will not be given, and we treat it just as a convenience. Whenever it is a 
source of confusion, the reader can resort back to the formal reading of a 
clause, in which all variables are universally quantified from the outside. 

To incorporate rules into our framework of logical deduction, we need 
the law of modus ponens. Modus ponens states that from B and A - B 
we can deduce A. 

Definition 
The law of universal modus ponens says that from the rule 

R = ( A  - B1,B2,. . .,B,) 
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and the facts 

A' can be deduced if 

is an instance of R. 

[Jniversal modus ponens includes identity and instantiation as special 
cases. 

We are now in a position to give a complete definition of the concept 
of a logic program and of its associated concept of logical consequence. 

Definition 
A logic program is a finite set of rules. 

Definition 
An existentially quantified goal G is a logical consequence of a program P 
if there is a clause in P with a ground instance A - B1, .  . . , B n ,  n 2 0 such 
that B,,. . .,B, are logical consequences of P, and A is an instance of G. 

Note that the goal G is a logical consequence of a program P if and only 
if G can be deduced from P by a finite number of applications of the rule 
of universal modus ponens. 

Consider the query son(S,haran)?  with respect to Program 1.1 aug- 
mented by the rule for son. The substitution {X=lot ,Y=haran} applied 
to the rule gives the instance son(1ot  ,haran) - f a t h e r  (haran ,  l o t )  , 
male(1ot) .  Both the goals in the body of this rule are facts in Pro- 
gram 1.1. Thus universal modus ponens implies the quer)? with answer 
{S=lot}.  

Operationally, answering queries reflects the definition of logical con- 
seauence. Guess a ground instance of a goal, and a ground instance of - 

a rule, and recursively answer the conjunctive query corresponding to 
the body of that rule. To solve a goal A with program P, choose a rule 
A, -B1,B2,. . .,Bn in P, and guess substitution t) such that A = AlO, and 
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B,O is ground for 1 I i I n. Then recursively solve each B,8.  This pro- 
cedure can int~olve arbitrail). long chains of reasoning. It is difficult in 
general to guess the correct ground instance and to choose the right rule. 
We show in Chapter 4 how the guessing of an instance can be removed. 

The rule given for son is correct but is an incomplete specification of 
the relationship. For example, we cannot conclude that Isaac is the son 
of Sarah. What is missing is that a child can be the son of a mother as 
well as the son of a father. A new rule expressing this relationship can be 
added, namely, 

'To define the relationship grandparent  correctly would take four rules 
to include both cases of f a t h e r  and mother: 

grandparent(X,Y) - f a t h e r ( X , Z ) ,  f a the r (Z ,Y) .  
grandparent  (X, Y) - f a t h e r  (X, Z) , mother ( 2 ,  Y) . 
grandparent ( X  ,Y) - mother(X, Z) , f a t h e r  ( Z  ,Y) . 
grandparent  (X ,Y) - mother (X, Z) , mother (Z , Y) . 

There is a better, more compact, n-a), of expressing these rules. \Ve need 
to define the auxiliary relationship pa ren t  as being a father or a mother. 
Part of the art of logic programming is deciding on what intermediate 
predicates to define to achie\,e a complete, elegant axiomatization of a 
relationship. The rules defining parent  are straightforward, capturing 
the definition of a parent being a father or a mother. Logic programs 
can incorporate a1ternatik.e definitions, or more technically disjunction, 
by haking alternative rules, as for parent :  

parent  (X,Y) - -  f ather(X,Y) . 
parent  (X, Y) - mother (X,Y) . 
Rules for son and grandparent  are non, respectively, 

son(X,Y) - parent  (Y ,X) , male(X) . 
grandparent (X , Y) - parent  (X, Z) , parent  (Z, Y) . 

A collection of rules with the same predicate in the head, such as 
the pair of parent rules, is called a procedure. We shall see later that 
under the operational interpretation of these rules by Prolog, such a 
collection of rules is indeed the analogue of procedures or subroutines 
in conventional programming languages. 
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- - - -- -- p- - - - - - -- - 

1.8 A Simple Abstract Interpreter 

An operational procedure for answering queries has been informally de- 
scribed and progressively developed in the previous sections. In this 
section, the details are fleshed out into an abstract interpreter for logic 
programs. In keeping with the restriction of universal modus ponens to 
ground goals, the interpreter only answers ground queries. 

The abstract interpreter performs yes/no computations. It takes as 
input a program and a goal, and answers yes if the goal is a logi- 
cal consequence of the program and no otherwise. The interpreter is 
given in Figure 1.1. Note that the interpreter may fail to terminate if 
the goal is not deducible from the program, in which case no answer is 
given. 

The current, usually conjunctive, goal at any stage of the computation 
is called the resolvent. A trace of the interpreter is the sequence of resol- 
vents produced during the computation. Figure 1.2 is a trace of answer- 
ing the query son(lot ,har+n)? with respect to Program 1.2, a subset of 
the facts of Program 1.1 together with rules defining son and daughter. 
For clarit)., Figure 1.2 also explicitly- states the choice of goal and clause 
made at each iteration of the abstract interpreter. 

Each iteration of the while loop of the abstract interpreter corresponds 
to a single application of modus ponens. This is called a reduction. 

Input: ;Z ground goal (; and a program P 

Output: ,v~,r  i f  (; is a log~cal consequence of P. 

no othenz~se 

Algorithm: Initialize the resolvent to G. 

while the resolvent is not empt) do 
choose a goal A from the resolvent 
choose a ground instance of a clause .A' -B,, .  . .,B,, from P 

such that A and A' are identical 
(if no such goal and clause exist, exit the while loop) 

replace A by B,,. . .,B,, in the resolvent 
If' the resolLent is ernptJ., thcn output yes, else output no. 

Figure 1.1 An abstract interpreter to answer ground queries with respect to 
logic programs 
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Input: son (lot, haran) ? and Program 1.2 
Resolvent is son (lot, haran) 

Resolvent is not empty 

choose son(1ot ,haran) (the only choice) 
chooseson(lot,haran) - father(haran,lot), male(1ot) 
new resolvent is f ather(haran,lot) , male(1ot) 

Resolvent is not empty 
choose father (haran, lot) 

choose father (haran, lot) . 
new resolvent is male (lot) 

Resolvent is not empty 

choosemale(lot) 

choose male (lot) . 
new resolvent is empty 

Output: yes 

Figure 1.2 Tracing the interpreter 

father(abraham,isaac). malecisaac) . 
father(haran,lot). male(1ot). 
father(haran,milcah). female (milcah) . 
father(haran,yiscah). female(yiscah). 

Program 1.2 Biblical family relationships 

Definition 
A reduction of a goal G by a program P is the replacement of G by the 
body of an instance of a clause in P,  whose head is identical to the chosen 
goal. 

A reduction is the basic computational step in logic programming. The 
goal replaced in a reduction is reduced, and the new goals are derived. 
In this chapter, we restrict ourselves to ground reductions, where the 
goal and the instance of the clause are ground. Later, in Chapter 4, we 
consider more general reductions where unification is used to choose the 
instance of the clause and make the goal to be reduced and the head of 
the clause identical. 
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The trace in Figure 1.2 contains three reductions. The first reduces the 
goal son(1ot  ,haran) and produces two derived goals, f a the r (ha ran ,  
l o t )  and male ( l o t ) .  The second reduction is of f a t h e r  (haran,  l o t  and 
produces no derived goals. The third reduction also produces no derived 
goals in reducing male ( l o t ) .  

There are two unspecified choices in the interpreter in Figure 1.1. The 
first is the goal to reduce from the resolvent. The second choice is the 
clause (and an appropriate ground instance) to reduce the goal. These 
two choices have very different natures. 

The selection of the goal to be reduced is arbitrary. In any given resol- 
vent, all the goals must be reduced. It can be shown that the order of 
reductions is immaterial for answering the query. 

In contrast, the choice of the clause and a suitable instance is criti- 
cal. In general, there are several choices of a clause, and infinitely many 
ground instances. The choice is made nondeterministically. The concept 
of nondeterministic choice is used in the definition of many computa- 
tion models, e.g., finite automata and Turing machines, and has proven 
to be a powerful theoretic concept. A nondeterministic choice is an un- 
specified choice from a number of alternatives, which is supposed to be 
made in a "clairvoyant" way. If only some of the alternatives lead to a 
successful computation, then one of them is chosen. Formally, the con- 
cept is defined as follows. A computation that contains nondeterministic 
choices succeeds if there is a sequence of choices that leads to success. 
Of course, no real machine can directly implement this definition. How- 
ever, it can be approximated in a useful way, as done in Prolog. This is 
explained in Chapter 6. 

The interpreter given in Figure 1.1 can be extended to answer non- 
ground existential queries by an initial additional step. Guess a ground 
instance of the query. This is identical to the step in the interpreter of 
guessing ground instances of the rules. It is difficult in general to guess 
the correct ground instance, since that means knowing the result of the 
computation before performing it. 

A new concept is needed to lift the restriction to ground instances and 
remove the burden of guessing them. In Chapter 4, we show how the 
guess of ground instances can be eliminated, and we introduce the com- 
putational model of logic programs more fully. IJntil then it is assumed 
that the correct choices can be made. 

Basic Constructs 

Figure 1.3 A simple proof tree 

A trace of a query implicitly contains a proof that the query follows 
from the program. A more convenient representation of the proof is with 
a proof tree. A proof tree consists of nodes and edges that represent the 
goals reduced during the computation. The root of the proof tree for a 
simple query is the query itself. The nodes of the tree are goals that are 
reduced during the computation. There is a directed edge from a node 
to each node corresponding to a derived goal of the reduced goal. The 
proof tree for a conjunctive query is just the collection of proof trees for 
the individual goals in the conjunction. Figure 1.3 gives a proof tree for 
the program trace in Figure 1.2. 

An important measure provided by proof trees is the number of nodes 
in the tree. It indicates how many reduction steps are performed in a 
computation. This measure is used as a basis of comparison between 
different programs in Chapter 3. 

- -- -- 
- 

1.9 The Meaning of a Logic Program 

How can we know if a logic program says what we wanted it to say? If 
it is correct, or incorrect? In order to answer such questions, we have 
to define what is the meaning of a logic program. Once defined, we can 
examine if the program means what we have intended it to mean. 

Definition 
The meaning of a logic program P, M(P), is the set of ground goals 
deducible from P. 

From this definition it follows that the meaning of a logic program 
composed just of ground facts, such as Program 1.1, is the program it- 
self. In other words, for simple programs, the program "means just what 
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it says." Consider Program 1.1 augmented with the two rules defining 
the parent relationship. What is its meaning? It contains, in addition 
to the facts about fathers and mothers, mentioned explicitly in the pro- 
gram, all goals of the form parent(X,Y) for every pair X and Y such 
that fa ther  (X , Y) or mother (X , Y) is in the program. This example shows 
that the meaning of a program contains explicitly whatever the program 
states implicitly. 

Assuming that we define the intended meaning of a program also to 
be a set of ground goals, we can ask what is the relation between the 
actual and the intended meanings of a program. We can check whether 
everything the program says is correct, or whether the program says 
everything we wanted it to say. 

Informally, we say that a program is correct with respect to some 
intended meaning M if the meaning of P, M(P), is a subset of M. That is, 
a correct program does not say things that were not intended. A program 
is complete with respect to M if M is a subset of M(P). That is, a complete 
program says everything that is intended. It follows that a program P is 
correct and complete with respect to an intended meaning M if M = M ( P ) .  

Throughout the book, when meaningful predicate and constant names 
are used, the intended meaning of the program is assumed to be the one 
intuitively implied by the choice of names. 

For example, the program for the son relationship containing only 
the first axiom that uses fa ther  is incomplete with respect to the in- 
tuitively understood intended meaning of son, since it cannot deduce 
son(isaac,  sarah).  If we add to Program 1.1 the rule 

it would make the program incorrect with respect to the intended mean- 
ing, since it deduces son(sarah, isaac).  

The notions of correctness and completeness of a logic program are 
studied further in Chapter 5. 

Although the notion of truth is not defined fully here, we will say 
that a ground goal is true with respect to an intended meaning if it is 
a member of it, and false otherwise. We will say it is simply true if it is a 
member of the intended meaning implied by the names of the predicate 
and constant symbols appearing in the program. 

- - --. - - 

1.10 Summary 

We conclude this section with a summary of the constructs and concepts 
introduced, filling in the remaining necessary definitions. 

The basic structure in logic programs is a term. A term is a constant, 
a variable, or a compound term. Constants denote particular individuals 
such as integers and atoms, while variables denote a single but unspec- 
ified individual. The symbol for an atom can be any sequence of char- 
acters, which is quoted if there is possibility of confusion with other 
symbols (such as variables or integers). Symbols for variables are distin- 
guished by beginning with an uppercase letter. 

A compound term comprises a functor (called the principal functor 
of the term) and a sequence of one or more terms called arguments. A 
functor is characterized by its name, which is an atom, and its arity or 
number of arguments. Constants are considered functors of arity 0. Syn- 
tactically, compound terms have the form f ( t l  ,tL,. . .,tn) where the functor 
has name f and is of arity n, and the t, are the arguments. A functor 
f of arity n is denoted f/n. Functors with the same name but different 
arities are distinct. Terms are ground if they contain no variables; other- 
wise they are nonground. Goals are atoms or compound terms, and are 
generally nonground. 

A substitution is a finite set (possibly empty) of pairs of the form X = t ,  
where X is a variable and t is a term, with no variable on the left-hand 
side of a pair appearing on the right-hand side of another pair, and no 
two pairs having the same variable as left-hand side. For any substitution 
O = {XI = t , ,  X ,  = t i , .  . . , X ,  = t ,}  and term s, the term so denotes the 
result of simultaneously replacing in s each occurrence of the variable 
XI by t,, 1 I i r n; the term sB is called an instance of s. More will be said 
on this restriction on substitutions in the background to Chapter 4. 

A logic program is a finite set of clauses. A clause or rule is a univer- 
sally quantified logical sentence of the form 

where A and the B, are goals. Such a sentence is read declaratively: "A is 
implied by the conjunction of the Bi," and is interpreted procedurally "To 
answer query A, answer the conjunctive query B1,B2,. . .,Bk." A is called the 
clause's head and the conjunction of the B, the clause's body. If k = 0, 
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the clause is known as a fact or unit clause and written A., meaning A 
is true under the declarative reading, and goal A is satisfied under the 
procedural interpretation. If k = 1, the clause is known as an iterative 
clause. 

A query is a conjunction of the form 

A, ,..., A,? n>0, 

where the A, are goals. Variables in a query are understood to be existen- 
tially quantified. 

A computation of a logic program P finds an instance of a given query 
logically deducible from P. A goal G is deducible from a program P if 
there is an instance A of G where A -B1,. . .,Bn, n r 0, is a ground instance 
of a clause in P ,  and the B, are deducible from P. Deduction of a goal 
from an identical fact is a special case. 

The meaning of a program P is inductively defined using logical de- 
duction. The set of ground instances of facts in P  are in the meaning. A 
ground goal G is in the meaning if there is a ground instance G -BJ , .  . .,Bn 
of a rule in P such that B, ,. . .,B, are in the meaning. The meaning consists 
of the ground instances that are deducible from the program. 

An intended meaning M of a program is also a set of ground unit goals. 
A program P is correct with respect to an intended meaning M if M ( P )  is 
a subset of M .  It is complete with respect to M if M is a subset of M ( P ) .  
Clearly, it is correct and complete with respect to its intended meaning, 
which is the desired situation, if M  = M ( P ) .  

A ground goal is true with respect to an intended meaning if it is a 
member of it, and false otherwise. 

Logical deduction is defined syntactically here, and hence also the 
meaning of logic programs. In Chapter 5 ,  alternative ways of describing 
the meaning of logic programs are presented, and their equivalence with 
the current definition is discussed. 

Database Programming 

There are two basic styles of using logic programs: defining a logical 
database, and manipulating data structures. This chapter discusses data- 
base programming. A logic database contains a set of facts and rules. 
We show how a set of facts can define relations, as in relational data- 
bases. We show how rules can define complex relational queries, as in 
relational algebra. A logic program composed of a set of facts and rules 
of a rather restricted format can express the functionalities associated 
with relational databases. 

- - -- - - - - -- 

2.1 Simple Databases 

We begin by revising Program 1.1, the biblical database, and its aug- 
mentation with rules expressing family relationships. The database 
itself had four basic predicates, fa ther /2 ,  mother/2, male/l,  and f e -  
male/l. We adopt a convention from database theory and give for 
each relation a relation scheme that specifies the role that each po- 
sition in the relation (or argument in the goal) is intended to repre- 
sent. Relation schemes for the four predicates here are, respectively, 
f a t h e r  (Father,  Child), mother (Mother ,Child),  male (Person), and 
female (Person). The mnemonic names are intended to speak for them- 
selves. 

Variables are given mnemonic names in rules, but usually X or Y when 
discussing queries. Multiword names are handled differently for vari- 
ables and predicates. Each new word in a variable starts with an upper- 
case letter, for example, NieceOrNephew, while words are delimited by 
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underscores for predicate and function names, for example, schedule- 
c o n f l i c t .  

New relations are built from these basic relationships by defining suit- 
able rules. Appropriate relation schemes for the relationships introduced 
in the previous chapter are son (Son, Pa ren t ) ,  daughter  (Daughter, 

Pa ren t ) ,  parent  (Pa ren t ,  Chi ld) ,  and grandparent  (Grandparent,  
Grandchild).  From the logical viewpoint, it is unimportant which re- 
lationships are defined by facts and which by rules. For example, if the 
available database consisted of pa ren t ,  male and female facts, the rules 
defining son and grandparent  are still correct. New rules must be writ- 
ten for the relationships no longer defined by facts, namely, f a t h e r  and 
mother. Suitable rules are 

f a t h e r  (Dad, Child) - parent  (Dad, Child)  , male at ad) . 
mother (Mum, Child) - parent  ( ~ u m ,  c h i l d )  , female ( ~ u m )  . 

Interesting rules can be obtained by making relationships explicit that 
are present in the database only implicitly. For example, since we know 
the father and mother of a child, we know which couples produced off- 
spring, or to use a Biblical term, procreated. This is not given explicitly in 
the database, but a simple rule can be written recovering the information. 
The relation scheme is procreated(Man, Woman). 

procreated(Man, Woman) - 
f a t h e r  (Man, Child)  , mother (woman, Child)  . 

This reads: "Man and Woman procreated if there is a Child such that Man 
is the father of Child and Woman is the mother of Child." 

Another example of information that can be recovered from the simple 
information present is sibling relationships - brothers and sisters. We 
give a rule for b ro the r  (Brother ,  S i b l i n g ) .  

b ro the r (Bro the r ,S ib )  - 
paren t  (Parent  ,Bro the r ) ,  parent  (Parent ,  S i b ) ,  male (Brother)  . 

This reads: "Brother is the brother of S i b  if Parent  is a parent of both 
Brother  and Sib,  and Brother  is male." 

There is a problem with this definition of brother. The query b ro the r  
(X,X)? is satisfied for any male child X, which is not our understanding 
of the brother relationship. 

In order to preclude such cases from the meaning of the program, 
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abraham f isaac. abraham f haran. abraham f lot. 
abraham # milcah. abraham f yiscah. isaac f haran. 
isaac f lot. isaac f milcah. isaac f yiscah. 
haran f lot. haran f milcah. haran f yiscah. 
lot f milcah. lot f yiscah. milcah f yiscah. 

Figure 2.1 Defining inequality 

uncle(Uncle,Person) - 
brother(Uncle,Parent), parent(Parent,Person). 

sibling(Sibl,Sib2) - 
parent (Parent ,Sib11 , parent (Parent ,Sib2), Sib1 f Sib2 

cousin(Cousinl,Cousin2) - 
parent (Parent 1, Cousinl) , 
parent(Parent2,Cousin2), 
sibling(Parentl,Parent2). 

Program 2.1 Defining family relationships 

we introduce a predicate # (Terml , Term2). It is convenient to write this 
predicate as an i n k  operator. Thus Terml f Term2 is true if Term1 and 
Term2 are different. For the present it is restricted to constant terms. 
It can be defined, in principle, by a table X f Y for every two different 
individuals X and Y in the domain of interest. Figure 2.1 gives part of 
the appropriate table for Program 1.1. 

The new brother rule is 

b ro the r  (Brother ,  S ib)  - 
~ a r e n t  (Pa ren t ,  Brother)  , 
parent  (Parent ,  S ib)  , 
male (Brother)  , 
Brother  f S i b .  

The more relationshps that are present, the easier it is to define com- 
plicated relationships. Program 2.1 defines the relationships 
uncle(Uncle,Person),  s i b l i n g ( S i b l , S i b 2 ) ,  and cousin(Cousin1, 
Cousin2). The definition of uncle in Program 2.1 does not define the 
husband of a sister of a parent to be an uncle. This may or may not be 
the intended meaning. In general, different cultures define these family 
relationshps differently. In any case, the logic makes clear exactly what 
the programmer means by these family relationshps. 
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Another relationship implicit in the family database is whether a 
woman is a mother. This is determined by using the mother/2 relation- 
shp .  The new relation scheme is mother (Woman), defined by the rule 

mother (Woman) - mother (Woman, Child) . 
Ths  reads: "Woman is a mother if she is the mother of some Child." Note 
that we have used the same predicate name, mother, to describe two 
different mother relationshps. The mother predicate takes a different 
number of arguments, i.e., has a different arity, in the two cases. In 
general, the same predicate name denotes a different relation when it has 
a different arity. 

We change examples, lest the example of family relationships become 
incestuous, and consider describing simple logical circuits. A circuit can 
be viewed from two perspectives. The first is the topological layout of 
the physical components usually described in the circuit diagram. The 
second is the interaction of functional units. Both views are easily ac- 
commodated in a logic program. The circuit diagram is represented by 
a collection of facts, while rules describe the functional components. 

Program 2.2 is a database ghing a simplified view of the logical and- 
gate drawn in Figure 2.2. The facts are the connections of the particular 
resistors and transistors comprising the circuit. The relation scheme 
for resistors is resistor (Endl, End2) and for transistors transis- 
tor(Gate,Source,Drain). 

P o w e r  

Figure 2.2 A logical circuit 

inverter (Input,Output) - 
Output is the inversion of Input. 

nand-gate(Input1 ,lnput2,Output) - 
Output is the logical nand of Inputl and Input2. 

and-gate(lnputl,lnputZ,Output) - 
Output is the logical and of Inputl and Inputi'. 

Program 2.2 A circuit for a logical and-gate 

The program demonstrates the style of commenting of logic programs 
we will follow throughout the book. Each interesting procedure is pre- 
ceded by a relation scheme for the procedure, shown in italic font, and by 
English text defining the relation. We recommend this style of comment- 
ing, whch emphasizes the declarative reading of programs, for Prolog 
programs as well. 

Particular configurations of resistors and transistors fulfill roles cap- 
tured via rules defining the functional components of the circuit. The 
circuit describes an and-gate, which takes two input signals and pro- 
duces as output the logical and of these signals. One way of building 
an and-gate, and how this circuit is composed, is to connect a nand-gate 
with an inverter. Relation schemes for these three components are and- 
gate(Inputl,Input2,0utput), nand-gate(Inputl,Input2,0utput), 
and inverter (Input, Output). 
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To appreciate Program 2.2, let us read the inverter rule. Ths  states that 
an inverter is built up from a transistor with the source connected to the 
ground, and a resistor with one end connected to the power source. The 
gate of the transistor is the input to the inverter, whde the free end of the 
resistor must be connected to the drain of the transistor, whlch forms 
the output of the inverter. Sharing of variables is used to insist on the 
common connection. 

Consider the query and-gate (In1 , I d ,  Out) ? to Program 2.2. It has 
the solution {Inl=n3, In2=n5,Out=nl]. Ths  solution confirms that the 
circuit described by the facts is an and-gate, and indicates the inputs and 
output. 

2.1.1 Exercises for Section 2.1 

(i) Modify the rule for brother on page 21 to give a rule for sister, 
the rule for uncle in Program 2.1 to give a rule for niece, and 
the rule for sibling in Program 2.1 so that it only recognizes full 
siblings, i.e., those that have the same mother and father. 

(11) Using a predicate married-couple (Wif e ,Husband), define the rela- 
tionships mother-in-law, brother-in-law, and son-in-law. 

(iii) Describe the layout of objects in Figure 2.3 with facts using the 
predicates left-of (ObjectI,Object2) and above(0bjectl ,Ob- 
j ect2). Define predicates right-of (Object1 , Object2) and below 
(Object l,Object2) in terms of lef t-of and above, respectively. 

Figure 2.3 Still-life objects 

2.2 Structured Data and Data Abstraction 

A limitation of Program 2.2 for describing the and-gate is the treatment 
of the circuit as a black box. There is no indication of the structure of the 
circuit in the answer to the and-gate query, even though the structure 
has been implicitly used in finding the answer. The rules tell us that 
the circuit represents an and-gate, but the structure of the and-gate is 
present only implicitly. We remedy this by adding an extra argument to 
each of the goals in the database. For uniformity, the extra argument 
becomes the first argument. The base facts simply acquire an identifier. 
Proceeding from left to right in the diagram of Figure 2.2, we label the 
resistors rl and r2, and the transistors tl, t2, and t3. 

Names of the functional components should reflect their structure. An 
inverter is composed of a transistor and a resistor. To represent ths ,  
we need structured data. The technique is to use a compound term, 
inv (T , R) , where T and R are the respective names of the inverter's com- 
ponent transistor and rcsistor. Analogously, the name of a nand-gate will 
be nand(T1 ,T2 ,R), where TI, T2, and R name the two transistors and re- 
sistor that comprise a nand-gate. Finally, an and-gate can be named in 
terms of an inverter and a nand-gate. The modified code containing the 
names appears in Program 2.3. 

The query and-gate (G, In1 , In2, Out)? has solution {G=and(nand(t2, 
t3,r2) ,inv(tl ,rl)), Inl=n3, In2=n5,Out=nl}. Inl, In2, and Out have 
their previous values. The complicated structure for G reflects accurately 
the functional composition of the and-gate. 

Structuring data is important in programming in general and in logic 
programming in particular. It is used to organize data in a meaningful 
way. Rules can be written more abstractly, ignoring irrelevant details. 
More modular programs can be achieved this way, because a change of 
data representation need not mean a change in the whole program, as 
shown by the following example. 

Consider the following two ways of representing a fact about a lecture 
course on complexity given on Monday from 9 to 11 by David Hare1 in 
the Feinberg building, room A: 

and 
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resistor (R,Nodel ,Node2) - 
R is a resistor between Node1 and Node2. 

resistor(rl,power,nl). 
resistor(r2,power,n2). 

transistor ( T,Gate,Source,Drain) - 
T is a transistor whose gate is Gate, 
source is Source, and drain is Drain. 

inverter (l,lnput,Output) - 
I is an inverter that inverts Input to Output 

inverter(inv(T,R) ,input ,Output) - 
transistor(~,~nput,ground,Outp~t), 
resistor(R,power,Output). 

nand-gate(Nand,Inputl,Input2,Output) - 
Nand is a gate forming the logical nand, Output, 
of lnputl and Input2. 

nand-gate (nand (TI ,T2, R) , Input1, Input2, Output) ' 
transistor (TI ,Input1 ,X,output), 
transistor (T2, Input2 ,ground ,X) , 
resistor(R,power,Output). 

and-gate(And,Inputl ,lnput2Output) - 
And is a gate forming the logical and, Output, 
of Input1 and Input2. 

and-gate(and(N,I) ,Input1,1nput:!,Output) ' 
nand-gate ( N  ,Input 1, Input2 ,X) , 
inverter(I,X,Output). 

Program 2.3 The circuit database with names 

Database Programming 

The first fact represents course as a relation between eight items - a 
course name, a day, a starting hour, a finishng hour, a lecturer's first 
name, a lecturer's surname, a building, and a room. The second fact 
makes course a relation between four items - a name, a time, a lecturer, 
and a location with further qualification. The time is composed of a day, 
a starting time, and a finishing time; lecturers have a first name and 
a surname; and locations are specified by a building and a room. The 
second fact reflects more elegantly the relations that hold. 

The four-argument version of course enables more concise rules to 
be written by abstracting the details that are irrelevant to the query. 
Program 2.4 contains examples. The occupied rule assumes a predicate 
less than or equal, represented as a binary infix operator I .  

Rules not using the particular values of a structured argument need 
not "know" how the argument is structured. For example, the rules for 
duration and teaches represent time explicitly as time(Day,Start, 
Finish) because the Day or Start or Finish times of the course are de- 
sired. In contrast, the rule for lecturer does not. T h s  leads to greater 
modularity, because the representation of time can be changed without 
affecting the rules that do not inspect it. 

We offer no definitive advice on when to use structured data. Not using 
structured data allows a uniform representation where all the data are 
simple. The advantages of structured data are compactness of represen- 
tation, which more accurately reflects our perspective of a situation, and 

duration(Course,Length) - 
course (Course, time (Day, Start ,Finish) ,Lecturer, Location) , 
plus(Start,Length,Finish). 

occupied(Room,Day,Time) - 
course (Course, time(Day, Start ,Finish) ,Lecturer ,Room), 
Start 5 Time, Time 5 Finish. 

Program 2.4 Course rules 
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modularity. We can relate the discussion to conventional programming 
languages. Facts are the counterpart of tables, whle structured data cor- 
respond to records with aggregate fields. 

We believe that the appearance of a program is important, particularly 
when attempting difficult problems. A good structuring of data can make 
a difference when programming complex problems. 

Some of the rules in Program 2.4 are recovering relations between two 
individuals, binary relations, from the single, more complicated one. 
All the course information could have been written in terms of binary 
relations as follows: 

day (complexity ,monday) . 
start-time(complexity,9) . 
f inish-time (complexity, 11) . 
lecturer (complexity,harel) . 
building(complexity,feinberg). 
room(complexity , a) . 

Rules would then be expressed differently, reverting to the previous style 
of malung implicit connections explicit. For example, 

teaches (Lecturer ,Day) - 
lecturer (Course, Lecturer) , day (course, Day) 

2.2.1 Exercises for Section 2.2 

(i) Add rules defining the relations location(Course,~uilding), 
busy (Lecturer, Time), and cannot-meet (Lecturer1 , ~ecturer2). 
Test with your own course facts. 

(ii) Possibly using relations from Exercise (i), define the relation sched- 
ule-conf lict (Time ,Place ,Course1 ,Course2). 

(iii) Write a program to check if a student has met the requirements for 
a college degree. Facts will be used to represent the courses that the 
student has taken and the grades obtained, and rules will be used 
to enforce the college requirements. 

(iv) Design a small database for an application of your own choice. Use 
a single predicate to express the information, and invent suitable 
rules. 

2.3 Recursive Rules 

The rules described so far define new relationshps in terms of existing 
ones. An interesting extension is recursive definitions of relationshps 
that define relationships in terms of themselves. One way of viewing 
recursive rules is as generalization of a set of nonrecursive rules. 

Consider a series of rules defining ancestors - grandparents, great- 
grandparents, etc: 

grandparent (Ancestor, Descendant) - 
parent(Ancestor,Person), parent(Person,Descendant). 

greatgrandparent(Ancestor,Descendant) - 
parent(Ancestor,Person), grandparent(Person,Descendant). 

greatgreatgrandparent(Ancestor,Descendant) - 
parent (Ancestor ,person), greatgrandparent (Person, 

Descendant). 

A clear pattern can be seen, which can be expressed in a rule defining the 
relationship ancestor (Ancestor ,Descendant) : 

This rule is a generalization of the previous rules. 
A logic program for ancestor also requires a nonrecursive rule, the 

choice of which affects the meaning of the program. If the fact ances- 
tor (X , X) is used, defining the ancestor relationship to be reflexive, peo- 
ple will be considered to be their own ancestors. This is not the intuitive 
meaning of ancestor. Program 2.5 is a logic program defining the ances- 
tor relationship, where parents are considered ancestors. 

ancestor (Ancestor,Descendant) - 
Ancestor is an ancestor of Descendant. 

Program 2.5 The ancestor relationship 
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The ancestor relationshp is the transitive closure of the parent re- 
lationship. In general, finding the transitive closure of a relationship is 
easily done in a logic program by using a recursive rule. 

Program 2.5 defining ancestor is an example of a linear recursive pro- 
gram. A program is linear recursive if there is only one recursive goal in 
the body of the recursive clause. The linearity can be easily seen from 
considering the complexity of proof trees solving ancestor queries. A 
proof tree establishing that two individuals are n generations apart given 
Program 2.5 and a collection of parent facts has 2 . n nodes. 

There are many alternative ways of defining ancestors. The declarative 
content of the recursive rule in Program 2.5 is that Ancestor is an ances- 
tor of Descendant if Ancestor is a parent of an ancestor of Descendant. 
Another way of expressing the recursion is by observing that Ancestor 
would be an ancestor of Descendant if Ancestor is an ancestor of a par- 
ent of Descendant. The relevant rule is 

ancestor(Ancestor,Descendant) - 
ancestor (Ancestor, Person) , parent (Person, ~escendant) . 

Another version of defining ancestors is not linear recursive. A pro- 
gram identical in meaning to Program 2.5 but with two recursive goals in 
the recursive clause is 

ancestor(Ancestor,Descendant) - 
parent (Ancestor ,Descendant) . 

ancestor(Ancestor,Descendant) - 
ancestor (Ancestor ,Person) , ancestor (~erson,~escendant) . 

, 
Consider the problem of testing connectivity in a directed graph. A 

directed graph can be represented as a logic program by a collection i 
of facts. A fact edge (Node1 ,Node2) is present in the program if there 1 
is an edge from Node1 to Node2 in the graph. Figure 2.4 shows a graph; 
Program 2.6 is its description as a logic program. i 

Two nodes are connected if there is a series of edges that can be tra- I 
versed to get from the first node to the second. That is, the relation con- 
nected(Node1 ,Node2), which is true if Node1 and Node2 are connected, 

I 

is the transitive closure of the edge relation. For example, a and e are 
1 
1 

connected in the graph in Figure 2.4, but b and f are not. Program 2.7 
defines the relation. The meaning of the program is the set of goals con- 

I 
I 

Figure 2.4 A simple graph 

Program 2.6 A directed graph 

connected( Node1 ,Node2) - 
N o d e 1  is connected to Node2 in the 
graph defined by the edge/2 relation. 

connected(Node,Node). 
connected(Nodel,Node2) - edge(Nodel,Link), connected(Link,Node2) 

Program 2.7 The transitive closure of the edge relation 

nected(X,Y), where X and Y are connected. Note that connected is a 
transitive reflexive relation because of the choice of base fact. 

2.3.1 Exercises for Section 2.3 

(i) A stack of blocks can be described by a collection of facts on 
(Blockl,Block2), whch is true if Blockl is on Block2. Define a 
predicate above(Blockl,Block2) that is true if Blockl is above 
Block2 in the stack. (Hint: above is the transitive closure of on.) 
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(ii) Add recursive rules for left-of and above from Exercise 2.l(iii) on 
p. 34. Define higher (Objectl , Object2), which is true if Objectl is 
on a line hlgher than Object2 in Figure 2.3. For example, the bicycle 
is hgher than the fish in the figure. 

(iii) How many nodes are there in the proof tree for connected(a,e) 
using Programs 2.6 and 2.7? In general, using Program 2.6 and a 
collection of edge/2 facts, how many nodes are there in a proof tree 
establishing that two nodes are connected by a path containing n 
intermediate nodes? 

---- 

2.4 Logic Programs and the Relational Database Model 

Logic programs can be viewed as a powerful extension to the relational 
database model, the extra power coming from the ability to specify rules. 
Many of the concepts introduced haire meaningful analogues in terms of 
databases. The converse is also true. The basic operations of the rela- 
tional algebra are easily expressed within logic programming. 

Procedures composed solely of facts correspond to relations, the arity 
of the relation being the arity of the procedure. Five basic operations 
define the relational algebra: union, set difference, Cartesian product, 
projection, and selection. We show how each is translated into a logic 
program. 

The union operation creates a relation of arity n from two relations r 
and s, both of arity n. The new relation, denoted here r-union-s, is the 
union of r and s. It is defined directly as a logic program by two rules: 

Set difference involves negation. We assume a predicate not. Intu- 
itively, a goal not G is true with respect to a program P if G is not a 
logical consequence of P. Negation in logic programs is discussed in 
Chapter 5, where limitations of the intuitive definition are indicated. The 
definition is correct, however, if we deal only with ground facts, as is the 
case with relational databases. 

The definition of r-diff -s of arity n, where r and s are of arity n, is 
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r-diff-s(X1, . . . ,Xn) --  XI, . . . ,Xn), not S O , ,  . . . ,x,) . 

Cartesian product can be defined in a single rule. If r is a relation of 
arity m, and s is a relation of arity n, then r-x-s is a relation of arity 
m + n defined by 

Projection involves forming a new relation comprising'only some of 
the attributes of an existing relation. This is straightforward for any 
particular case. For example, the projection r13 selecting the first and 
third arguments of a relation r of arity 3 is 

Selection is similarly straightforward for any particular case. Consider 
a relation consisting of tuples whose third components are greater than 
their second, and a relation where the first component is Smith or Jones. 
In both cases a relation r of arity 3 is used to illustrate. The first example 
creates a relation rl: 

The second example creates a relation r2, which requires a disjunctive 
relationship, smith-or- j ones: 

r2(X1 ,X2 ,X3) -  XI ,X2,X3), smith-or-jones(X,). 
smith-or-jones (smith) . 
smith-or- j ones (j ones) . 

Some of the derived operations of the relational algebra are more 
closely related to the constructs of logic programming. We mention two, 
intersection and the natural join. If r and s are relations of arity n, the 
intersection, r-meet-s is also of arity n and is defined in a single rule. 

A natural join is precisely a conjunctive query with shared variables. 
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2.5 Background 

Readers interested in pursuing the connection between logic program- 
ming and database theory are referred to the many papers that have 
been written on the subject. A good starting place is the review paper by 
Gallaire et al. (1984). There are earlier papers on logic and databases in 
Gallaire and Minker (1978). Another interesting book is about the imple- 
mentation of a database query language in Prolog (Li, 1984). Our discus- 
sion of relational databases follows Ullman (1982). Another good account 
of relational databases can be found in Maier (1983). 

In the seven years between the appearance of the first edition and the 
second edition of t h s  book, the database community has accepted logic 
programs as extensions of relational databases. The term used for a data- 
base extended with logical rules is logic database or deductive database. 
There is now a wealth of material about logic databases. The rewritten 
version of Ullman's text (1989) discusses logic databases and gives point- 
ers to the important literature. 

Perhaps the major difference between logic databases as taught from 
a database perspective and the view presented here is the way of evalu- 
ating queries. Here we implicitly assume that the interpreter from Figure 
4.2 will be used, a top-down approach. The database community prefers 
a bottom-up evaluation mechanism. Various bottom-up strategies for an- 
swering a query with respect to a logic database are given in Ullman 
(1989). 

In general, an n-ary relation can be replaced by n + 1 binary relations, 
as shown by Kowalski (1979a). If one of the arguments forms a key for 
the relation, as does the course name in the example in Section 2.2, n 
binary relations suffice. 

The addition of an extra argument to each predicate in the circuit, 
as discussed at the beginning of Section 2.2, is an example of an en- 
hancement of a logic program. The technique of developing programs 
by enhancement is of growing importance. More will be said about this 
in Chapter 13. 

Recursive Programming 

The programs of the previous chapter essentially retrieve information 
from, and manipulate, finite data structures. In general, mathematical 
power is gained by considering infinite or potentially infinite structures. 
Finite instances then follow as special cases. Logic programs harness this 
power by using recursive data types. 

Logical terms can be classified into types. A type is a (possibly infinite) 
set of terms. Some types are conveniently defined by unary relations. A 
relation p/l defines the type p to be the set of X's such that p ( X ) .  

For example, the male/l and f emale/l predicates used previously de- 
fine the male and female types. 

More complex types can be defined by recursive logic programs. Such 
types are called recursive types. Types defined by unary recursive pro- 
grams are called simple recursive types. A program defining a type is 
called a w p e  definition. 

In this chapter, m7e show logic programs defining relations over simple 
recursive types, such as integers, lists, and binary trees, and also pro- 
grams over more complex types, such as polynomials. 

3.1 Arithmetic 

The simplest recursive data type, natural numbers, arises from the foun- 
dations of mathematics. Arithmetic is based on the natural numbers. 
This section gives logic programs for performing arithmetic. 

In fact, Prolog programs for performing arithmetic differ considerably 
from their logical counterparts, as we will see in later chapters. How- 
ever, it is useful to spend time discussing the logic programs. There are 
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natural-number (XI - 
X is a natural number. 

Program 3.1 Defining the natural numbers 

two main reasons. First, the operations of arithmetic are usually thought 
of functionally rather than relationally. Presenting examples for such a 
familiar area emphasizes the change in thmlung necessary for compos- 
ing logic programs. Second, it is more natural to discuss the underlying 
mathematical issues, such as correctness and completeness of programs. 

The natural numbers are built from two constructs, the constant sym- 
bol 0 and the successor function s of arity 1. All the natural numbers are 
then recursively given as 0, s (O), s ( s  (0) ) ,  s (s (s (0)) 1, . . . . We adopt 
the convention that sn(0) denotes the integer n, that is, n applications 
of the successor function to 0. 

As in Chapter 2, we give a relation scheme for each predicate, together 
with the intended meaning of the predicate. Recall that a program P 
is correct with respect to an intended meaning M if the meaning of 
P is a subset of M. It is complete if M is a subset of the meaning of 
P. It is correct and complete if its meaning is identical to M. Proving 
correctness establishes that everythng deducible from the program is 
intended. Proving completeness establishes that everythng intended is 
deducible from the program. Two correctness and completeness proofs 
are given in t h s  section. 

The simple type definition of natural numbers is neatly encapsulated 
in the logic program, shown as Program 3.1. The relation scheme used 
is natural-number (X), with intended meaning that X is a natural num- 
ber. The program consists of one unit clause and one iterative clause (a 
clause with a single goal in the body). Such a program is called minimal 
recursive. 

Proposition 
Program 3.1 is correct and complete with respect to the set of goals 
natural-number (si (0) ), for i > 0. 

Proof ( 1 )  Completeness. Let n be a natural number. We show that the 
goal natural-number(n) is deducible from the program by giving an 
explicit proof tree. Either n is 0 or of the form sn(0). The proof tree 
for the goal natural-number(0) is trivial. The proof tree for the goal 
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. . . 
Figure 3.1 Proof trees establishing completeness of programs 

natural-number (s (. . .s (0). . .) ) contains n reductions, using the rule in 
Program 3.1, to reach the fact natural-number (O), as shown in the left 
half of Figure 3.1. 

(2) Correctness. Suppose that natural-number(X) is deducible from 
Program 3.1, in n deductions. We prove that natural-number (X) is in 
the intended meaning of the program by induction on n. If n = 0, then 
the goal must have been proved using a unit clause, whlch implies that X 
= 0. If n > 0, then the goal must be of the form natural-number (s (X') 1, 
since it is deducible from the program, and further, natural-number (X') 
is deducible in n - 1 deductions. By the induction hypothesis, X' is in the 
intended meaning of the program, i.e., X'=sk (01 for some k 2 0. 

The natural numbers have a natural order. Program 3.2 is a logic pro- 
gram defining the relation less than or equal to according to the order. 
We denote the relation with a binary infuc symbol, or operator, I, accord- 
ing to mathematical usage. The goal 0 I X has predicate symbol I of 
arity 2,  has arguments 0 and X, and is syntactically identical to ' I ) (0, X) . 
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X 5 Y  - 
X and Y  are natural numbers, 
such that X  is less than or equal to Y. 

0 I X - natural-number (XI . 
s(X) I s(Y) - X 2 Y. 

natural-number (X) - See Program 3.1 . 

Program 3.2 The less than or equal relation 

The relation scheme is Nl r NZ. The intended meaning of Program 3.2 
is all ground facts X 5 Y, where x and Y are natural numbers and X is 
less than or equal to Y. Exercise (ii) at the end of this section is to prove 
the correctness and completeness of Program 3.2.  

The recursive definition of 5 is not computationally efficient. The proof 
tree establishing that a particular N is less than a particular M has M + 2 
nodes. We usually think of testing whether one number is less than 
another as a unit operation, independent of the size of the numbers. 
Indeed, Prolog does not define arithmetic according to the axioms pre- 
sented in this section but uses the underlpng arithmetic capabilities of 
the computer directly. 

Addition is a basic operation defining a relation between two natural 
numbers and their sum. In Section 1.1,  a table of the plus  relation was 
assumed for all relevant natural numbers. A recursive program captures 
the relation elegantly and more compactly, and is given as Program 3.3. 
The intended meaning of Program 3.3  is the set of facts plus(X,Y ,Z), 
where X, Y, and Z are natural numbers and X+Y=Z. 

Proposition 
Programs 3.1 and 3.3 constitute a correct and complete axiomatization 
of addition with respect to the standard intended meaning of plus/3.  

Proof (1) Completeness. Let X, Y, and z be natural numbers such that 
X+Y=Z. We give a proof tree for the goal p lus  (X ,Y, Z) . If X equals 0, then 
Y equals Z. Since Program 3.1 is a complete axiomatization of the natural 
numbers, there is a proof tree for natural-nmber(Y),  which is easily 
extended to a proof tree for p lus  ( 0 ,  Y ,Y)  . Otherwise. X equals sn (0) for 
some n. If Y equals sm (O), then z equals ~ " ' ~ ( 0 ) .  The proof tree in the 
right half of Figure 3.1 establishes completeness. 

~ I u s ( X , Y , Z )  - 
X ,  Y , and Z are natural numbers 
such that Z is the sum of X and Y 

plus ( 0  ,X, X) - natural-number (X) . 
plus(s()o,Y,s(z)) - plus(X,Y,z). 
natural-number (X) - See Program 3.1 . 

Program 3.3 Addition 

(2) Correctness. Let plus(X,Y ,Z) be in the meaning. A simple induc- 
tive argument on the size of X, similar to the one used in the previous 
proposition, establishes that X+Y=Z. 

8 

Addition is usually considered to be a function of two arguments 
rather than a relation of arity 3. Generally, logic programs corresponding 
to functions of n arguments define relations of arity n + 1. Computing 
the value of a function is achieved by posing a query with n arguments 
instantiated and the argument place corresponding to the value of the 
function uninstantiated. The solution to the query is the value of the 
function with the given arguments. To make the analogy clearer, we give 
a functional definition of addition corresponding to the logic program: 

One advantage that relational programs have over functional programs 
is the multiple uses that can be made of the program. For example, the 
query plus  (s (0) , s (0) , s ( s  (0) 1 )  7 means checking whether 1 + 1 = 2. 
(We feel free to use the more readable decimal notation when mentioning 
numbers.) As for I, the program for p lus  is not efficient. The proof tree 
confirming that the sum of N and M is N + M has N + M + 2 nodes. 

Posing the query plus  ( s  (0) , s (0) , X) ?, an example of the standard 
use, calculates the sum of 1 and 1. However, the program can just as eas- 
ily be used for subtraction by posing a query such as plus  ( s  (0) , x ,  s ( s  
( s  ( 0 ) ) )  )?. The computed value of X is the difference between 3 and 1, 
namely, 2. Similarly, asking a query with the first argument uninstanti- 
ated, and the second and thrd  instantiated, also performs subtraction. 

A more novel use exploits the possibility of a query having multiple so- 
) lutions. Consider the query plus  (X, Y ,  s ( s  ( s  (0) ) ) ) ?. It reads: "Do there 

PROYECTO
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exist numbers X and Y that add up to 3." In other words, find a partition 
of the number 3 into the sum of two numbers, X and Y. There are several 
solutions. 

A query with multiple solutions becomes more interesting when the 
properties of the variables in the query are restricted. There are two 
forms of restriction: using extra conjuncts in the query, and instanti- 
ating variables in the query. We saw examples of t h s  when querylng a 
database. Exercise (ii) at the end of t h s  section requires to define a pred- 
icate even(X) , whch is true if X is an even number. Assuming such a 
predicate, the query plus (X , Y , N) , even (X) , even (Y) ? gives a partition 
of N into two even numbers. The second type of restriction is exemplified 
by the query plus (s (s (x) ) , s (s (Y) ) ,N) 7 ,  which insists that each of the 
numbers adding up to N is strictly greater than 1. 

Almost all logic programs have multiple uses. Consider Program 3.2 
for I, for example. The query s (0) 2 s  (s (0) ) ? checks whether 1 is less 
than or equal to 2. The query X I s (s (0) ) ?  finds numbers X less than 
or equal to 2. The query x I Y? computes pairs of numbers less than or 
equal to each other. 

Program 3.3 defining addition is not unique. For example, the logic 
program 

plus (x, 0, X) -- natural-number ()o . 
plus(X,s(Y) ,s(Z)) - plus(X,Y,Z). 
has precisely the same meaning as Program 3.3 for plus. Two programs 
are to be expected because of the symmetry between the first two argu- 
ments. A proof of correctness and completeness given for Program 3.3 
applies to this program by reversing the roles of the symmetric argu- 
ments. 

The meaning of the program for plus would not change even if it 
consisted of the two programs combined. Ths  composite program is un- 
desirable, however. There are several different proof trees for the same 
goal. It is important both for runtime efficiency and for textual concise- 
ness that axiomatizations of logic programs be minimal. 

We define a type condition to be a call to the predicate defining the 
type. For natural numbers, a type condition is any goal of the form 
natural-number (X). 

In practice, both Programs 3.2 and 3.3 are simplified by omitting the 
body of the base rule, natural-number(X). Without t h s  test, facts such 

times ( X ,  Y,Z) - 
X, Y, and Z are natural numbers 
such that Z is the product of X and Y. 

times(O,X,O). 
times(s(X),Y,Z) - times(X,Y,XY), plus(XY,Y,Z). 

plus(X,Y ,Z) - See Program 3 .3  . 

Program 3.4 Multiplication as repeated addition 

exp(N,X, Y )  - 
N, X, and Y are natural numbers 
such that Y equals X raised to the power N .  

exp(s(X) ,0,0). 
exp(O,s(X) ,s(O)). 
exp(s(N),X,Y) - exp(N,X,Z), times(Z,X,Y). 

times(X,Y,Z) - See Program 3.4 . 

Program 3.5 Exponentiation as repeated multiplication 

as 0 i a and plus (0, a, a), where a is an arbitrary constant, will be 
in the programs' meanings. Type conditions are necessary for correct 
programs. However, type conditions distract from the simplicity of the 
programs and affect the size of the proof trees. Hence in the following 
we might omit explicit type conditions from the example programs, Pro- 
grams 3.4-3.7. 

The basic programs shown are the building blocks for more compli- 
cated relations. A typical example is defining multiplication as repeated 
addition. Program 3.4 reflects this relation. The relation scheme is 
times (X , Y, Z) , meaning X times Y equals Z. 

Exponentiation is defined as repeated multiplication. Program 3.5 for 
exp(N,X, Y) expresses the relation that xN=y. It is analogous to Pro- 
gram 3.4 for times (X,Y ,Z), with exp and times replacing times and 
plus, respectively. The base cases for exponentiation are xO=l for all pos- 
itive values of X, and oN=O for positive values of N. 

A definition of the factorial function uses the definition of multiplica- 
tion. Recall that N! = N . N - 1 . . . . . 2 1. The predicate factorial(N,F) 
relates a number N to its factorial F. Program 3.6 is its axiomatization. 

PROYECTO
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factorial (N,F) - 
F equals N factorial. 

times(X,Y,z) - See Program 3.4 

Program 3.6 Computing factorials 

minimum(Nl,NZ,Min) - 
The minimum of the natural numbers N1 and N2 is Min. 

N I  5 N 2  - See Program 3.2 . 

Program 3.7 The minimum of two numbers 

Not all relations concerning natural numbers are defined recursively. 
Relations can also be defined in the style of programs in Chapter 2. An 
example is Program 3.7 determining the minimum of two numbers via 
the relation minimum(N1, N2 ,Min) . 

Composing a program to determine the remainder after integer divi- 
sion reveals an interesting phenomenon-different mathematical defini- 
tions of the same concept are translated into different logic programs. 
Programs 3.8a and 3.8b give two definitions of the relation mod(~,Y, Z), 
which is true if Z is the value of X modulo Y, or in other words. Z is the re- 
mainder of X divided by Y. The programs assume a relation < as specified 
in Exercise (i) at the end of this section. 

Program 3.8a illustrates the direct translation of a mathematical defi- 
nition, which is a logical statement, into a logic program. The program 
corresponds to an existential definition of the integer remainder: "Z is 
the value of X mod Y if Z is strictly less than Y, and there exists a num- 
ber Q such that X = Q . Y + Z. In general, mathematical definitions are 
easily translated to logic programs. 

We can relate Program 3.8a to constructive mathematics. Although 
seemingly an existential definition, it is also constructive, because of the 
constructive nature of <, plus, and times. The number Q, for example. 
proposed in the definition will be explicitly computed by times in any 
use of mod. 

Recursive Programming 

mod(X,Y,Z) - 
Z is the remainder of the integer division of X by Y. 

m o d ( X , Y , Z )  - Z < Y ,  times(Y,Q,QY), plus(QY,Z,X). 

Program 3.8a A nonrecursive definition of modulus 

mod(X,Y,Z) - 
Z is the remainder of the integer division of X by Y 

m o d ( X , Y , X )  - X < Y .  
m o d ( X , Y , Z )  - plus(Xl,Y,X), m o d ( X l , Y , Z ) .  

Program 3.8b A recursive definition of modulus 

In contrast to Program 3.8a. Program 3.8b is defined recursively. It con- 
stitutes an algorithm for finding the integer remainder based on repeated 
subtraction. The first rule says that X mod Y is X if X is strictly less than 
Y. The second rule says that the value of X mod Y is the same as X - Y 
mod Y. The effect of any computation to determine the modulus is to re- 
peatedly subtract Y from X until it becomes less than Y and hence is the 
correct value. 

The mathematical function X mod Y is not defined when Y is zero. Nei- 
ther Program 3.8a nor Program 3.8b has goal mod (X , 0 , Z) in its meaning 
for any values of X or Z. The test of < guarantees that. 

The computational model gives a way of distinguislung between the 
two programs for mod. Given a particular X, Y, and Z satisfflng mod, 
we can compare the sizes of their proof trees. In general, proof trees 
produced with Program 3.8b will be smaller than those produced with 
Program 3.8a. In that sense Program 3.8b is more efficient. We defer more 
rigorous discussions of efficiency till the discussions on lists, where the 
insights gained will carry over to Prolog programs. 

Another example of translating a mathematical definition directly into 
a logic program is writing a program that defines Ackermann's function. 
Ackermann's function is the simplest example of a recursive function 
that is not primitive recursive. It is a function of two arguments, defined 
by three cases: 

ackermann(0, N )  = N + 1 .  

ackermann(M, 0 )  = ackermann(M - 1, l ) .  

ackermann(M, N )  = ackermann(M - 1 ,  ackermann(M, N - 1) ). 



Chapter 3 

ackermann(X,Y,A) - 
A is the value of Ackermann's 
function for the natural numbers X and E' 

ackerrnann(O,N,s(N)). 
ackermann(s(M) ,O ,Val) - ackermann(M, ~ ( 0 )  ,Val) . 
ackermann(s (M) , s(N) ,Val) - 

ackermann(s (M)  ,N ,Vall) , ackermann(M ,Val1 ,Val). 

Program 3.9 Ackermann's function 

gcd(X,Y,Z) - 
Z is the greatest common divisor of 
the natural numbers X and Y. 

Program 3.10 The Euclidean algorithm 

Program 3.9 is a translation of the functional definition into a logic pro- 
gram. The predicate ackermann(M ,N , A) denotes that ~=ackermann(M, N )  . 
The third rule invol~~es two calls to Ackermann's function, one to com- 
pute the value of the second argument. 

The functional definition of Ackermann's function is clearer than the 
relational one given in Program 3.9. In general, functional notation is 
more readable for pure functional definitions, such as Ackermann's 
function and the factorial function (Program 3.6). Expressing constraints 
can also be awkward with relational logic programs. For example, Pro- 
gram 3.8a says less directly that X = Q . Y + Z .  

The final example in this section is the Euclidean algorithm for finding 
the greatest common divisor of two natural numbers. recast as a logic 
program. Like Program 3.8b, it is a recursive program not based on the 
recursive structure of numbers. The relation scheme is gcd(X, Y ,  Z) , with 
intended meaning that z is the greatest common divisor (or gcd) of two 
natural numbers X and Y. It uses either of the two programs, 3.8a or 3.8b, 
for mod. 

The first rule in Program 3.10 is the logical essence of the Euclidean 
algorithm. The gcd of X and Y is the same as the gcd of Y and X mod 
Y. A proof that Program 3.10 is correct depends on the correctness 
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of the above mathematical statement about greatest common divisors. 
The proof that the Euclidean algorithm is correct similarly rests on t h s  
result. 

The second fact in Program 3.10 is the base fact. It must be specified 
that X is greater than 0 to preclude gcd(0,0,0) from being in the mean- 
ing. The gcd of 0 and 0 is not well defined. 

3.1.1 Exercises for Section 3.1 

(i) Modify Program 3.2 for to axiomatize the relations <, >, and r. 
Discuss multiple uses of these programs. 

(ii) Prove that Program 3.2 is a correct and complete axiomatization of 
1. 

(iii) Prove that a proof tree for the query sn ( 0 )  a sm (01 using Pro- 
gram 3.2 has m + 2 nodes. 

(iv) Define predicates even(X) and odd(X) for determining if a natural 
number is even or odd. (Hint: Modify Program 3.1 for natural- 
number.) 

(v) Write a logic program defining the relation fib(N,F) to determine 
the Nth Fibonacci number F. 

(vi) The predicate times can be used for computing exact quotients 
with queries such as times (s (s (0)) ,X, s (s (s (s ( 0 ) )  I ) ?  to find 
the result of 4 divided by 2. The query times (s (s (0) ) , x , s (s (s 
(0) 1 )  I ?  to find 3i2 has no solution. Many applications require the 
use of integer division that would calculate 312 to be 1. Write a 
program to compute integer quotients. (Hint: Use repeated subtrac- 
tion.) 

(vii) Modify Program 3.10 for finding the gcd of two integers so that 
it performs repeated subtraction directly rather than use the mod 
function. (Hint: The program repeatedly subtracts the smaller num- 
ber from the larger number until the two numbers are equal.) 

(viii) Rewrite the logic programs in Section 3.1 using a different represen- 
tation of natural numbers, namely as a sum of 1's. For example, the 
modified version of Program 3.1 would be 
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natural-number (1) . 
natural-number ( l+X) -- natural-number (X) . 

Note that + is used as a binary operator, and 0 is not defined to be 
a natural number. 

3.2 Lists 

The basic structure for arithmetic is the unary successor functor. Al- 
though complicated recursive functions such as Ackermann's function 
can be defined, the use of a unary recursive structure is limited. This sec- 
tion discusses the binary structure, the list. 

The first argument of a list holds an element, and the second argument 
is recursively the rest of the list. Lists are sufficient for most computa- 
tions - attested to by the success of the programming language Lisp, 
whlch has lists as its basic compound data structure. Arbitrarily complex 
structures can be represented with lists, though it is more convenient to 
use different structures when appropriate. 

For lists, as for numbers, a constant symbol is necessary to terminate 
recursion. This "empty list," referred to as nil, will be denoted here by 
the symbol [ 1. We also need a functor of arity 2. Historically, the usual 
functor for lists is "." (pronounced dot), which overloads the use of the 
period. It is convenient to define a separate, special syntax. The term 
. (X,Y) is denoted [XIYI . Its components have special names: X is called 
the head and Y is called the tail. 

The term [X/Yl corresponds to a cons pair in Lisp. The corresponding 
words for head and tail are, respectively, car and cdr. 

Figure 3.2 illustrates the relation between lists written with different 
syntaxes. The first column writes lists with the dot functor, and is the 
way lists are considered as terms in logic programs. The second column 
gives the square bracket equivalent of the dot syntax. The third column 
is an improvement upon the syntax of the second column, essentially 
lvding the recursive structure of lists. In this syntax, lists are written 
as a sequence of elements enclosed in square brackets and separated 
by commas. The empty list used to terminate the recursive structure is 
suppressed. Note the use of "cons pair notation" in the third column 
when the list has a variable tail. 
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Formal object Cons pair syntax Element syntax 

.(a,[ I )  [all 11 [a1 

.(a,.(b,[ 1)) [alIbl[ 111 lab1 

. I [al[bl[c I [  1111 [a,b,cl 

.(a,X) [a l XI [a l XI 

.(a,.(b,X)) Ial[blXll [a,blXl 

Figure 3.2 Equivalent forms of lists 

list(Xs) - 
Xs is a list. 

l i s t ( [  I ) .  
l i s t  ( CX l Xsl ) - l i s t  (Xs )  . 

Program 3.1 1 Defining a list 

Terms built with the dot functor are more general than lists. Program 
3.11 defines a list precisely. Declaratively it reads: "A list is either the 
empty list or a cons pair whose tail is a list." The program is analogous to 
Program 3.1 defining natural numbers, and is the simple type definition 
of lists. 

Figure 3.3 gives a proof tree for the goal list ( [a, b, cl ). Implicit in the 
proof tree are ground instances of rules in Program 3.11, for example, 
list ( [a, b, cl - list ( [b, cl >. We specify the particular instance here 
explicitly, as instances of lists in cons pair notation can be confusing. 
[a, b , cl is an instance of [X l Xsl under the substitution {X=a, Xs= [b , cl }. 

Because lists are richer data structures than numbers, a great variety of 
interesting relations can be specified with them. Perhaps the most basic 
operation with lists is determining whether a particular element is in 
a list. The predicate expressing tlvs relation is member (Element, List). 
Program 3.12 is a recursive definition of member/2. 

Declaratively, the reading of Program 3.12 is straightforward. X is an 
element of a list if it is the head of the list by the first clause, or if it 
is a member of the tail of the list by the second clause. The meaning 
of the program is the set of all ground instances member (X , Xs) , where 
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Figure 3.3 Proof tree verifying a list 

member  (Element,List) - 
Element is an element of the list List. 

member (X ,  [ X  I Xsl ) . 
member ( X ,  [Y I Ysl ) - member ( X  ,Ys)  . 

Program 3.12 Membership of a list 

X is an element of XS. We omit the type condition in the first clause. 
Alternatively, it would be written 

member (X, [X I XS] ) - list (Xs) . 
This program has many interesting applications, to be revealed 

throughout the book. Its basic uses are checlung whether an element 
is in a list with a query such as member (b, [a, b, cl ) ?, finding an ele- 
ment of a list with a query such as member (X, [a, b, cl ) ?, and finding a 
list containing an element with a query such as member (b, X)?. Thls last 
query may seem strange, but there are programs that are based on t h s  
use of member. 

We use the following conventions wherever possible when naming vari- 
ables in programs involving lists. If X is used to denote the head of a 
list, then Xs will denote its tail. More generally, plural variable names will 
denote lists of elements, and singular names will denote individual ele 
ments. Numerical suffxes will denote variants of lists. Relation schemes 
will still contain mnemonic names. 
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prefix (Prefix,List ) - 
Prefix is a prefix of List. 

p re f i x (  I ,Ys)  . 
pre f i x (  [XIXsl , [ X I  Ysl - pref i x (Xs ,Ys )  . 
suffix (Suffix,List) - 

Suffix is a suflix of List. 

Program 3.13 Prefixes and suffixes of a list 

Our next example is a predicate sublist (Sub,List) for determining 
whether Sub is a sublist of List. A sublist needs the elements to be 
consecutive: [b, cl is a sublist of [a, b, c ,dl, whereas [a, cl is not. 

It is convenient to define two special cases of sublists to make the defi- 
nition of sublist easier. It is good style when composing logic programs 
to define meaningful relations as auxiliary predicates. The two cases con- 
sidered are initial sublists, or prefixes, of a list, and terminal sublists, or 
suffxes, of a list. The programs are interesting in their own right. 

The predicate prefix (Prefix , List) is true if Prefix is an initial sub- 
list of List, for example, prefix ( [a, bl , [a, b, cl ) is true. The compan- 
ion predicate to prefix is suffix (Suf f ix, List), determining if Suffix 
is a terminal sublist of List. For example, suffix ( [b, cl , [a, b, cl ) is 
true. Both predicates are defined in Program 3.13. A type condition ex- 
pressing that the variables in the base facts are lists should be added to 
the base fact in each predicate to give the correct meaning. 

An arbitrary sublist can be specified in terms of prefixes and suffixes: 
namely, as a suffix of a prefix, or as a prefix of a suffix. Program 3.14a 
expresses the logical rule that Xs is a sublist of Ys if there exists Ps such 
that Ps is a prefix of Ys and Xs is a suffix of Ps. Program 3.14b is the dual 
definition of a sublist as a prefix of a suffuc. 

The predicate prefix can also be used as the basis of a recursive 
definition of sublist. Thls is given as Program 3.14~. The base rule reads 
that a prefix of a list is a sublist of a list. The recursive rule reads that the 
sublist of a tail of a list is a sublist of the list itself. 

The predicate member can be viewed as a special case of sublist de- 
fined by the rule 

member (X, Xs) - sublist ( [XI , Xs) . 
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sublist (Sub,List) - 
Sub is a sublist of List. 

a: Suffix of a prefix 

sublist(Xs ,Ys) - pref ix(Ps ,YS), suff ix(Xs,Ps). 
b: Prefuc of a suffix 

sublist (Xs ,Ys) - pref ix(Xs ,ss), suffix(Ss,Ys). 
c: Recursive definition of a sublist 

sublist (Xs ,Ys) - pref ix(xs,Ys). 
sublist(Xs, [Y ~ Y s ] )  - sublist (XS ,YS). 

d: Prefix of a suffix, using append 

sublist (Xs ,AsXsBs) - 
append(As , XsBs , A s ~ s B s )  , append(Xs ,Bs , XSBS) . 

e: Suffuc of a prefix, using append 
sublist(Xs,AsXsBs) - 

append(AsXs ,Bs, AsXsBs) , append(As ,Xs ,ASXS) . 

Program 3.14 Determining sublists of lists 

a p p e n d  (Xs, Ys,XsYs) - 
XsYs is the result of concatenating 
the lists X s  and Ys. 

append( [ 1 ,Ys ,Ys). 
append( [XI Xsl ,Ys, [XI Zsl ) - append(Xs ,Ys ,Zs) 
Program 3.1 5 Appending two lists 

The basic operation with lists is concatenating two lists to give a t h rd  
list. This defines a relation, append(Xs , Ys , Zs), between two lists Xs, Ys 
and the result Zs of joining them together. The code for append, Pro- 
gram 3.15, is identical in structure to the basic program for combining 
two numbers, Program 3.3 for plus. 

Figure 3.4 gives a proof tree for the goal append ( [a, bl , LC, dl , [a, b, 
c ,dl ) .  The tree structure suggests that its size is linear in the size of 
the first list. In general, if Xs is a list of n elements, the proof tree for 
append(Xs ,Ys , Zs) has n + 1 nodes. 

There are multiple uses for append similar to the multiple uses for 
plus. The basic use is to concatenate two lists by posing a query such 
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Figure 3.4 Proof tree for appending two lists 

as append(Ca,b,cl, [d,el ,Xs)? with answer Xs=[a,b,c,d,el. A query 
such as append(Xs, [c, dl , [a, b, c ,dl > ? finds the difference Xs= [a, b] 
between the lists Cc, dl and [a, b, c ,dl. Unlike plus, append is not sym- 
metric in its first two arguments, and thus there are two distinct versions 
of finding the difference between two lists. 

The analogous process to partitioning a number is splitting a list. The 
query append(As , Bs , [a, b, c , dl ) ?, for example, asks for lists As and Bs 
such that appending Bs to As gives the list [a,b, c, dl. Queries about 
splitting lists are made more interesting by partially specifying the na- 
ture of the split lists. The predicates member, sublist, prefix, and suf - 
fix, introduced previously, can all be defined in terms of append by 
viewing the process as splitting a list. 

The most straightforward definitions are for prefix and suffix, whlch 
just specify which of the two split pieces are of interest: 

  ref ix(Xs, Ys) - append(Xs, As, Ys) . 
suff ix(Xs,Ys) - append(As,Xs,Ys) . 
Sublist can be written using two append goals. There are two distinct 

variants, given as Programs 3.14d and 3.14e. These two programs are 
obtained from Programs 3.14a and 3.14b, respectively, where prefix and 
suffix are replaced by append goals. 
Member can be defined using append, as follows: 

Thls says that X is a member of Ys if Ys can be split into two lists where 
X is the head of the second list. 
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reverse( List, Tsil) - 
Tsil is the result of reversing the list List. 

a: Naive reverse 
reverse([ I,[ I ) .  
reverse( [XI Xs] ,Zs) - reverse(Xs ,Ys) , append(ls, [XI ,ZS)  

b: Reverse-accumulate 
reverse(Xs ,Ys) - reverse(Xs, C 1 ,Ys).  

reverse( [XIXsl ,Acc,Ys) - reverse(Xs, [ X I A C C ]  , Y S ) .  
reverse([ I ,Ys,Ys).  

Program 3.16 Reversing a Iist 

A similar rule can be written to express the relation adjacent (X ,Y, Zs) 
that two elements X and Y are adjacent in a list Zs: 

Another relation easily expressed through append is determining the 
last element of a list. The desired pattern of the second argument to 
append, a list with one element, is built into the rule: 

Repeated applications of append can be used to define a predicate 
reverse (List ,Tsil). The intended meaning of reverse is that Tsil is a 
list containing the elements in the list List in reverse order to how they 
appear in List. An example of a goal in the meaning of the program is 
reverse ( [a, b , c] , [c , b , a] ) . The naive version, given as Program 3.16a, 
is the logical equivalent of the recursive formulation in any language: 
recursively reverse the tail of the list, and then add the first element at 
the back of the reversed tail. 

There is an alternative way of defining reverse without calling append 
directly. We define an auxiliary predicate reverse (Xs , Ys , Zs) , whlch is 
true if Zs is the result of appending Ys to the elements of Xs reversed. 
It is defined in Program 3.16b. The predicate reverse/3 is related to 
reverse/2 by the first clause in Program 3.16b. 

Program 3.16b is more efficient than Program 3.16a. Consider Fig- 
ure 3.5, showing proof trees for the goal reverse ( [a, b , cl , [c , b , a1 > us- 
ing both programs. In general, the size of the proof tree of Program 3.16a 
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Figure 3.5 Proof trees for reversing a list 
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lengrh(Xs,N) - 
The list Xs has N elements. 

Program 3.17 Determining the length of a list 

is quadratic in the number of elements in the list to be reversed, whlle 
that of Program 3.16b is linear. 

The insight in Program 3.16b is the use of a better data structure for 
representing the sequence of elements, which we discuss in more detail 
in Chapters 7 and 15. 

The final program in this section, Program 3.17, expresses a rela- 
tion between numbers and lists, using the recursive structure of each. 
The predicate length(Xs,N) is true if Xs is a list of length N, that 
is, contains N elements, where N is a natural number. For example, 
length( [a, b] , s (s (0) ) ) , indicating that [a, b] has two elements, is in 
the program's meaning. 

Let us consider the multiple uses of Program 3.17. The query length 
([a,bl ,X)? computes the length, 2,  of a list [a,b]. In t h s  way, length 
is regarded as a function of a list, with the functional definition 

length( [ 1 ) = 0 
length( [XI Xsl ) = s (length(Xs) ) . 

The query length ( [a, bl , s (s (0) ) ) ? checks whether the list [a, bl has 
length 2. The query length (xs , s (s (0) ) ) ? generates a list of length 2 
with variables for elements. 

3.2.1 Exercises for Section 3.2 

(i) A variant of Program 3.14 for sublist is defined by the following 
three rules: 

subsequence ( [X I Xs] , [X I Ys] ) -- subsequence (Xs , YS) . 
subsequence (Xs , [Y I Ys] ) - subsequence (XS ,YS) . 
subsequence ( [ I , Ys) . 

Explain why this program has a different meaning from Pro- 
gram 3.14. 
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(ii) Write recursive programs for adjacent and last that have the 
same meaning as the predicates defined in the text in terms of 
append. 

(iii) Write a program for double (List, ListList) , where every element 
in List appears twice in ListList, e.g., double( [I ,2,31 , [I ,  I ,2, 
2,3,3]) is true. 

(iv) Compute the size of the proof tree as a function of the size of the 
input list for Programs 3.16a and 3.16b defining reverse. 

(v) Define the relation sum(List0f Integers, Sum), whlch holds if Sum 
is the sum of the ListOf Integers, 

(a) Using plus/3; 

(b) Without using any auxiliary predicate. 

(Hint: Three axioms are enough.) 

3.3 Composing Recursive Programs 

No explanation has been given so far about how the example logic pro- 
grams have been composed. The composition of logic programs is a slull 
that can be learned by apprenticeshp or osmosis, and most definitely by 
practice. For simple relations, the best axiomatizations have an aesthetic 
elegance that look obviously correct when written down. Through solv- 
ing the exercises, the reader may find, however, that there is a difference 
between recognizing and constructing elegant logic programs. 

Thls section gives more example programs involving lists. Their, pre- 
sentation, however, places more emphasis on how the programs might be 
composed. Two principles are illustrated: how to blend procedural and 
declarative thinlung, and how to develop a program top-down. 

We have shown the dual reading of clauses: declarative and procedural. 
How do they interrelate when composing logic programs? Pragmatically, 
one thinks procedurally when programming. However, one thinks declar- 
atively when considering issues of truth and meaning. One way to blend 
them in logic programming is to compose procedurally and then inter- 
pret the result as a declarative statement. Construct a program with a 
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given use in mind; then consider if the alternative uses make declarative 
sense. We apply this to a program for deleting elements from a list. 

The first, and most important, step is to specify the intended meaning 
of the relation. Clearly, three arguments are involved when deleting ele- 
ments from a list: an element X to be deleted, a list L1 that might have 
occurrences of X, and a list L2 with all occurrences of X deleted. An ap- 
propriate relation scheme is delete (L1, X, L2) .  The natural meaning is 
all ground instances where L2 is the list L1 with all occurrences of X re- 
moved. 

When composing the program, it is easiest to think of one specific 
use. Consider the query delete ( [a, b , c , b] , b , X) ?, a typical example of 
finding the result of deleting an element from a list. The answer here is 
X= [a, CI . The program will be recursive on the first argument. Let's don 
our procedural thinking caps. 

We begin with the recursive part. The usual form of the recursive ar- 
gument for lists is [XJXs]. There are two possibilities to consider, one 
where X is the element to be deleted, and one where it is not. In the first 
case, the result of recursively deleting X from Xs is the desired answer to 
the query. The appropriate rule is 

delete ( [ X I  Xs] ,X, Ys) - delete (Xs ,X2 Ys). 
Switching hats, the declarative reading of this rule is: "The deletion of 

X from [XIXsl is Ys if the deletion of X from Xs is Ys." The condition 
that the head of the list and the element to be deleted are the same is 
specified by the shared variable in the head of the rule. 

The second case where the element to be deleted is different from X, 
the head of the list, is similar. The result required is a list whose head 
is X and whose tail is the result of recursively deleting the element. The 
rule is 

The rule's declarative reading is: "The deletion of Z from CXlXsl is 
CXIYsl if Z is different from X and the deletion of Z from Xs is Ys." In 
contrast to the previous rule, the condition that the head of the list and 
the element to be deleted are different is made explicit in the body of the 
rule. 

The base case is straightforward. No elements can be deleted from the 
empty list, and the required result is also the empty list. This gives the 
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delete(List,X,HasNoXs) - 
The list HasNoXs is the result of removing all 
occurrences of X from the list List. 

Program 3.18 Deleting all occurrences of an element from a list 

select (X,HasXs,OneLessXs) - 
The list OneLessXs is the result of removing 
one occurrence of X from the list HasXs. 

select (X,  [XI Xsl ,Xs) . 
select (X, [Y I Ysl , [Y I Zsl) - select (X,Ys,Zs) . 

Program 3.19 Selecting an element from a list 

fact delete( C I ,X, C 1). The complete program is collected together as 
Program 3.18. 

Let us review the program h7e have written, and consider alternative 
formulations. Omitting the condition Xf Z from the second rule in Pro- 
gram 3.18 gives a variant of delete. This variant has a less natural mean- 
ing, since any number of occurrences of an element may be deleted. For 
example, delete ( [a, b, c, bl , b, [a, cl 1, delete ( [a, b, c, bl , b, [a, c, 
bl), delete([a,b,c,bl ,b, [a,b,cl), and delete([a,b,c,bl ,b,[a,b, 
c , b] ) are all in the meaning of the variant. 

Both Program 3.18 and the variant include in their meaning instances 
where the element to be deleted does not appear in either list, for ex- 
ample, delete ( Cal , b, [a1 > is true. There are applications where thls is 
not desired. Program 3.19 defines select (X,LI,L2), a relation that has 
a different approach to elements not appearing in the list. The meaning 
of select (X, L1 , L2) is all ground instances where L2 is the list L1 where 
exactly one occurrence of X has been removed. The declarative reading 
of Program 3.19 is: "X is selected from [XIXsl to give Xs; or X is selected 
from [YIYsl to give [YIZsl if X is selected from Ys to give Zs." 

A major thrust in programming has been the emphasis on a top-down 
design methodology, together with stepwise refinement. Loosely, the 
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methodology is to state the general problem, break it down into subprob- 
lems, and then solve the pieces. A top-down programming style is one 
natural way for composing logic programs. Our description of programs 
throughout the book will be mostly top-down. The rest of t h s  section de- 
scribes the composition of two programs for sorting a list: permutation 
sort and quicksort. Their top-down development is stressed. 

A logical specification of sorting a list is finding an ordered permuta- 
tion of a list. Ths  can be written down immediately as a logic program. 
The basic relation scheme is sort (Xs ,Ys) , where Ys is a list containing 
the elements in Xs sorted in ascending order: 

sort (Xs ,Ys) -- permutation(Xs ,Ys) , ordered(Ys) 

The top-level goal of sorting has been decomposed. We must now define 
permutation and ordered. 

Testing whether a list is ordered ascendingly can be expressed in the 
two clauses that follow. The fact says that a list with a single element 
is necessarily ordered. The rule says that a list is ordered if the first 
element is less than or equal to the second, and if the rest of the list, 
beginning from the second element, is ordered: 

ordered ( [XI ) . 
ordered([X,YIYs]) - X I Y, ordered([YIYsl). 

A program for permutation is more delicate. One view of the process 
of permuting a list is selecting an element nondeterministically to be the 
first element of the permuted list, then recursively permuting the rest 
of the list. We translate this view into a logic program for permutation, 
using Program 3.19 for select. The base fact says that the empty list is 
its own unique permutation: 

permutation(Xs, [Z I Zs] ) -- select (Z,XS ,Ys), permutation(~s,~s). 

permutation( C I , C 1 ) . 

Another procedural view of generating permutations of lists is recur- 
sively permuting the tail of the list and inserting the head in an arbitrary 
position. Ths  view also can be encoded immediately. The base part is 
identical to the previous version: 
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sort (Xs, Ys) - 
The list Ys is an ordered permutation of the list Xs. 

sort(Xs,Ys) +- permutation(Xs,Ys), ordered(Ys). 

permutation(Xs,[ZIZsl) - select(Z,Xs,Ys), permutation(Ys,Zs) 
permutation( [ I , [ I ) . 
ordered( [ I ) .  
ordered( [XI 1. 
ordered([X,YIYsl) - X 5 Y, ordered([YIYsl). 

Program 3.20 Permutation sort 

The predicate insert can be defined in terms of Program 3.19 for se- 
lect: 

insert (X ,Ys ,ZS) -- select (X, Zs,Ys) . 

Both procedural versions of permutation have clear declarative read- 
ings. 

The "naive" sorting program, which we call permutation sort, is col- 
lected together as Program 3.20. It is an example of the generate-and-test 
paradigm, discussed fully in Chapter 14. Note the addition of the extra 
base case for ordered so that the program behaves correctly for empty 
lists. 

The problem of sorting lists is well studied. Permutation sort is not a 
good method for sorting lists in practice. Much better algorithms come 
from applying a "divide and conquer" strategy to the task of sorting. The 
insight is to sort a list by dividing it into two pieces, recursively sorting 
the pieces, and then joining the two pieces together to give the sorted 
list. The methods for dividing and joining the lists must be specified. 
There are two extreme positions. The first is to make the dividing hard, 
and the joining easy. Thls approach is taken by the quicksort algorithm. 
The second position is malung the joining hard, but the dividing easy. 
Ths  is the approach of merge sort, which is posed as Exercise (v) at the 
end of t h s  section, and insertion sort, shown in Program 3.21. 

In insertion sort, one element (typically the first) is removed from the 
list. The rest of the list is sorted recursively; then the element is inserted, 
preserving the orderedness of the list. 

The insight in quicksort is to divide the list by choosing an arbitrary 
element in it, and then to split the list into the elements smaller than the 
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sort (Xs, Ys) - 
The list Ys is an ordered permutation of the list Xs. 

sort( [XlXsl ,Ys) - sort (Xs,Zs) , insert (X,ZS,YS). 
sort([ I,[ I). 

insert(X,[ ],[XI). 
insert (X, [Y I Ysl , [Y I Zsl ) - X > Y, insert (X ,YS, 2s). 
insert(X,[YIYsl,[~,~I~s]) - X 5 Y. 

Program 3.21 Insertion sort 

quicksort (Xs, Ys) - 
The list Ys is an ordered permutation of the list Xs. 

quicksort ( [X I Xs] ,Ys) - 
partition(Xs,X,Littles,Bigs), 
quicksort (Littles ,Ls) , 
quicksort (Bigs ,Bs) , 
append(Ls, [XIBs] ,Ys). 

quicksort ( [ 1 , [ 1 ) . 
partition([XIXs] ,Y, [XILs] ,Bs) - X 5 Y, p a r t i t i o n ( ~ s , ~ , ~ ~ , ~ ~ ) .  
partition([XIXs] ,Y,Ls,[X(BsJ) - X > Y, partition(~s,~,~s,B~). 
partition([ l,Y,[ I , [  1 ) .  

Program 3.22 Quicksort 

chosen element and the elements larger than the chosen element. The 
sorted list is composed of the smaller elements, followed by the chosen 
element, and then the larger elements. The program we describe chooses 
the first element of the list as the basis of partition. 

Program 3.22 defines the quicksort algorithm. The recursive rule for 
quicksort reads: "Ys is a sorted version of [XIXsl if Littles and Bigs 
are a result of partitioning Xs according to X; Ls and Bs are the result of 
sorting Littles and Bigs recursively; and Ys is the result of appending 
[XIBsl to Ls." 

Partitioning a list is straightforward, and is similar to the program for 
deleting elements. There are two cases to consider: when the current 
head of the list is smaller than the element being used for the parti- 
tioning, and when the head is larger than the partitioning element. The 
declarative reading of the first partition clause is: "Partitioning a list 
whose head is X and whose tail is Xs according to an element Y gives the 
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lists [XILittlesl and Bigs if X is less than or equal to Y, and partitioning 
Xs according to Y gives the lists Littles and Bigs." The second clause 
for partition has a similar reading. The base case is that the empty list 
is partitioned into two empty lists. 

3.3.1 Exercises for Section 3.3 

(i) Write a program for substitute(X,Y,LI,L2), where L 2  is the 
result of substituting Y for all occurrences of X in Li, e.g., sub- 
stitute (a,x, [a, b, a, cl , [x, b,x, cl ) is true, whereas substi- 
tute(a,x, [a,b,a,cl, [a,b,x,cl) is false. 

(ii) What is the meaning of the variant of select: 

select (X, [XI Xsl , Xs) . 
select(X, [Y~Ysl,~YlZsl) - X f Y, 
select (X, Ys, Zs) . 

(iii) Write a program for no-doubles (Ll , L2), where L2 is the result of 
removing all duplicate elements from L1, e.g., no-doubles ( [a, b, c ,  

bl , [a, c , bl ) is true. (Hint: Use member.) 

(iv) Write programs for even-permutation (Xs , Ys) and odd-permuta- 
tion(Xs,Ys) that find Ys, the even and odd permutations, respec- 
tively, of a list Xs. For example, even-permutat ion ( [I, 2,31, [2,3, 
11 ) and odd-permutation( [I, 2,31, [2, I, 31 ) are true. 

(v) Write a program for merge sort. 

(vi) Write a logic program for kth-largest (Xs, K) that implements the 
linear algorithm for finding the kth largest element K of a list XS. 
The algorithm has the following steps: 

Break the list into groups of five elements. 
Efficiently find the median of each of the groups, which can be done 
with a fixed number of comparisons. 
Recursively find the median of the medians. 
Partition the original list with respect to the median of medians. 
Recursively find the kth largest element in the appropriate smaller 
list. 
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(vii) Write a program for the relation better-poker-hand(Hand1, 
Hand2 ,Hand) that succeeds if Hand is the better poker hand be- 
tween Hand1 and Hand2. For those unfamiliar with this card game, 
here are some rules of poker necessary for answering t h s  exercise: 

(a) The order of cards is 2,  3, 4, 5, 6, 7, 8, 9, 10, jack, queen, lung, 
ace. 

(b) Each hand consists of five cards. 

(c) The rank of hands in ascending order is no pairs < one pair < 
two pairs < three of a lund < flush < straight < full house < 
four of a lund < straight flush. 

(d) Where two cards have the same rank, the hlgher denomination 
wins, for example, a pair of kings beats a pair of 7's. 

(Hints: (1) Represent a poker hand by a list of terms of the form 
card(Suit,Value). For example a hand consisting of the 2 of 
clubs, the 5 of spades, the queen of hearts, the queen of dia- 
monds, and the 7 of spades would be represented by the list [card 
(clubs, 2),card(spades, 5),card(hearts, queen),card(diamonds , 
queen) , card(spades, 7 ) ] .  (2) It may be helpful to define relations 
such as has-f lush(Hand), whch is true if all the cards in Hand are 
of the same suit; has-full-house (Hand), whch is true if Hand has 
three cards with the same value but in different suits, and the other 
two cards have the same different value; and has-straight (Hand), 
which is true if Hand has cards with consecutive values. (3) The 
number of cases to consider is reduced if the hand is first sorted.) 

3.4 Binary Trees 

We next consider binary trees, another recursive data type. These struc- 
tures have an important place in many algorithms. 

Binary trees are represented by the ternary functor tree(Element, 
Left ,Right), where Element is the element at the node, and Left and 
Right are the left and right subtrees respectively. The empty tree is 
represented by the atom void. For example, the tree 
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would be represented as 

tree (a, tree (b,void, void) ,tree (C ,void,void) ) . 
Logic programs manipulating binary trees are similar to those manip- 

ulating lists. As with natural numbers and lists, we start with the type 
definition of binary trees. It is given as Program 3.23. Note that the pro- 
gram is doubly recursive; that is, there are two goals in the body of the 
recursive rule with the same predicate as the head of the rule. Ths  re- 
sults from the doubly recursive nature of binary trees and will be seen 
also in the rest of the programs of this section. 

Let us write some tree-processing programs. Our first example tests 
whether an element appears in a tree. The relation scheme is tree- 
member(E1ement ,Tree). The relation is true if Element is one of the 
nodes in the tree. Program 3.24 contains the definition. The declarative 
reading of the program is: "X is a member of a tree if it is the element at 
the node (by the fact) or if it is a member of the left or right subtree (by 
the two recursive rules)." 

The two branches of a binary tree are distinguishable, but for many ap- 
plications the distinction is not relevant. Consequently, a useful concept 

binary_tree( Tree) - 
Tree is a binary tree. 

Program 3.23 Defining binary trees 

tree-member (Element,Tree) - 
Element is an element of the binary tree Tree. 

tree-member(X,tree(X,Left,Right)). 
tree-member(X,tree(Y,Left,Right)) - tree-member(X,Left). 
tree-member(X,tree(Y,Left,Right)) - tree-member(X,Right). 
Program 3.24 Testing tree membership 

PROYECTO

PROYECTO

PROYECTO
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Figure 3.6 Comparing trees for isomorphism 

isotree( Treel, Tree21 - 
Treel and Tree2 are isomorphc binary trees. 

isotree(void,void) . 
isotree (tree(X,Lef tl ,Rightl) ,tree (X ,Lef t2,Right2)) - 

isotree(Leftl,Left2), isotree(Right1,Right2). 
isotree(tree(X,lef tl ,Rightl) ,tree (X , ~ e f  t2 , ~ i ~ h t 2 )  - 

isotree(Leftl,~ight2), isotree(Right1,left2). 

Program 3.25 Determining when trees are isomorphic 

is isomorphism, whch defines when unordered trees are essentially the 
same. Two binary trees TI and T2 are isomorphic if T2 can be obtained 
by reordering the branches of the subtrees of TI. Figure 3.6 shows three 
simple binary trees. The first two are isomorphc; the first and third are 
not. 

Isomorphsm is an equivalence relation with a simple recursive defini- 
tion. Two empty trees are isomorphc. Otherwise, two trees are isomor- 
p h ~  if they have identical elements at the node and either both the left 
subtrees and the right subtrees are isomorphic; or the left subtree of one 
is isomorphc with the right subtree of the other and the two other sub- 
trees are isomorphic. 

Program 3.25 defines a predicate isotree (Treel , Tree21, whch is 
true if Treel and Tree2 are isomorphic. The predicate is symmetric in 
its arguments. 

Programs related to binary trees involve double recursion, one for each 
branch of the tree. The double recursion can be manifest in two ways. 
Programs can have two separate cases to consider, as in Program 3.24 for 
tree-member. In contrast, Program 3.12 testing membershp of a list has 
only one recursive case. Alternatively, the body of the recursive clause 
has two recursive calls, as in each of the recursive rules for isotree in 
Program 3.2 5. 

substitute(X, Y, TreeX, TreeY) - 
The binary tree TreeY is the result of replacing all 
occurrences of X in the binary tree TreeX by Y .  

substitute(X,Y,void,void). 
substitute (X, Y ,  tree (Node ,Left ,Right) ,tree (Node1 ,Lef t1 ,Right1) ) - 

replace(X,Y,Node,Nodel), 
substitute(X,Y,Left,Leftl), 
substitute(X,Y,Right,Rightl). 

Program 3.26 Substituting for a term in a tree 

The task in Exercise 3.3(i) is to write a program for substituting for el- 
ements in lists. An analogous program can be written for substituting 
elements in binary trees. The predicate substitute (X, Y ,  OldTree , 
NewTree) is true if NewTree is the result of replacing all occurrences 
of X by Y in OldTree. An axiomatization of substitute/4 is given as 
Program 3.26. 

Many applications involving trees require access to the elements ap- 
pearing as nodes. Central is the idea of a tree traversal, which is a se- 
quence of the nodes of the tree in some predefined order. There are three 
possibilities for the linear order of traversal: preorder, where the value of 
the node is first, then the nodes in the left subtree, followed by the nodes 
in the right subtree; inorder, where the left nodes come first followed by 
the node itself and then the right nodes; and postorder, where the node 
comes after the left and right subtrees. 

A definition of each of the three traversals is given in Program 3.27. 
The recursive structure is identical; the only difference between the pro- 
grams is the order in which the elements are composed by the various 
append goals. 

The final example in this section shows interesting manipulation of 
trees. A binary tree satisfies the heap property if the value at each node 
is at least as large as the value at its children (if they exist). Heaps, a class 
of binary trees that satisfy the heap property, are a useful data structure 
and can be used to implement priority queues efficiently. 

It is possible to heapify any binary tree containing values for which an 
ordering exists. That is, the values in the tree are moved around so that 
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preorder ( Tree,Pre) - 
Pre is a preorder traversal of the binary tree Tree. 

preorder(tree(X ,L,R) ,Xs) - 
preorder(L,L~), preorder(R,Rs) , append( [X ILs] ~ R s ~ x s )  

preorder (void, [ 1 ) . 

inorder ( Tree,In) - 
In is an inorder traversal of the binary tree Tree. 

inorder (tree(X ,L ,R) ,Xs) - 
inorder (L , Ls) , inorder (R , Rs) , append (Ls, [X 1 Rsl ,Xs) 

inorder (void, [ 1 ) . 
postorder (Tree,Post - 

Post is a postorder traversal of the binary tree Tree. 

postorder(tree(X,L,R) ,Xs) - 
postorder(L,Ls), 
~ostorder (R,Rs) , 
append(Rs , [XI ,Rsl) , 
append(Ls,Rsl,Xs). 

postorder (void, [ 1 ) . 

Program 3.27 Traversals of a binary tree 

the shape of the tree is preserved and the heap property is satisfied. An 
example tree and its heapified equivalent are shown in Figure 3.7. 

An algorithm for heapifying the elements of a binary tree so that the 
heap property is satisfied is easily stated recursively. Heapify the left and 
right subtrees so that they both satisfy the heap property and then ad- 
just the element at the root appropriately. Program 3.28 embodies tlvs 
algorithm. The relation heapify/2 lays out the doubly recursive pro- 
gram structure, and ad jus t  (X, HeapL ,HeapR, Heap) produces the final 
tree Heap satisfying the heap property from the root value X and the left 
and right subtrees HeapL and HeapR satisfying the heap property. 

There are three cases for ad jus t /4  depending on the values. If the root 
value is larger than the root values of the left and right subtrees, then 
the heap is t r e e  (X ,HeapL ,HeapR). Tlvs is indicated in the first ad jus t  
clause in Program 3.28. The second clause handles the case where the 
root node in the left heap is larger than the root node and the root of the 
right heap. In that case, the adjustment proceeds recursively on the left 
heap. The third clause handles the symmetric case where the root node 
of the right heap is the largest. The code is simplified by relegating the 
concern whether the subtree is empty to the predicate greater/2.  
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Figure 3.7 A binary tree and a heap that preserves the tree's shape 

heapib ( Tree, Heap) - 
The elements of the complete binary tree Tree have been adjusted 
to form the binary tree Heap, which has the same shape as Tree and 
satisfies the heap property that the value of each parent node is 
greater than or equal to the values of its children. 

heapify(void,void). 
heapify(tree(X,L,R) ,Heap) - 

heapify (L,HeapL), heapify (R,HeapR), adjust (X,HeapL,HeapR,Heap) . 
adjust(X,HeapL,HeapR,tree(X,HeapL,HeapR)) - 

greater (X , HeapL) , greater (X, HeapR) . 
adjust(X,tree(Xl,L,R),HeapR,tree(Xl,HeapL,HeapR)) - 

X < XI, greater(Xl,HeapR), adjust(X,L,R,HeapL). 
adjust(X,HeapL,tree(Xl,L,R),tree(Xl,HeapL,HeapR)) - 

X < XI, greater(X1 ,HeapL) , adjust (X,L,R,HeapR) . 
greater (X ,void) . 
greater(X,tree(Xl,L,R)) - X 2 XI. 

Program 3.28 Adjusting a binary tree to satisfy the heap property 

3.4.1 Exercises for Section 3.4 

(i) Define a program for subtree  (S ,TI, where S is a subtree of T. 

(ii) Define the relation sum-tree (Treeof In tegers ,  Sum), whch holds 
if Sum is the sum of the integer elements in TreeOf Integers.  

(iii) Define the relation ordered(Tree0f In tegers) ,  which holds if Tree 
is an ordered tree of integers, that is, for each node in the tree 
the elements in the left subtree are smaller than the element in 



Chapter 3 

the node, and the elements in the right subtree are larger than 
the element in the node. (Hint: Define two auxiliary relations, 
ordered-lef t (X ,Tree) and ordered-right (X, Tree), which hold 
if both Tree is ordered and X is larger (respectively, smaller) than 
the largest (smallest) node of Tree.) 

(iv) Define the relation tree-insert (X ,Tree ,Treel), which holds if 
Treel is an ordered tree resulting from inserting X into the ordered 
tree Tree. If X already occurs in Tree, then Tree and Treel are iden- 
tical. (Hint: Four axioms suffice.) 

(v) Write a logic program for the relation path(X ,Tree, Path), where 
Path is the path from the root of the tree Tree to X. 

3.5 Manipulating Symbolic Expressions 

The logic programs illustrated so far in this chapter have manipulated 
natural numbers, lists, and binary trees. The programming style is ap- 
plicable more generally. This section gives four examples of recursive 
programming - a program for defining polynomials, a program for sym- 
bolic differentiation, a program for solving the Towers of Hanoi problem, 
and a program for testing the satisfiability of Boolean formulae. 

The first example is a program for recognizing polynomials in some 
term X. Polynomials are defined inductively. X itself is a polynomial in 
X, as is any constant. Sums, differences, and products of polynomials in 
X are polynomials in X. So too are polynomials raised to the power of a 
natural number, and the quotient of a polynomial by a constant. 

An example of a polynomial in the term x is xZ - 3x + 2. Thls follows 
from its being the sum of the polynomials, x2 - 3x and 2, where x Z  - 3x 
is recognized recursively. 

A logic program for recognizing polynomials is obtained by expressing 
the preceding informal rules in the correct form. Program 3.29 defines 
the relation polynomial (Expression, X) , whch is true if Expression is 
a polynomial in X. We give a declarative reading of two rules from the 
program. 

The fact polynomial (X, X) says that a term X is a polynomial in itself. 
The rule 
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polynomial (Expression,X) - 
Expression is a polynomial in X. 

polynomial (X,X) . 
polynomial(Term,X) + 

constant(Term). 
polynomial(Terml+Term2,X) - 

polynomial(Terml,X), polynomial(Term2,X). 
polynomial(Terml-Term2,X) - 

polynomial(Terml,X), polynomial(Term2,X). 
polynomial(Terml*~erm2,X) - 

polynomial(Terml,X), polynomial(Term2,X). 
polynomial(Terml/Term2,X) - 

polynomial(Terml,X), constant(Term2). 
polynomial(TermTN,X) - 

natural-number(N), polynomial(Term,X). 

Program 3.29 Recognizing polynomials 

says that the sum Terml+Term2 is a polynomial in X if both Term1 and 
Term2 are polynomials in X. 

Other conventions used in Program 3.29 are the use of the unary pred- 
icate constant for recognizing constants, and the binary functor t to 
denote exponentiation. The term X t Y  denotes xY. 

The next example is a program for taking derivatives. The relation 
scheme is derivative(Expression,X,DifferentiatedExpression). 
The intended meaning of derivative is that Diff erentiatedExpres- 
sion is the derivative of Expression with respect to X. 

As for Program 3.29 for recognizing polynomials, a logic program for 
differentiation is just a collection of the relevant differentiation rules, 
written in the correct syntax. For example, the fact 

expresses that the derivative of X with respect to itself is 1. The fact 

derivative (sin(X) ,X, cos (X)) . 
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derivat ive(Expression,X,Dif ferent iate~ssion - 
DifferentiatedExpression is the derivative of 
Expression with respect to X. 

derivative(X,X,S(o)). 
derivative(XTs(N) ,x,s(N)*XTN) 
derivative(sin(~),X,co~(X)). 
derivative (cos (X) ,X, -sin(X)) . 
derivative(etX,X,etX). 
derivative(log(X) ,X, 1/X) . 
derivative(F+G,X,DF+DG) - 

derivative (F ,X ,DF) , derivative (G ,X ,DG) . 
derivative(F-G,X,DF-DG) + 

derivative(F,X,DF), derivative(~,~,~G). 
derivative (F*G ,X ,F*DG+DF*G) - 

derivative(F,X,DF), derivative(~,~,DG). 
derivative(l/F ,X ,-DF/ (F*F) ) - 

derivative(F,X,DF). 
derivative(F/G,X,(G*~F-F*DG)/(G*G)) - 

derivative(F,X,DF), derivative(~,X,DG). 

Program 3.30 Derivative rules 

reads: "The derivative of sin(X) with respect to X is cos (XI ." Natural 
mathematical notation can be used. A representative sample of functions 
and their derivatives is given in Program 3.30. 

Sums and products of terms are differentiated using the sum rule and 
product rule, respectively. The sum rule states that the derivative of a 
sum is the sum of derivatives. The appropriate clause is 

derivative (F+G, X, DF+DG) - 
derivative (F , X , DF) , derivative (G , x , DG) . 

The product rule is a little more complicated, but the logical clause is 
just the mathematical definition: 

derivative (F*G,X ,F*DG+DF*G) - 
derivative (F, X, DF) , derivative (G, X, DG) . 

Program 3.30 also contains the reciprocal and quotient rules. 
The chain rule is a little more delicate. It states that the derivative of 

f ( g ( x ) )  with respect to x is the derivative of f (g (x) )  with respect to g(x)  
times the derivative of g(x)  with respect to x. As stated, it involves quan- 
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tification over functions, and is outside the scope of the logic programs 
we have presented. 

Nonetheless, a version of the chain rule is possible for each particular 
function. For example, we give the rule for differentiating xN and sin(X): 

derivative (UTs (N) ,X, s (N) *UfN*DU) - 
derivative(U,X,DU). 

derivative (sin(U), X, cos (U) *DU) -- derivative (U,X, DU) 

The difficulty of expressing the chain rule for differentiation arises 
from our choice of representation of terms. Both Programs 3.29 and 
3.30 use the "natural" representation from mathematics where terms 
represent themselves. A term such as sin(X) is represented using a 
unary structure sin. If a different representation were used, for example, 
unary-term(sin, X) where the name of the structure is made accessible, 
then the problem with the chain rule disappears. The chain rule can then 
be formulated as 

derivative (unary-term (F ,  U) , X , DF*DU) - 
derivative(unary-term(F,U),U,DF), derivative(U,X,DU). 

Note that all the rules in Program 3.30 would have to be reformulated in 
terms of this new representation and would appear less natural. 

People take for granted the automatic simplification of expressions 
when differentiating expressions. Simplification is missing from Program 
3.30. The answer to the query derivative(3*x+2 ,x,D)? is D=(3*1+Oa 
X) +O. We would immediately simplify D to 3, but it is not specified in the 
logic program. 

The next example is a solution to the Towers of Hanoi problem, a 
standard introductory example in the use of recursion. The problem is 
to move a tower of n disks from one peg to another with the help of an 
auxiliary peg. There are two rules. Only one disk can be moved at a time, 
and a larger disk can never be placed on top of a smaller disk. 

There is a legend associated with the game. Somewhere hidden in the 
surroundings of Hanoi, an obscure Far Eastern village when the legend 
was first told, is a monastery. The monks there are performing a task 
assigned to them by God when the world was created - solving the 
preceding problem with three golden pegs and 64 golden disks. At the 
moment they complete their task, the world will collapse into dust. Since 
the optimal solution to the problem with n disks takes Z n  - 1 moves, we 
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hanoi(N,A,B,C,Moves) - 
Moves is a sequence of moves for solving the Towers of 
Hanoi puzzle with N disks and three pegs, A, B, and C. 

hanoi ( s (0)  ,A,B,C, [A t o  B]).  
hanoi(s(N) ,A,B,C,Moves) - 

hanoi(N,A,C,B,Msl) , 
hanoi(N,C,B,A,Ms2), 
append(Ms1, [A t o  B I Ms21 ,Moves) . 

Program 3.31 Towers of Hanoi 

need not lose any sleep over this possibility. The number 2" is comfort- 
ingly big. 

The relation scheme for solving the problem is hanoi (N , A ,  B , C , 
Moves). It is true if Moves is the sequence of moves for moving a tower 
of N disks from peg A  to peg B using peg C as the auxiliary peg. T h s  is an 
extension to usual solutions that do not calculate the sequence of moves 
but rather perform them. The representation of the moves uses a binary 
functor to, written as an infix operator. The term X to Y denotes that 
the top disk on peg X is moved to peg Y. The program for solving the 
problem is given in Program,3.3 1. 

The declarative reading of the heart of the solution, the recursive rule 
in Program 3.31, is: "Moves is the sequence of moves of s (N) disks from 
peg A to peg B using peg C as an auxiliary, if Msl is the solution for 
moving N disks from A to C using B, Ms2 is the solution for moving N disks 
from C to B using A, and Moves is the result of appending [A t o  BIMs21 
to ~ ~ 1 . l '  

The recursion terminates with moving one disk. A slightly neater, but 
less intuitive, base for the recursion is moving no disks. The appropriate 
fact is 

The final example concerns Boolean formulae. 
A Boolean f o r m u l a  is a term defined as follows: The constants rrue and 

false are Boolean formulae; if X and Y are Boolean formulae, so are Xv Y, 
X A Y ,  and -X, where v and A are binary infix operators for disjunction 
and conjunction, respectively, and - is a unary prefn operator for nega- 
tion. 
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satisfiable(Formu1a) - 
There is a true instance of the Boolean formula Formula.  

s a t i s f i a b l e ( t r u e ) .  
s a t i s f i a b l e ( X ~ Y )  - s a t i s f i a b l e ( ) o ,  s a t i s f i a b l e ( Y 1  
sa t i s f iab le (XVY) - s a t i s f i a b l e ( X ) .  
s a t i s f  iable(XVY) - s a t i s f  iable(Y) . 
s a t i s f  iable(-X) - inva l id (X) .  

invalid(Formu1a) - 
There is a false instance of the Boolean formula Formula. 

i n v a l i d ( f  a l s e )  . 
invalid(XVY1 - inval id(X) , inval id(Y) . 
invalid(XAY) - inval id(X1.  
invalid(XAY) - inval id(Y1.  
inval id(-Y) - s a t i s f i a b l e  (Y) . 

Program 3.32 Satisfiability of Boolean formulae 

A Boolean formula F is true if 

F = 'true'. 
F = XAY,  and both X and Y are true. 
F = X v Y ,  and either X or Y (or both) are true. 
F = -X, and X is false. 

A Boolean formula F is false if 

F = 'false'. 
F = XAY, and either X or Y (or both) are false. 
F = X v Y ,  and both X and Y are false. 
F = -X, and X is true. 

Program 3.32 is a logic program for determining the truth or falsity 
of a Boolean formula. Since it can be applied to Boolean formulae with 
variables, it is actually more powerful than it seems. A Boolean formula 
with variables is s a t i s f i a b l e  if it has a true instance. It is i n v a l i d  if it 
has a false instance. These are the relations computed by the program. 
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3.5.1 Exercises for Section 3.5 

(i) Write a program to recognize if an arithmetic sum is normalized, 
that is, has the form A + B, where A is a constant and B is a normal- 
ized sum. 

(ii) Write a type definition for Boolean formulae. 

(iii) Write a program for recognizing whether a logical formula is in 
conjunctive normal form, namely, is a conjunction of disjunctions 
of literals, where a literal is an atomic formula or its negation. 

(iv) Write a program for the relation negat ion-inwards (F l  , F2), whch 
is true if F2 is the logical formula resulting from moving all nega- 
tion operators occurring in the formula F1 inside conjunctions and 
disjunctions. 

(v) Write a program for converting a logical formula into conjunctive 
normal form, that is, a conjunction of disjunctions. 

(vi) Consider the following representation of a bag, that is, a list of 
elements with multiplicities. The function symbol bag(Element, 
Multiplicity ,Restof Bag) should be used. The atom void can 
be used as an empty bag. For example, the term bag (a, 3, bag (b, 2, 
void)) represents a list of three copies of an element a, and two 
copies of an element b. Write logic programs to 

(a) Take the union of two bags; 

(b) Take the intersection of two bags; 

(c) Substitute for an element in a bag; 

(d) Convert a list into a bag; 

(e) Convert a binary tree into a bag. 

3.6 Background 

Many of the programs in this chapter have been floating around the logic 
programming community, and their origins have become obscure. For 

example, several appear in Clocksin and Mellish (1 984) and in the uneven 
collection of short Prolog programs, How to Solve It in Prolog by Coelho 
et al. (1980). 

The latter book has been updated as Coelho and Cotta (1988) and is 
a source for other simple examples. 'The exercise on describing poker 
hands is due to Ken Bowen. 

The classic reference for binary trees is Knuth (1968) and for sorting 
Knuth (1973). 

A discussion of the linear algorithm for the kth largest algorithms can 
be found in most textbooks on algorithms, for example, Horowitz and 
Sahni (1978). The discussion of the heap property is taken from Horowitz 
and Sahni (1978). 

Many of the basic programs for arithmetic and list processing have a 
simple structure that allows many correctness theorems to be proved 
automatically, see, for example, Boyer and Moore (1979) and Sterling and 
Bundy (1982). 

Ackermann's function is discussed by Peter (1967). 



The Computation Model of Logic 
Programs 

The computation model used in the first three chapters of the book has 
a severe restriction. All goals appearing in the proof trees are ground. All 
rule instances used to derive the goals in the proof trees are also ground. 
The abstract interpreter described assumes that the substitutions giving 
the desired ground instances can be guessed correctly. In fact, the cor- 
rect substitutions can be computed rather than guessed. 

Thls chapter presents a general computation model of logic programs. 
The first section presents a unification algorithm that removes the guess- 
work in determining instances of terms. The second section presents an 
appropriately modified abstract interpreter and gives example computa- 
tions of logic programs. 

The computation model of logic programming we present is especially 
well suited to sequential languages such as Prolog. Our model can be 
used to describe parallel logic programming languages. However, devel- 
opers of these languages have often used other models, such as state 
transitions or dynamic tree creation and destruction (see Section 4.3). 

4.1 Unification 

The heart of our computation model of logic programs is unification. 
Unification is the basis of most work in automated deduction and of the 
use of logical inference in artificial intelligence. 

Necessary terminology for describing the algorithm is repeated from 
Chapter 1, and new definitions are introduced as needed. 
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Recall that a term t is a common instance of two terms, tl and tz, if 
there exist substitutions and 8z such that t equals tl0l and t282. A 

term s is more general than a term t if t is an instance of s but s is not 
an instance of t .  A term s is an alphabetic variant of a term t if both 
s is an instance of t and t is an instance of s. Alphabetic variants are 
related by the renaming of variables that occur in the terms. For exam- 
ple, member (X, tree (Lef t , X ,Right) ) and member (Y, tree (Lef t , Y, Z) ) 
are alphabetic variants. 

A unifier of two terms is a substitution making the terms identical. If 
two terms have a unifier, we say they unify. There is a close relation be- 
tween unifiers and common instances. Any unifier determines a common 
instance, and conversely, any common instance determines a unifier. 

For example, append( [I, 2,31 , [3,41 ,List) and append( [XIXsl ,Ys, 
[XI Zsl ) unify. A unifying substitution is {X=1 , Xs= [2,31 , Ys= [3,41 , 
List- [llzs] }. Their common instance, determined by this unifying sub- 
stitution, is append ( [I, 2,3] , [3,4] , [I (Zs] ) .  

A most general unifier, or mgu, of two terms is a unifier such that the 
associated common instance is most general. It can be shown that if two 
terms unify, all mgus are equivalent. Mahng that statement precise is 
beyond the scope of this book, but we give pointers in Section 4.3. We 
proceed by giving an algorithm that computes a most general unifier of 
two terms if one exists. 

The algorithm for unification presented here is based on solving equa- 
tions. The input for the algorithm is two terms, Ti and Tz. The output 
of the algorithm is an mgu of the two terms if they unify, or failure if 
the terms do not unify. The algorithm uses a pushdown stack for storing 
the equations that need to be solved and a location, 8, for collecting the 
substitution comprising the output. 

The location B is initially empty, and the stack is initialized to contain 
the equation TI = T2. The algorithm consists of a loop of popping an 
equation from the stack and processing it. The loop terminates when 
the stack becomes empty or if failure occurs in processing an invalid 
equation. 

We consider the possible actions for dealing with a popped equation 
S = T. The simplest case is if S and T are identical constants or var- 
iables. This equation is correct, and nothing further needs to be done. 
The computation continues by popping the next equation from the 
stack. 
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If S is a variable, and T is a term not containing S, the following hap- 
pens. The stack is searched for all occurrences of S, whch are replaced 
by T. Similarly, all occurrences of S in 8 are replaced by T. Then the sub- 
stitution S = T is added to 8. It is significant that S does not occur in T. 
The test embodied by the phrase "not containing" is known as the occurs 
check. 

If T is a variable. and S is a term not containing T, i.e.. T satisfies 
the occurs check with respect to S, the symmetric sequence of actions 
happens. 

Equations are added to the stack if S and T are compound terms with 
the same principal functor and arity, f($.. . ,S,) and f (Tl , .  . .,T,,), say. 
For the terms to unify, each of the argument pairs must simultaneously 
unify. This is achieved by pushing the n equations, S ,  = TL, onto the stack. 

In any other case, failure is reported, and the algorithm terminates. If 
the stack is emptied, the terms unify, and the unifier can be found in 
8 .  The complete algorithm is given as Figure 4.1. The occurs check is 
embodied in the phrase "that does not occur in." 

We do not prove the correctness of t h s  algorithm, nor analyze its com- 
plexity. The interested reader is referred to the literature in Section 4.3. 

Consider attempting to unify the terms append( [a, bl . [ c  ,dl , Ls) and 
append( [XIXsl ,Ys; CXIZsl). The stack is initialized to the equation 

append([a,bl,[c,dl,Ls) = append(CXIXsl,Ys, CXlZsl). 

These two terms have the same functor, append, and arity, 3, so we add 
the three equations relating the subterms of the two terms. These are 
[a,bl=[XJXsl, Cc,dl=Ys, and Ls=[XlZsl. 

The next equation, [a, bl = [XIXsl , is popped from the stack. These two 
compound terms have the same functor, ".". and arity. 2,  so two equa- 
tions, a=X and [bl =XS are added to the stack. Continuing, the equation 
a=X is popped. Ths  is covered by the second case in Figure 4.1. X is a 
variable not occurring in the constant, a. All occurrences of X in the stack 
are replaced by a. One equation is affected, namely Ls=[XZsl, whch 
becomes Ls- [alZsl. The equation X=a is added to the initially empty sub- 
stitution, and the algorithm continues. 

The next equation to be popped is [bl =Xs. Again tlus is covered by the 
second case. Xs= [bl is added to the set of substitutions, and the stack is 
checked for occurrences of Xs. There are none, and the next equation is 

popped. 

PROYECTO
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Input: Two terms TI and T2 to be unified 

Output: 8, the mgu of 7; and T2, or failure 

Algorithm: Initialize the substitution 8 to be empty, 
the stack to contain the equation TI = T,, 
and failure to false. 

while stack not empty and no failure do 

pop X = Y from the stack 

case 
X is a variable that does not occur in Y: 

substitute Y for X in the stack and in Q 
add X = Y to O 

I' is a variable that does not occur in X: 
substitute X for I. in the stack and in 0 
add Y = X to O 

X. and I' are idcntical constants or variables: 
continue 

Xis f ( X  , , . . . ,  X,,) and Y i s f ( Y l  , . . . ,  Y,,) 
for some functor f and n > 0: 
push X, = I',, i = 1 . . . n ,  on the stack 

other\vise: 
fa~lure is true 

I f .  failure, then output failure else output 0 

Figure 4.1 A unification algorithm 

The second case also covers [c  ,d l  = Y s .  Another substitution, Y s =  Cc , 
d l ,  is added to the collection, and the final equation, Ls= [ a l ~ s l  , is 
popped. This is handled by the symmetric first case. Ls  does not 
occur in [alzs], so the equation is added as is to the unifier, and 
the algorithm terminates successfully. The unifier is {X=a , Xs= [bl , 
Y s =  [ c  , d l  , Ls= [a/ Zsl } . The common instance produced by the unifier is 
append(  [a, bl , [c ,dl  , [a1 Zs] ) . Note that in t h s  unification, the substi- 
tutions were not updated. 

The occurs check is necessary to prevent the unification of terms such 
as s (XI and X. There is no finite common instance of these terms. How- 
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ever, most Prolog implementations omit the occurs check from the unifi- 
cation algorithm, for pragmatic reasons. 

When implementing this unification algorithm for a particular logic 
programming language, the explicit substitution in both the equations on 
the stack and the unifier is avoided. Instead, logical variables and other 
terms are represented by memory cells with different values, and variable 
binding is implemented by assigning to the memory cell representing a 
logical variable a reference to the cell containing the representation of 
the term the variable is bound to. Therefore, 

Substitute Y for X in stack and in 8. 
Add X = Y to substitutions. 

is replaced by 

Make X a reference to Y 

4.1.1 Exercises for Section 4.1 

(i) Use the algorithm in Figure 4.1 to compute an mgu of append(  [b] , 
[c ,dl  ,L)  and append(  C X I X s l  , Y s ,  [XlZsl 1. 

(ii) Use the algorithm in Figure 4.1 to compute an mgu of h a n o i  ( s  ( N )  , 
A , B  ,C,Ms) and h a n o i  ( s  (s  (0)) , a ,  b ,  c ,Xs). 

- - - - -. - -- - - -- -- 

4.2 An Abstract Interpreter for Logic Programs 

We revise the abstract interpreter of Section 1.8 in the light of the unifi- 
cation algorithm. The result is our full computation model of logic pro- 
grams. All the concepts introduced previously, such as goal reductions 
and computation traces, have their analogues in the full model. 

A computation of a logic program can be described informally as fol- 
lows. It starts from some initial (possibly conjunctive) query G and, if it 
terminates, has one of two results: success or failure. If a computation 
succeeds, the instance of G proved is conceived of as the output of the 
computation. A given query can have several successful computations, 
each resulting in a different output. In addition, it may have nontermi- 
nating computations, to which we associate no result. 
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The computation progresses via goal reduction. At each stage, there is 
some resolvent, a conjunction of goals to be proved. A goal in the resol- 
vent and clause in the logic program are chosen such that the clause's 
head unifies with the goal. The computation proceeds with a new resol- 
vent, obtained by replacing the chosen goal by the body of the chosen 
clause in the resolvent and then applying the most general unifier of the 
head of the clause and the goal, The computation terminates when the 
resolvent is empty. In t h s  case, we say the goal is solved by the program. 

To describe computations more formally, we introduce some useful 
concepts. A computation of a goal Q = Qo by a program P is a (possibly 
infinite) sequence of triples (Q,Gi,CI). is a (conjunctive) goal, Gi is a 
goal occurring in Q ,  and C, is a clause A-B1,. . .,Bk in P renamed so that it 
contains new variable symbols not occurring in Q,, 0 5 j _( i. For all i > 0, 
Q+1 is the result of replacing G, by the body of Ci in Q ,  and applying the 
substitution GI ,  the most general unifier of Gi and A,, the head of C,; or 
the constant true if GI is the only goal in and the body of C, is empty; 
or the constant fail if Gi and the head of  C, do not unify. 

The goals BiOi are said to be derived from G., and C,. A goal G j  = Bike, 

where Blk occurs in the body of clause C,, is said to be invoked by GI and 
C,. G, is the parent of any goal it invokes. Two goals with the same parent 
goal are sibling goals. 

A trace of a computation of a logic program (Q,G,,C,) is the sequence 
of pairs (Gi,OI), where 81 is the subset of the mgu 0, computed at the ith 
reduction, restricted to variables in GI. 

We present an abstract interpreter for logic programs. It is an adap- 
tation of the interpreter for ground goals (Figure 1.1). The restriction to 
using ground instances of clauses to effect reductions is lifted. Instead, 
the unification algorithm is applied to the chosen goal and head of the 
chosen clause to find the correct substitution to apply to the new resol- 
vent. 

Care needs to be taken with the variables in rules to avoid name 
clashes. Variables are local to a clause. Hence variables in different 
clauses that have the same name are, in fact, different. This is ensured 
by renaming the variables appearing in a clause each time the clause is 
chosen to effect a reduction. The new names must not include any of the 
variable names used previously in the computation. 

The revised version of the interpreter is given as Figure 4.2. It solves a 
query G with respect to a program P. The output of the interpreter is an 

Input: A goal G and a program P 

Output: An instance of G that is a logical consequence of P, 
or no otherwise 

Algorithm: Initialize the resolvent to G. 
while the resolvent is not empty do 

choose a goal A from the resolvent 
choose a (renamed) clause A' -B,,. . .,B, from P 

such that A and A' unify with mgu 8 
(if no such goal and clause exist, exit the while loop) 

replace A by B,,. . .,B, in the resolvent 
apply B to the resolvent and to G 

I f  the resolvent is empty, then output G, else output no. 

Figure 4.2 An abstract interpreter for logic programs 

instance of G if a proof of such an instance is found, or no if a failure 
has occurred during the computation. Note that the interpreter may also 
fail to terminate. 

An instance of a query for whlch a proof is found is called a solution to 
the query. 

The policy for adding and removing goals from the resolvent is called 
the scheduling policy of the interpreter. The abstract interpreter leaves 
the scheduling policy unspecified. 

Consider solving the query append ( [a, bl , [ c  , dl , Ls) ? by Program 
3.15 for append using the abstract interpreter of Figure 4.2. The resol- 
vent is initialized to be append( [a, bl , [c , dl , Ls) . It is chosen as the 
goal to reduce, being the only one. The rule chosen from the program is 

append( CX I Xsl , Y s  , CX I Z s l  ) - append(Xs , Y s  , Zs) . 

The unifier of the goal and the head of the rule is {X=a,Xs=[bl , 
Y s =  [c  ,dl  , L s =  [a1 Zsl } . A detailed calculation of t h s  unifier appeared 
in the previous section. The new resolvent is the instance of ap- 
pend (Xs , Y s  , Zs) under the unifier, namely, append ( Cbl , [ c  ,dl  , Zs) . This 
goal is chosen in the next iteration of the loop. The same clause for 
append is chosen, but variables must be renamed to avoid a clash of 
variable names. The version chosen is 

append( [XI I Xsll ,Ysl ,  [XI I Z s l l  ) - append(Xs1 , Y s l  , Zsl) 
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append( Ca,bl , [c ,dl ,Ls) Ls= [a] Zsl 

append ( [bl , [c ,dl , Zs) Zs= [blZsl] 

append( [ 1 ,  [c,dl , Z S ~ )  Zsl=[c,d] 

t rue 
Output: Ls= [a,b,c,dl 

Figure 4.3 Tracing the appending of two lists 

The unifier of the head and goal is {X1=b, X s l =  [ I , ~ s l =  [c ,d l  , 
Z s =  [ b / Z s l l j .  The new resolvent is append( [ I , [c ,dl , Zsl ) .  This time 
the fact append( [ I , Zs2,Zs2) is chosen; we again rename variables as 
necessary. The unifier this time is {Zs2= [c ,dl  , Z s l =  [ c  ,dl  1. The new 
resolvent is empty and the computation terminates. 

To compute the result of the computation, we apply the relevant part 
of the mgu's calculated during the computation. The first unification 
instantiated LS to [a/Zs]. zs was instantiated to [ b i ~ s l l  in the second 
unification, and Z s l  further became [c ,  d l .  Putting it together, L s  has the 
value [a(  [bl [c ,dl  1 I ,  or more simply, [a ,  b ,  c  , d l .  

The computation can be represented by a trace. The trace of the fore- 
going append computation is presented in Figure 4.3. To make the traces 
clearer, goals are indented according to the indentation of their parent. 
A goal has an indentation depth of d + l  if its parent has indentation 
depth d. 

As another example, consider solving the query son(S,haran)?  by 
Program 1.2. It is reduced using the clause son(X ,Y) - f a t h e r  (Y, X) , 
male (X). A most general unifier is {X=S ,Y=haran}. Applying the sub- 
stitution gives the new resolvent f a t h e r  (haran ,  S) , male (S). This is 
a conjunctive goal. There are two choices for the next goal to reduce. 
Choosing the goal f a t h e r  (haran ,  S) leads to the following computation. 
The goal, unifies with the fact f a t h e r  (haran ,  l o t )  in the program, and 
the computation continues with S instantiated to l o t .  The new resolvent 
is male ( l o t ) ,  which is reduced by a fact in the program, and the compu- 
tation terminates. This is illustrated in the left trace in Figure 4.4. 

The other possibility for computing S=haran is choosing to reduce 
the goal male (S) before f a t h e r  (haran ,  S) . This goal is reduced by the 
fact male(1ot)  with S instantiated to l o t .  The new resolvent is f a -  
t h e r  (haran ,  l o t ) ,  which is reduced to the empty goal by the correspond- 
ing fact. This is the right trace in Figure 4.4. 
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son(S,haran) son(S,haran) 
father(haran,S) S=lot male(S) S=lot 
male(1ot) father(haran,lot) 

true true 

Figure 4.4 Different traces of the same solution 

Solutions to a query obtained using the abstract interpreter may con- 
tain variables. Consider the query member(a,Xs)? with respect to Pro- 
gram 3.12 for member. This can be interpreted as asking what list X s  has 
the element a as a member. One solution computed by the abstract inter- 
preter is X s =  CalYsI , namely, a list with a as its head and an unspecified 
tail. Solutions that contain variables denote an infinity of solutions-all 
their ground instances. 

There are two choices in the interpreter of Figure 4.2: choosing the goal 
to reduce, and choosing the clause to effect the reduction. These must be 
resolved in any realization of the computation model. The nature of the 
choices is fundamentally different. 

The choice of goal to reduce is arbitrary; it does not matter which is 
chosen for the computation to succeed. If there is a successful computa- 
tion by choosing a given goal, then there is a successful computation by 
choosing any other goal. The two traces in Figure 4.4 illustrate two suc- 
cessful computations, where the choice of goal to reduce at the second 
step of the computation differs. 

The choice of the clause to effect the reduction is nondeterministic. 
Not every choice will lead to a successful computation. For example, in 
both traces in Figure 4.4, we could have gone wrong. If we had chosen to 
reduce the goal f a the r (ha ran ,  S) with the fact f a t h e r  (haran ,  y iscah) ,  
we would not have been able to reduce the invoked goal male (y iscah) .  
For the second computation, had we chosen to reduce male(S) with 
male ( i s a a c ) ,  the invoked goal f a t h e r  (haran,  i s a a c )  could not have 
been reduced. 

For some computations, for example, the computation illustrated in 
Figure 4.3, there is only one clause from the program that can reduce 
each goal. Such a computation is called deterministic. Deterministic com- 
putations mean that we do not have to exercise our nondeterministic 
imagination. 

The alternative choices that can be made by the abstract interpreter 
when trying to prove a goal implicitly define a search tree, as described 
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more fully in Section 5.4. The interpreter "guesses" a successful path 
in t h s  search tree, corresponding to a proof of the goal, if one exists. 
However, dumber interpreters, without guessing abilities, can also be 
built, with the same power as our abstract interpreter. One possibility 
is to search t h s  tree breadth-first, that is, to explore all possible choices 
in parallel. Ths  will guarantee that if there is a finite proof of the goal 
(i.e., a finite successful path in the search tree), it will be found. 

Another possibility would be to explore the abstract search tree depth- 
first. In contrast to the breadth-first search strategy, the depth-first one 
does not guarantee finding a proof even if one exists, since the search 
tree may have infinite paths, corresponding to potentially infinite com- 
putations of the nondeterministic interpreter. A depth-first search of the 
tree might get lost in an infinite path, never finding a finite successful 
path, even if one exists. 

In technical terms, the breadth-first search strategy defines a complete 
proof procedure for logic programs, whereas the depth-first one is in- 
complete. In spite of its incompleteness, depth-first search is the one 
incorporated in Prolog, for practical reasons, as explained in Chapter 6. 

Let us give a trace of a longer computation, solving the Towers of 
Hanoi problem with three disks, using Program 3.31. It is a deterministic 
computation, given as Figure 4.5. The final append goal is given without 
unifications. It is straightforward to fill them in. 

Computations such as that in Figure 4.5 can be compared to compu- 
tations in more conventional languages. Unification can be seen to sub- 
sume many of the mechanisms of conventional languages: record alloca- 
tion, assignment of and access to fields in records, parameter passing, 
and more. We defer the subject until the computation model for Prolog 
is introduced in Chapter 6. 

A computation of G by P terminates if G, = true or fail for some n 2 
0. Such a computation is finite and of length n. Successful computations 
correspond to terminating computations that end in true. Failing com- 
putations end in fail. All the traces given so far have been of successful 
computations. 

Recursive programs admit the possibility of nonterrninating computa- 
tions. The query append(Xs, [c ,  dl , Ys)? with respect to append can be 
reduced arbitrarily many times using the rule for append. In the process, 
X s  becomes a list of arbitrary length. Thls corresponds to solutions of 
the query appending [c,  dl to an arbitrarily long list. The nonterminat- 
ing computation is illustrated in Figure 4.6. 
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Figure 4.5 Solving the Towers of Hanoi 

Figure 4.6 A nonterminating computation 

PROYECTO
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All the traces presented so far have an important feature in common. 
If two goals Gi and Gj are invoked from the same parent, and Gi appears 
before G, in the trace, then all goals invoked by Gi will appear before 
Gj in the trace. T h s  scheduling policy makes traces easier to follow, by 
solving queries depth-first. 

The scheduling policy has another important effect: instantiating vari- 
ables before their values are needed for other parts of the computation. 
A good ordering can mean the difference between a computation being 
deterministic or not. 

Consider the computation traced in Figure 4.5. The goal 

is reduced to the following conjunction 

If the append goal is now chosen, the append fact could be used (incor- 
rectly) to reduce the goal. By reducing the two hanoi goals first, and all 
the goals they invoke, the append goal has the correct values for Msl and 
Ms2. 

4.2.1 Exercises for Section 4.2 

(i) Trace the query sort ( [3,1,21 , Xs)? using the permutation sort 
(3.20), insertion sort (3.21), and quicksort (3.22) programs in turn. 

(ii) Give a trace for the goal derivative(3*sin(x)-4*cos(x) , x , ~ )  

using Program 3.30 for derivative. 

(iii) Practice tracing your favorite computations. 

-- - 

4.3 Background 

Unification plays a central role in automated deduction and in the use 
of logical inference in artificial intelligence. It was first described in the 
landmark paper of Robinson (1 965). Algorithms for unification have been 
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the subject of much investigation: see, for example, Martelli and Monta- 
nari (1982), Paterson and Wegman (19781, and Dwork et al. (1984). Typi- 
cal textbook descriptions appear in Bundy (1983) and Nilsson (1980). 

The definition of unification presented here is nonstandard. Readers 
wishlng to learn more about unifiers are referred to the definitive dis- 
cussion on unification in Lassez, hlaher, and Marriott (1988). This paper 
points out inconsistencies of the various definitions of unifiers that have 
been proposed in the literature, including the version in this book. Es- 
sentially, we have explained unifiers based on terms to avoid technical 
issues of composition of substitutions, which are not needed for our de- 
scription of logic programming computations. 

The computation model we have presented has a sequential bias and 
is influenced by the computation model for Prolog given in Chapter 6. 
Nonetheless, the model has potential for parallelism by selecting several 
goals or several rules at a time, and for elaborate control by selecting 
complicated computation rules. References for reading about different - 
computation models for logic programming are gi\.en in Section 6.3. 

Another bias of our computation model is the central place of unifi- 
cation. An exciting development n-ithin logic programming has been the 
realization that unification is just one instance of constraint solving. New 
computation models ha\.e been presented where the solution of equal- 
ity constraints, i.e., unification, in the abstract interpreter of Figure 4.2 
is replaced by solving other constraints. Good starting places to read 
about the new constraint-based models are Colmerauer (1 990), Jaffar and 
Lassez (1987), and Lassez (1991). 

A proof that the choice of goal to reduce from the resolvent is arbitrary 
can be found in Apt and \an  Emden (1982) or in the text of Llo)-d (1987). 

A method for replacing the runtime occurs check with compile-time 
analysis was suggested by Plaisted (1984). 

Attempts have been made to make unification without the occurs 
check more than a necessary expedient for practical implementations of 
Prolog. In particular, Colmerauer ( 1982b) proposes a theoretical model 
for such unifications that incorporates computing with infinite terms. 

A novel use of unification without the occurs check appears in Eggert 
and Chow (1983), where Escher-like drawings that gracefully tend to in- 
finity are constructed. 



5 Theory of Logic Programs 

A major underlying theme of this book, laid out in the introduction, is 
that logic programming is attractive as a basis for computation because 
of its basis in mathematical logic, whch has a well-understood, well- 
developed theory. In this chapter, we sketch some of the growing theory 
of logic programming, which merges the theory inherited from mathe- 
matlcal logic with experience from computer science and engineering. 
Giving a complete account is way beyond the scope of this book. In thls 
chapter, we present some results to direct the reader in important direc- 
tions. The first section, on semantics, gives definitions and suggests why 
the model-theoretic and proof-theoretic semantics give the same result. 
The main issue in the second section, on program correctness, is termi- 
nation. Complexity of logic programs is discussed in the third section. 
The most important section for the rest of the book is Section 4, which 
discusses search trees. Search trees are vital to understanding Prolog's 
behavior. Finally, we introduce negation in logic programming. 

5.1 Semantics 

Semantics assigns meanings to programs. Discussing semantics allows 
us to describe more formally the relation a program computes. Chap- 
ter 1 informally describes the meaning of a logic program P as the set 
of ground instances that are deducible from P via a finite number of ap- 
plications of the rule of universal modus ponens. This section considers 
more formal approaches. 
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parent(terach,abraham). ~arent(abraham,isaac). 
parent (isaac, j acob) . parent ( j  acob , benj amin) 

ancestor (X,Y) - parent (X,Y). 
ancestor(X,Z) - parent(X,Y), ancestor(Y,Z). 
Program 5.1 Yet another family example 

The operational semantics is a way of describing procedurally the 
meaning of a program. The operational meaning of a logic program P 
is the set of ground goals that are instances of queries solved by P using 
the abstract interpreter given in Figure 4.2. Thls is an alternative for- 
mulation of the previous semantics, which defined meaning in terms of 
logical deduction. 

The declarative semantics of logic programs is based on the standard 
model-theoretic semantics of first-order logic. In order to define it, some 
new terminology is needed. 

Definition 
Let P be a logic program. The Herbrand universe of P,  denoted U ( P ) ,  is 
the set of all ground terms that can be formed from the constants and 
function symbols appearing in P. m 

In this section, we use two running examples-yet another family data- 
base example, given as Program 5.1; and Program 3.1 defining the natural 
numbers, repeated here: 

natural-number (0) . 
natural-number (s (X)) - natural-number (x) . 
The Herbrand universe of Program 5.1 is the set of all constants appear- 
ing in the program, namely, {terach, abraham, isaac , jacob, benjamin}. 
If there are no function symbols, the Herbrand universe is finite. In Pro- 
gram 3.1, there is one constant symbol, 0, and one unary function sym- 
bol, s. The Herbrand universe of Program 3.1 is {0, s (0) , s (s (0) ) , . . . I .  
If no constants appear in a program, one is arbitrarily chosen. 

Definition 
The Herbrand base, denoted B(P),  is the set of all ground goals that 
can be formed from the predicates in P and the terms in the Herbrand 
universe. 
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There are two predicates, parent/2 and ancestor/2, in Program 5.1. 
The Herbrand base of Program 5.1 consists of 25 goals for each predi- 
cate, where each constant appears as each argument: 

Cparent(terach,terach), parent(terach,abraham), 
parent (terach, isaac) , parent (terach, jacob) , 
parent (terach, benjamin) , parent (abraham, terach) , 
parent(abraham,abraham), parent(abraham,isaac), 
parent (abraham , j acob) , parent (abraham , benj amin) , 
parent (isaac , terach) , parent (isaac, abraham) , 
parent (isaac, isaac) , parent (isaac, j acob) , 
parent (isaac ,benjamin) , parent (jacob, terach) , 
parent (j acob, abraham) , parent (jacob, isaac) , 
parent ( j  acob, j acob) , parent (j acob, benj amin) , 
parent(benjamin,terach), parent(benjamin,abraham), 
parent (benj amin, isaac) , parent (benj amin, jacob) , 
parent(benjamin,benjamin), ancestor(terach,terach), 

ancestor(terach, abraham) , ancestor(terach, isaac) , 
ancestor(terach, jacob) , ancestor(terach,benjamin), 
ancestor (abraham, terach) , ancestor (abraham, abraham) , 
ancestor (abraham, isaac) , ancestor (abraham, jacob) , 
ancestor(abraham,benjamin), ancestor(isaac,terach), 
ancestor(isaac, abraham) , ancestor (isaac, isaac) , 
ancestor (isaac, jacob) , ancestor(isaac, benjamin) , 
ancestor (jacob, terach) , ancestor( jacob, abraham) , 
ancestor(jacob, isaac) , ancestor(jacob, jacob) , 
ancestor (jacob, benjamin) , ancestor(benjamin, terach) , 
ancestor(benjamin, abraham) , ancestor (benjamin, isaac) , 
ancestor (benj amin, j acob) , ancestor (benjamin, benj amin) ). 

The Herbrand base is infinite if the Herbrand universe is. For Pro- 
gram 3.1, there is one predicate, natural-number. The Herbrand base 
equals {natural-number (0) ,natural-number (s (0) ) , . . . } .  

Definition 
An interpretation for a logic program is a subset of the Herbrand base. 

An interpretation assigns truth and falsity to the elements of the Her- 
brand base. A goal in the Herbrand base is true with respect to an inter- 
pretation if it is a member of it, false otherwise. 
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Definition 
An interpretation I is a model for a logic program if for each ground 
instance of a clause in the program A-BI,. . .,B,, A is in I if BI,. . .,B, are 
in I. ¤ 

Intuitively, models are interpretations that respect the declarative 
reading of the clauses of a program. 

For Program 3.1, natural-number(0) must be in every model, and 
natural-number ( s  (X) ) is in the model if natural-number (X) is. Any 
model of Program 3.1 thus includes the whole Herbrand base. 

For Program 5.1, the facts parent  ( t e rach ,  abraham), parent  (abra- 
ham, i saac ) ,  parent  ( i s a a c ,  jacob), and parent  ( jacob,  benjamin) 
must be in every model. A ground instance of the goal ances tor  (X ,Y) is 
in the model if the corresponding instance of parent  (X,Y) is, by the first 
clause. So, for example, ancestor ( terach,  abraham) is in every model. 
By the second clause, ancestor (X, Z) is in the model if parent  (X, Y) and 
ances tor  (Y, Z) are. 

It is easy to see that the intersection of two models for a logic program 
P is again a model. T h s  property allows the definition of the intersection 
of all models. 

Definition 
The model obtained as the intersection of all models is known as the 
minimal model and denoted M ( P ) .  The minimal model is the declarative 
meaning of a logic program. 

The declarative meaning of the program for natural-number, its min- 
imal model, is the complete Herbrand base {natural-number (0) , natu- 
ral-number (s (0))  ,natural-number(s (S (0 ) ) )  . . . 1. 

The declarative meaning of Program 5.1 is {parent  ( t e rach ,  abraham) , 
parent  (abraham, isaac)  , parent  ( i saac  , j acob) , parent  ( j  acob, 

benjamin) , ancestor ( t e rach ,  abraham) , ancestor (abraham, i saac )  , 
ancestor  ( i saac  , j acob) , ancestor ( jacob,  benj amin) , ancestor  

( t e rach ,  i saac)  , ancestor ( t e rach ,  jacob) , ancestor ( t e rach ,  
benj amin) , ancestor (abraham, jacob) , ancestor (abraham, ben- 
jamin) , ances to r ( i saac ,  benjamin) 1. 

Let us consider the declarative meaning of append, defined as Pro- 
gram 3.15 and repeated here: 

The Herbrand universe is [ I,[[ ]],[I I,[ I], . . . , namely, all lists that can be 
built using the constant [ 1. The Herbrand base is all combinations of 
lists with the append predicate. The declarative meaning is all ground in- 
stances of append ( [ I , X s  , Xs) , that is, append ( [ I , [ I , [ I ) , 
append( [ I , [ [ I I , [ [ I I ) , . . . , together with goals such as append 
( [ [ ] ] , [ I , [ [ I 1 1 ,  which are logically implied by application(s) of 
the rule. This is only a subset of the Herbrand base. For example, 
append( [ 1 , [ I , [ [ I I )  is not in the meaning of append but is in the 
Herbrand base. 

Denotational semantics assigns meanings to programs based on asso- 
ciating with the program a function over the domain computed by the 
program. The meaning of the program is defined as the least fucpoint of 
the function, if it exists. The domain of computations of logic programs 
is interpretations. 

Definition 
Given a logic program P, there is a natural mapping Tp from interpreta- 
tions to interpretations, defined as follows: 

Tp(I) = { A  in B(P):A -BI ,B,,. . .,B,l, n 2 0, is a ground instance of 
a clause in P, and B1,. . .,B, are in I}.  a 

The mapping is monotonic, since whenever an interpretation I is con- 
tained in an interpretation J, then Tp(I) is contained in Tp(J). 

This mapping gives an alternative way of characterizing models. An 
interpretation I is a model if and only if Tp(l) is contained in I. 

Besides being monotonic, the transformation is also continuous, a no- 
tion that will not be defined here. These two properties ensure that for 
every logic program P, the transformation Tp has a least fixpoint, whlch 
is the meaning assigned to P by its denotational semantics. 

Happily, all the different definitions of semantics are actually describ- 
ing the same object. The operational, denotational, and declarative se- 
mantics have been demonstrated to be equivalent. This allows us to de- 
fine the meaning of a logic program as its minimal model. 

5.2 Program Correctness 

Every logic program has a well-defined meaning, as discussed in Sec- 
tion 5.1. This meaning is neither correct nor incorrect. 



Chapter 5 

The meaning of the program, however, may or may not be what was 
intended by the programmer. Discussions of correctness must therefore 
take into consideration the intended meaning of the program. Our pre- 
vious discussion of proving correctness and completeness similarly was 
with respect to an intended meaning of a program. 

We recall the definitions from Chapter 1. An intended meaning of a 
program P is a set of ground goals. We use intended meanings to denote 
the set of goals intended by the programmer for the program to com- 
pute. A program P is correct with respect to an intended meaning M if 
M(P) is contained in M. A program P is complete with respect to an in- 
tended meaning if M is contained in M(P). A program is thus correct and 
complete with respect to an intended meaning if the two meanings coin- 
cide exactly. 

Another important aspect of a logic program is whether it terminates. 

Definition 
A domain is a set of goals, not necessarily ground, closed under the 
instance relation. That is, if A is in D and A' is an instance of A, then 
A' is in D as well. 

Definition 
A termination domain of a program P is a domain D such that every 
computation of P on every goal in D terminates. ¤ 

lisually, a useful program should have a termination domain that in- 
cludes its intended meaning. However, since the computation model of 
logic programs is liberal in the order in which goals in the resolvent can 
be reduced, most interesting logic programs will not have interesting ter- 
mination domains. This situation will improve when we switch to Prolog. 
The restrictive model of Prolog allows the programmer to compose non- 
trivial programs that terminate over useful domains. 

Consider Program 3.1 defining the natural numbers. This program is 
terminating over its Herbrand base. However, the program is nonter- 
minating over the domain {natural-number (X) } .  This is caused by the 
possibility of the nonterminating computation depicted in the trace in 
Figure 5.1. 

For any logic program, it is useful to find domains over which it is 
terminating. This is usually difficult for recursive logic programs. We 
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natural-number (X) X=s (XI) 
natural-number(X1) X1=s (X2) 

natural-number (X2) X2=s (X3) 

Figure 5.1 A nonterrninating computation 

need to describe recursive data types in a way that allows us to discuss 
termination. 

Recall that a type, introduced in Chapter 3, is a set of terms. 

Definition 
A type is complete if the set is closed under the instance relation. With 
every complete type T we can associate an incomplete type IT, which is 
the set of terms that have instances in T and instances not in T. 

We illustrate the use of these definitions to find termination domains 
for the recursive programs using recursive data types in Chapter 3. Spe- 
cific instances of the definitions of complete and incomplete types are 
given for natural numbers and lists. A (complete) natural number is ei- 
ther the constant 0, or a term of the form s n ( X ) .  An incomplete natural 
number is either a variable, X, or a term of the form sn(0),  where X is 
a variable. Program 3.2 for I is terminating for the domain consisting 
of goals where the first and/or second argument is a complete natural 
number. 

Definition 
A list is complete if every instance satisfies the definition given in Pro- 
gram 3.11. A list is incomplete if there are instances that satisfy this 
definition and instances that do not. 

For example, the list [a, b ,  cl is complete (proved in Figure 3.3), while 
the variable X is incomplete. Two more interesting examples: [a, X , cl is 
a complete list, although not ground, whereas [a,bjXs] is incomplete. 
A termination domain for append is the set of goals where the first 

and/or the thrd  argument is a complete list. We discuss domains for 
other list-processing programs in Section 7.2, on termination of Prolog 
programs. 
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5.2.1 Exercises for Section 5.2 

(i) Give a domain over which Program 3.3 for p lus  is terminating. 

(ii) Define complete and incomplete binary trees by analogy with the 
definitions for complete and incomplete lists. 

5.3 Complexity 

We have analyzed informally the complexity of several logic programs, 
for example, I and plus  (Programs 3.2 and 3.3) in the section on arith- 
metic, and append and the two versions of reverse in the section on lists 
(Programs 3.15 and 3.16). In this section, we briefly describe more formal 
complexity measures. 

The multiple uses of logic programs slightly change the nature of com- 
plexity measures. Instead of looking at a particular use and specifying 
complexity in terms of the sizes of the inputs, we look at goals in the 
meaning and see how they were derived. A natural measure of the com- 
plexity of a logic program is the length of the proofs it generates for 
goals in its meaning. 

Definition 
The size of a term is the number of symbols in its textual representation. 

Constants and variables, consisting of a single symbol, have size 1. 
The size of a compound term is 1 more than the sum of the sizes of 
its arguments. For example, the list [b] has size 3, [a,b] has size 5, 
and the goal append( [a ,  b] , [ c ,  dl ,Xs) has size 12. In general, a list of 
n elements has size 2 . n + 1. 

Definition 
A program P is of length complexity L(n) if for any goal G in the meaning 
of P of size n there is a proof of G with respect to P of length less than 
equal to L(n). 

Length complexity is related to the usual complexity measures in com- 
puter science. For sequential realizations of the computation model, it 
corresponds to time complexity. Program 3.15 for append has linear 
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length complexity. This is demonstrated in Exercise (i) at the end of thls 
section. 

The applicability of thls measure to Prolog programs, as opposed to 
logic programs, depends on using a unification algorithm without an oc- 
curs check. Consider the runtime of the straightforward program for ap- 
pending two lists. Appending two lists, as shown in Figure 4.3, involves 
several unifications of append goals with the head of the append rule 
append ( C X l X s l  , Ys, CXlZsl  1. At least three unifications, matchng vari- 
ables against (possibly incomplete) lists, will be necessary. If the occurs 
check must be performed for each, the argument lists must be searched. 
This is directly proportional to the size of the input goal. However, if the 
occurs check is omitted, the unification time will be bounded by a con- 
stant. The overall complexity of append becomes quadratic in the size of 
the input lists with the occurs check, but only linear without it. 

We introduce other useful measures related to proofs. Let R be a proof. 
We define the depth of R to be the deepest invocation of a goal in the 
associated reduction. The goal-size of R is the maximum size of any goal 
reduced. 

Definition 
A logic program P is of goal-size complexity G(n) if for any goal A in the 
meaning of P of size n, there is a proof of A with respect to P of goal-size 
less than or equal to G(n). # 

Definition 
A logic program P is of depth-complexity D(n) if for any goal A in the 
meaning of P of size n, there is a proof of G with respect to P of depth 
<D(n). 

Goal-size complexity relates to space. Depth-complexity relates to 
space of what needs to be remembered for sequential realizations, and 
to space and time complexity for parallel realizations. 

5.3.1 Exercises for Section 5.3 

(i) Show that the size of a goal in the meaning of append joining a 
list of length n to one of length m to give a list of length n + m 
is 4 . n + 4 . m + 4. Show that a proof tree has m + 1 nodes. Hence 
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show that append has linear complexity. Would the complexity be 
altered if the type condition were added? 

(ii) Show that Program 3.3 for p l u s  has linear complexity. 

(iii) Discuss the complexity of other logic programs. 

5.4 Search Trees 

Computations of logic programs given so far resolve the issue of nonde- 
terminism by always making the correct choice. For example, the com- 
plexity measures, based on proof trees, assume that the correct clause 
can be chosen from the program to effect the reduction. Another way of 
computationally modeling nondeterminism is by developing all possible 
reductions in parallel. In this section, we discuss search trees, a formal- 
ism for considering all possible computation paths. 

Definition 
A search tree of a goal G with respect to a program P is defined as 
follows. The root of the tree is G. Nodes of the tree are (possibly con- 
junctive) goals with one goal selected. There is an edge leading from a 
node N for each clause in the program whose head unifies with the se- 
lected goal. Each branch in the tree from the root is a computation of G 
by P. Leaves of the tree are success nodes, where the empty goal has been 
reached, or failure nodes, where the selected goal at the node cannot be 
further reduced. Success nodes correspond to solutions of the root of the 
tree. 

There are in general many search trees for a given goal with re- 
spect to a program. Figure 5.2 shows two search trees for the query 
son(S,  haran) ? with respect to Program 1.2. The two possibilities cor- 
respond to the two choices of goal to reduce from the resolvent f a -  
t h e r  (haran ,  S) ,male (S) . The trees are quite distinct, but both have a 
single success branch corresponding to the solution of the query S=lot .  
The respective success branches are given as traces in Figure 4.4. 

We adopt some conventions when drawing search trees. The leftmost 
goal of a node is always the selected one. This implies that the goals in 
derived goals may be permuted so that the new goal to be selected for 
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@ 
Figure 5.2 Two search trees 

reduction is the first goal. The edges are labeled with substitutions that 
are applied to the variables in the leftmost goal. These substitutions are 
computed as part of the unification algorithm. 

Search trees correspond closely to traces for deterministic computa- 
tions. The traces for the append query and hanoi query given, respec- 
tively, in Figures 4.3 and 4.5 can be easily made into search trees. This is 
Exercise (i) at the end of this section. 

Search trees contain multiple success nodes if the query has mul- 
tiple solutions. Figure 5 .3  contains the search tree for the query ap- 
pend(As , B s  , [a ,  b ,  cl > ? with respect to Program 3.15 for append, asking 
to split the list [a ,  b ,  cl into two. The solutions for A s  and B s  are found 
by collecting the labels of the edges in the branch leading to the success 
node. For example, in the figure, following the leftmost branch gives the 
solution { A s =  [a ,  b ,  cl , Bs= [ I 1.  

The number of success nodes is the same for any search tree of a given 
goal with respect to a program. 

Search trees can have infinite branches, which correspond to nonter- 
rninating computations. Consider the goal append (Xs , [c ,d l  , Ys) with 
respect to the standard program for append. The search tree is given in 
Figure 5.4. The infinite branch is the nonterminating computation given 
in Figure 4.6. 
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Figure 5.3 Search tree with multiple success nodes 

Complexity measures can also be defined in terms of search trees. Pro- 
log programs perform a depth-first traversal of the search tree. There- 
fore, measures based on the size of the search tree will be a more real- 
istic measure of the complexity of Prolog programs than those based on 
the complexity of the proof tree. However, the complexity of the search 
tree is much harder to analyze. 

There is a deeper point lurking. The relation between proof trees and 
search trees is the relation between nondeterministic computations and 
deterministic computations. Whether the complexity classes defined via 
proof trees are equivalent to complexity classes defined via search trees 
is a reformulation of the classic P=NP question in terms of logic program- 
ming. 

5.4.1 Exercises for Section 5.4 

(i) Transform the traces of Figure 4.3 and 4.5 into search trees. 

(ii) Draw a search tree for the query s o r t  ( [2,4,11 , Xs) ? using permu- 
tation sort. 
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Figure 5.4 Search tree with an infinite branch 

5.5 Negation in Logic Programming 

Logic programs are collections of rules and facts describing what is true. 
Untrue facts are not expressed explicitlj-; they are omitted. When writing 
rules, it is often natural to include negative conditions. For example, 
defining a bachelor as an unmarried male could be written as 

bachelor(X) - male(X) , not married(X) . 

if negation w7ere allowed. In this section, we describe an extension to 
the logic programming computation model that allows a limited form of 
negation. 

Researchers have investigated other extensions to logic programming 
to allow disjunction, and indeed, arbitrary first-order formulae. Dis- 
cussing them is beyond the scope of this book. The most useful of the 
extensions is definitely negation. 

We define a relation not  G and give a semantics. The essence of logic 
programming is that there is an efficient procedural semantics. There is 
a natural way to adapt the procedural semantics to negation, namely by 
negation as failure. A goal G fails, (not G succeeds), if G cannot be derived 
by the procedural semantics. 

PROYECTO
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The relation not G is only a partial form of negation from first-order 
logic. The relation nor uses the negarion as failure rule. A goal not G will 
be assumed to be a consequence of a program P if G is not a consequence 
of P. 

Negation as failure can be characterized in terms of search trees. 

Definition 
A search tree of a goal G with respect to a program P is finitely failed if it . -  ~ - 
has no success nodes or infinite branches. The finite failure set of a logic 
program P is the set of goals G such that G has a finitely failed search 
tree with respect to P. 

A goal not G is implied by a program P by the "negation as failure" rule 
if G is in the finite failure set of P. 

Let us see a simple example. Consider the program consisting of two 
facts: 

likes (abraham,pomegranates) . 
likes (isaac ,pomegranates) . 

The goal not likes (sarah ,pomegranates) follows from the program by 
negation as failure. The search tree for the goal likes(sarah,pomegran- 
ates) has a single failure node. 

Using negation as failure allows easy definition of many relations. For 
example, a declarative definition of the relation disjoint (Xs ,Ys) that 
two lists, XS and Ys, have no elements in common is possible as follows. 

dls j oint (Xs , Ys) - not (member (X , XS) , member (X ,Ys) ) . 
This reads: "Xs is disjoint from Ys if there is no element X that is a 
member of both Xs and Ys." 

An intuitive understanding of negation as failure is fine for the pro- 
grams in this book using negation. There are semantic problems, how- 
ever, especially when integrated with other issues such as completeness 
and termination. Pointers to the literature are given in Section 5.6, and 
Prolog's implementation of negation as failure is discussed in Chap- 
ter 11. 
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5.6 Background 

The classic paper on the semantics of logic programs is of van Emden 
and Kowalski (1976). Important extensions were given by Apt and van 
Emden (1982). In particular, they showed that the choice of goal to re- 
duce from the resolvent is arbitrary by showing that the number of suc- 
cess nodes is an invariant for the search trees. Textbook accounts of 
the theory of logic programming discussing the equivalence between the 
declarative and procedural semantics can be found in Apt (1990), Deville 
(1990), and Lloyd (1987). 

In Shapiro (1984), complexity measures for logic programs are com- 
pared with the complexity of computations of alternating Turing ma- 
chines. It is shown that goal-size is linearly related to alternating space, 
the product of length and goal-size is linearly related to alternating tree- 
size, and the product of depth and goal-size is linearly related to alter- 
nating time. 

The classic name for search trees in the literature is SLD trees. The 
name SLD was coined by research in automatic theorem proving, which 
preceded the birth of logic programming. SLD resolution is a particu- 
lar refinement of the resolution principle introduced in Robinson (1965). 
Computations of logic programs can be interpreted as a series of reso- 
lution steps, and in fact, SLD resolution steps, and are still commonly 
described thus in the literature. The acronym SLD stands for Selecting a 
literal, using a Linear strategy, restricted to Definite clauses. 

The first proof of the correctness and completeness of SLD resolution, 
albeit under the name LUSH-resolution, was given by Hill (1974). 

The subject of negation has received a large amount of attention and 
interest since the inception of logic programming. The fundamental work 
on the semantics of negation as failure is by Clark (1978). Clark's results, 
establishing soundness, were extended by Jaffar et al. (1983), who proved 
the completeness of the rule. 

The concept of negation as failure is a restricted version of the closed 
world assumption as discussed in the database world. For more infor- 
mation see Reiter (1978). There has been extensive research on charac- 
terizing negation in logic programming that has not stabilized at this 
time. The reader should look up the latest logic programming conference 
proceedings to find current thinlung. A good place to start reading to un- 
derstand the issue is Kunen (1989). 



Leonardo Da Vinci. Portrait of the Florentine poet Bernardo Bellincioni, en- 
gaged at the Court of Ludovico Sforza. Woodcut, based on a drawing by 
Leonardo. From Bellincioni's Rime. Milan 1493. 

I1 The Prolog Language 

In order to implement a practical programming language based on the 
computation model of logic programming, three issues need attention. 
The first concerns resolving the choices remaining in the abstract inter- 
preter for logic programs, defined in Chapter 4. The second concerns 
enhancing the expressiveness of the pure computation model of logic 
programs by adding meta-logical and extra-logical facilities. Finally, ac- 
cess to some of the capabilities of the underlying computer, such as fast 
arithmetic and input/output, must be provided. This part discusses hob7 
Prolog, the most developed language based on logic programming, han- 
dles each of these issues. 
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A pure Prolog program is a logic program, in which an order is defined 
both for clauses in the program and for goals in the body of the clause. 
The abstract interpreter for logic programs is specialized to take advan- 
tage of this ordering information. This chapter discusses the execution 
model of Prolog programs in contrast to logic programs, and compares 
Prolog to more conventional languages. 

The relation between logic programming and Prolog is reminiscent of 
the relation between the lambda-calculus and Lisp. Both are concrete re- 
alizations of abstract computation models. Logic programs that execute 
with Prolog's execution mechanism are referred to as pure Prolog. Pure 
Prolog is an approximate realization of the logic programming compu- 
tation model on a sequential machine. It is certainly not the only possi- 
ble such realization. However, it is a realization with excellent practical 
choices, which balance preserving the properties of the abstract model 
with catering for efficient implementation. 

6.1 The Execution Model of Prolog 

Two major decisions must be taken to convert the abstract interpreter 
for logic programs into a form suitable for a concrete programming lan- 
guage. First, the arbitrary choice of which goal in the resolvent to reduce, 
namely, the scheduling policy, must be specified. Second, the nondeter- 
ministic choice of the clause from the program to effect the reduction 
must be implemented. 
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Several logic programming languages exist, reflecting different choices. 
Prolog and its extensions (Prolog-11, IC-Prolog, and MU-Prolog, for exam- 
ple) are based on sequential execution. Other languages, such as PAR- 
LOG, Concurrent Prolog, GHC, Aurora-Prolog, and Andorra-Prolog, are 
based on parallel execution. The treatment of nondeterminism distin- 
guishes between sequential and parallel languages. The distinction be- 
tween Prolog and its extensions is in the choice of goal to reduce. 

Prolog's execution mechanism is obtained from the abstract interpreter by 
choosing the leftmost goal instead of an arbitrary one and replacing the non- 
deterministic choice of a clause by sequential search for a unifiable clause and 
backtracking. 

In other words, Prolog adopts a stack scheduling policy. It maintains 
the resolvent as a stack: pops the top goal for reduction, and pushes the 
derived goals onto the resolvent stack. 

In addition to the stack policy, Prolog simulates the nondeterministic 
choice of reducing clause by sequential search and backtracking. When 
attempting to reduce a goal, the first clause whose head unifies with the 
goal is chosen. If no unifiable clause is found for the popped goal, the 
computation is unwound to the last choice made, and the next unifiable 
clause is chosen. 

A computation of a goal G with respect to a Prolog program P is the 
generation of all solutions of G with respect to P. In terms of logic 
programming concepts, a Prolog computation of a goal G is a complete 
depth-first traversal of the particular search tree of G obtained by always I 

I 

choosing the leftmost goal. 
Many different Prolog implementations exist with differing syntax and 

programming facilities. Recently, there has been an attempt to reach a 
Prolog standard based on the Edinburgh dialect of Prolog. At the time of 

I 

writing, the standard has not been finalized. However a complete draft i 
exists, whch we essentially follow. We refer to the Prolog described in 
that document as Standard Prolog. The syntax of logic programs that 
we have been using fits within Standard Prolog except that we use some 
characters not available on a standard keyboard. We give the standard 

I 
I 

equivalent of our special characters. Thus :- should be used instead of - in Prolog programs to separate the head of a clause from its body. 
All the programs in this book run (possibly with minor changes) in all 
Edinburgh-compatible Prologs. 

A trace of a Prolog computation is an extension of the trace of a com- 
putation of a logic program under the abstract interpreter as described 

father(abraham,isaac) . male(isaac) . 
father(haran,lot). male(1ot). 
father(haran,milcah). female(yiscah) 

f ather(haran, yiscah) . f emale(mi1cah) 

son(X,haran)? 
f ather(haran,X) 
male (lot) 

true 
Output: X=lot 

father(haran,X) 
male (milcah) f 

no (more) solutions 

Figure 6.1 Tracing a simple Prolog computation 

in Section 4.2. We revise the computations of Chapters 4 and 5, indicat- 
ing the similarities and differences. Consider the query son(X, ha ran )?  
with respect to Program 1.2, biblical family relationships, repeated at the 
top of Figure 6.1. The computation is given in the bulk of Figure 6.1. It 
corresponds to a depth-first traversal of the first of the search trees in 
Figure 5.2. It is an extension of the first trace in Figure 4.4, since the 
whole search tree is searched. 

The notation previously used for traces must be extended to handle 
failure and backtracking. An f after a goal denotes that a goal fails, that 
is there is no clause whose head unifies with the goal. The next goal af- 
ter a failed goal is where the computation continues on backtracking. 
It already appears as a previous goal in the trace at the same depth of 
indentation and can be identified by the variable names. We adopt the 
Edinburgh Prolog convention that a ";" typed after a solution denotes a 
continuation of the computation to search for more solutions. Unifica- 
tions are indicated as previously. 

Trace facilities and answers provided by particular Prolog implementa- 
tions vary from our description. For example, some Prolog implementa- 
tions always give all solutions, while others wait for a user response after 
each solution. 
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append( [XI Xs] ,Ys, [X I Zs] ) - append(Xs ,Ys ,Zs) 
append( [ 1 ,Ys,Ys). 

append(Xs,Ys, Ca,b,cl) Xs= [al Xsll 
append(Xsl,Ys, [b,cl) Xsl= [b l Xs21 

append(Xs2,Ys, LC]) Xs2= [c l Xs31 
append(Xs3, Ys , [ I ) Xs3=[ 1 ,Ys=[ I 

true 
Output: (Xs=[a,b, c] ,Ys= [ 1 ) 

append(Xs2,Ys, [c] ) Xs2= [ I ,Ys= [cl 
true 

Output: (Xs= [a,bl ,Ys= [cl ) 

append (Xsl , Ys , [b , c] Xsl=C I ,Ys=[b,c] 
true 

Output: (Xs= [a1 ,Ys= [b, cl ) 

append(Xs,Ys, [a,b,cl) 
true 

Output: (Xs=[ 1 ,Ys=[a,b,cl) 

no (more) solutions 

Figure 6.2 Multiple solutions for splitting a list 

The trace of append ( [ a ,  b] , [c , dl , Ls) ? giving the answer Ls= [a ,  b  , c , 
dl is precisely the trace given in Figure 4.3.  Figure 4.5, giving the trace 
for solving the Towers of Hanoi with three disks, is also a trace of 
the hanoi  program considered as a Prolog program solving the query 
hanoi ( s  ( s  ( s  (0 )  ) ) , a ,  b ,  c ,  Ms) ?. The trace of a deterministic computa- 
tion is the same when considered as a logic program or a Prolog program, 
provided the order of goals is preserved. 

The next example is answering the query append (Xs , Y s  , [a, b, cl > ? 
with respect to Program 3.15 for append. There are several solutions of 
the query. The search tree for thls goal was given as Figure 5.3. Figure 6 . 2  
gives the Prolog trace. 

Tracing computations is a good way to gain understanding of the ex- 
ecution model of Prolog. We give a slightly larger example, sorting a 
list with the quicksort program (Program 3.22, reproduced at the top of 
Figure 6.3).  Computations using qu ickso r t  are essentially deterministic 
and show the algorithmic behavior of a Prolog program. Figure 6.3  gives 
a trace of the query qu ickso r t  ( [2 ,  I ,3] ,Xs)?. Arithmetic comparisons 
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quicksort ( [XI XS] ,Ys) - 
~artition(xs ,~,~ittles,~igs), 
quicksort(Littles,Ls), 
quicksort(Bigs,Bs), 
append(Ls, [XI BS] ,Ys) . 

quicksort ( [ I ,  [ 1 1. 
partition( [XIXs] ,Y, [X ILsl ,Bs) - 

X i Y, partition(Xs,~,Ls,Bs). 
partition([XIXs] ,y,Ls, [XIBSI) - 

X > Y, partition(Xs,Y,Ls,Bs). 
l,Y,C I,[ 1). 

quicksort([2,1,31 ,Qs) 
partition( [1,31 ,2,Ls,Bs) 

1 1 2  

partition( [31 ,2,Lsl,Bs) 
3 5 2  f 

partition([31 ,2,Lsl,Bs) 
3 > 2  
partition( [ I ,2,Lsl,Bsl) 

quicksort ( [ll ,Qsl) 
 arti it ion( [ 1 ,1 ,Ls2,Bs2) 
quicksort ( [ 1 , Qs2) 
quicksort ( [ 1 ,Qs3) 
append( [ I ,  [I] ,Qsl) 

quicksort ( [31, Qs4) 
 arti it ion( [ I ,3,Ls3,Bs3) 
quicksort ( [ 1 , Qs5) 
quicksort ( [ 1 , Qs6) 
append( C I , Dl, qs4) 

append( [I] , [2,31 ,Qs) 
append([ I ,  [2,31 ,Ys) 

true 
Output: (QS= [I, 2,31) 

Ls= [I I Lsll 

Ls3=[ l=Bs3 
Qs5=[ 1 
qss=r I 
4s4= C31 
qs= [1 I Ysl 
Ys= [2,31 

Figure 6.3 Tracing a q u i c k s o r t  computation 
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are assumed to be unit operations, and the standard program for append 
is used. 

We introduce a distinction between shallow and deep backtraclung. 
Shallow backtracking occurs when the unification of a goal and a clause 
fails, and an alternative clause is tried. Deep backtracking occurs when 
the unification of the last clause of a procedure with a goal fails, and 
control returns to another goal in the computation tree. 

It is sometimes convenient to include, for the purpose of this defini- 
tion, test predicates that occur first in the body of the clause as part 
of unification, and to classif). the backtracking that occurs as a result of 
their failure as shallow. An example in Figure 6.3 is the choice of a new 
clause for the goal partition ( C31 , 2 ,  Lsl , Bs) . 

6.1.1 Exercises for Section 6.1 

(i) Trace the execution of daughter (X, haran)? with respect to Pro- 
gram 1.2. 

(ii) Trace the execution of sort ( [3,1,21 , Xs)? with respect to Pro- 
gram 3.21. 

(iii) Trace the execution of sort ([3,1,21 ,Xs)? with respect to Pro- 
gram 3.20. 

- - - -- - -- -- 

6.2 Comparison to Conventional Programming Languages 

A programming language is characterized b17 its control and data ma- 
nipulation mechanisms. Prolog, as a general-purpose programming lan- 
guage, can be discussed in these terms, as are conventional languages. 
In this section, we compare the control flow and data manipulation of 
Prolog to that of Algol-like languages. 

The control in Prolog programs is like that in conventional procedural 
languages as long as the computation progresses forward. Goal invoca- 
tion corresponds to procedure invocation, and the ordering of goals in 
the body of clauses corresponds to sequencing of statements. Specifi- 
cally, the clause A -BI,. . .,B, can be viewed as the definition of a pro- 
cedure A as follows: 
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procedure A 
call B1, 
call BZ, 

call B,, 
end. 

Recursive goal invocation in Prolog is similar in behavior and imple- 
mentation to that of conventional recursive languages. The differences 
show when backtracking occurs. In a conventional language, if a compu- 
tation cannot proceed (e.g., all branches of a case statement are false), a 
runtime error occurs. In Prolog, the computation is simply undone to the 
last choice made, and a different computation path is attempted. 

The data structures manipulated by logic programs, terms, correspond 
to general record structures in conventional programming languages. 
The handling of data structures is very flexible in Prolog. Like Lisp, Prolog 
is a declaration-free, typeless language. 

The major differences between Prolog and conventional languages in 
the use of data structures arise from the nature of logical variables. Log- 
ical variables refer to individuals rather than to memory locations. Con- 
sequently, having once beed specified to refer to a particular individual, 
a variable cannot be made to refer to another individual. In other words, 
logic programming does not support destructive assignment where the 
contents of an initialized variable can change. 

Data manipulation in logic programs is achieved entirely via the unifi- 
cation algorithm. Unification subsumes 

Single assignment 

Parameter passing 

Record allocation 

Read/write-once field-access in records 

We discuss the trace of the quicksort program in Figure 6.3, point- 
ing out the various uses of unification. The unification of the initial 
goal quicksort ( [2,1,31, qs) with the head of the procedure definition 
quicksort ( [XI Xsl ,Ys) illustrates several features. The unification of 
[2,1,31 with the term CX I Xsl achieves record access to the list and also 
selection of its two fields, the head and tail. 
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The unification of [l ,31 with xs achieves parameter passing to the 
p a r t i t i o n  procedure, because of the sharing of the variables. T h s  gives 
the first argument of p a r t i t i o n .  Similarly, the unification of 2 with X 
passes the value of the second parameter to p a r t i t i o n .  

Record creation can be seen with the unification of the goal p a r t i -  
t i o n (  [ I ,  33 , 2 ,  L s  , B s )  with the head of the partition procedure p a r t  i- 
t i o n  ( [X I XS] , z , [X 1 LS ll , BS I ) .  As a result, L s  is instantiated 
to [1 I L s l l  . Specifically, L s  is made into a list and its head is assigned 
the value 1 ,  namely, record creation and field assignment via unifica- 
tion. 

The recursive algorithm embodied by the qu ickso r t  program can 
be easily coded in a conventional programming language using linked 
lists and pointer manipulation. As discussed, unification is achiev- 
ing the effect of the necessary pointer manipulations. Indeed, the ma- 
nipulation of logical variables via unification can be viewed as an 
abstraction of low-level manipulation of pointers to complex data 
structures. 

These analogies may provide hints on how to implement Prolog effi- 
ciently on a von Neumann machine. Indeed, the basic idea of compilation 
of Prolog is to translate special cases of unification to conventional mem- 
ory manipulation operations, as specified previously. 

Conventional languages typically incorporate error-handling or excep- 
tion-handling mechanisms of various degrees of sophstication. Pure Pro- 
log does not have an error or exception mechanism built into its defi- 
nition. The pure Prolog counterparts of nonfatal errors in conventional 
programs, e.g., a missing case in a case statement, or dividing by zero, 
cause failure in pure Prolog. 

Full Prolog, introduced in the following chapters, includes system 
predicates, such as arithmetic and I/O, whch may cause errors. 
Current Prolog implementations do not have sophsticated error- 
handling mechanisms. Typically, on an error condition, a system pred- 
icate prints an error message and either fails or aborts the computa- 
tion. 

T h s  brief discussion of Prolog's different way of manipulating data 
does not help with the more interesting question: How does program- 
ming in Prolog compare with programming in conventional program- 
ming languages? That is the major underlying topic of the rest of this 
book 
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6.3 Background 

The origins of Prolog are shrouded in mystery. All that is known is that 
the two founders, Robert Kowalslu, then at Edinburgh, and Alain Colmer- 
auer at Marseilles worked on similar ideas during the early 1970% and 
even worked together one summer. The results were the formulation of 
the logic programming philosophy and computation model by Kowalski 
(1974), and the design and implementation of the first logic program- 
ming language Prolog, by Colmerauer and his colleagues (1973). Three 
recent articles giving many more details about the beginnings of Prolog 
and logic programming are Cohen (1988), Kowalski (1988), and Colmer- 
auer and Roussel(1993). 

A major force behind the realization that logic can be the basis of a 
practical programming language has been the development of efficient 
implementation techniques, as pioneered by Warren (1977). Warren's 
compiler identified special cases of unification and translated them into 
efficient sequences of conventional memory operations. Good accounts 
of techniques for Prolog implementation, both interpretation and compi- 
lation, can be found in Maier and Warren (1988) and Ait-Kaci (1991). 

Variations of Prolog with extra control features, such as IC-Prolog 
(Clark and McCabe, 1979), have been developed but have proved too 
costly in runtime overhead to be seriously considered as alternatives to 
Prolog. We will refer to particular interesting variations that have been 
proposed in the appropriate sections. 

Another breed of logic programming languages, which indirectly 
emerged from IC-Prolog, was concurrent logic languages. The first was 
the Relational Language (Clark and Gregory, 1981), followed by Concur- 
rent Prolog (Shapiro, 1983b), PARLOG (Clark and Gregory, 1984), GHC 
(Ueda, 1985), and a few other proposals. 

References for the variations mentioned in the text are, for Prolog- 
I1 (van Caneghem, 1982), IC-Prolog (Clark et al., 1982), and MU-Prolog 
(Naish, 1986). Aurora-Prolog is described in Disz et al. (1987), while a 
starting place for reading about AKL, a language emerging from Andorra- 
Prolog is Janson and Haridi (199 1 ). 

The syntax of Prolog stems from the clausal form of logic due to 
Kowalski (1974). The original Marseilles interpreter used the terminol- 
ogy of positive and negative literals from resolution theory. The clause 
A - B 1 , .  . . , B, was written +A - B1 . . . - B , .  
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David H. D. Warren adapted Marseilles Prolog for the DEC-10 at the Uni- 
versity of Edinburgh, with help from Fernando Pereira. Their decisions 
have been very influential. Many systems adopted most of the conven- 
tions of Prolog-10 (Warren et al., 1979), whch has become known more 
generically as Edinburgh Prolog. Its essential features are described in 
the widespread primer on Prolog (Clocksin and Mellish, 1984). Ths  book 
follows the description of Standard Prolog existing as Scowen (1991). 

A paper by Cohen (1985) delves further into the relation between Pro- 
log and conventional languages. 

Programming in Pure Prolog 

A major aim of logic programming is to enable the programmer to pro- 
gram at a hgher level. Ideally one should write axioms that define the 
desired relations, maintaining ignorance of the way they are going to 
be used by the execution mechanism. Current logic programming lan- 
guages, Prolog in particular, are still far away from allowing t h s  ideal of 
declarative programming. The specific, well-defined choices of how their 
execution mechanisms approximate the abstract interpreter cannot be ig- 
nored. Effective logic programming requires knowing and utilizing these 
choices. 

This chapter discusses the consequences of Prolog's execution model 
for the logic programmer. New aspects of the programming task are 
introduced. Not only must programmers come up with a correct and 
complete axiomatization of a relation but they must also consider its 
execution according to the model. 

7.1 Rule Order 

Two syntactic issues, irrelevant for logic programs, are important to con- 
sider when composing Prolog programs. The rule order, or clause order, 
of clauses in each procedure must be decided. Also the goal order of 
goals in the bodies of each clause must be determined. The consequences 
of these decisions can be immense. There can be orders of magnitude 
of difference in efficiency in the performance of Prolog programs. In ex- 
treme though quite common cases, correct logic programs will fail to give 
solutions because of nontermination. 
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parent(terach,abraham). parent(abraham,isaac). 
parent (isaac , jacob) . parent ( j acob , benj amin) . 

ancestor(X,Y) - parent(X,Y). 
ancestor(X,Z) - parent(X,Y), ancestor(Y,Z). 

Program 7.1 Yet another family example 

The rule order determines the order in which solutions are found. 

Changing the order of rules in a procedure permutes the branches 
in any search tree for a goal using that procedure. The search tree is 
traversed depth-first. So permuting the branches causes a different order 
of traversal of the search tree, and a different order of finding solutions. 
The effect is clearly seen when using facts to answer an existential query. 
With our biblical database and a query such as f a t h e r  (X,Y)?, changing 
the order of facts will change the order of solutions found by Prolog. 
Deciding how to order facts is not very important. 

The order of solutions of queries solved by recursive programs is also 
determined by the clause order. Consider Program 5.1, a simple bibli- 
cal database together with a program for the relationshp ances tor ,  re- 
peated here as Program 7.1. 

For the query ances to r ( t e r ach ,X)?  with respect to Program 7.1, the 
solutions will be given in the order, X=abraham, X=isaac, X=jacob, and 
X=benjamin. If the rules defining ances to r  are swapped, the solutions 
will appear in a different order, namely, X=benj amin, X=j acob, X=isaac, 
and X=abraham. 

The different order of ances to r  clauses changes the order of searchng 
the implicit family tree. In one order, Prolog outputs solutions as it goes 
along. With the other order, Prolog travels to the end of the family tree 
and gives solutions on the way back. The desired order of solutions is 
determined by the application, and the rule order of ances to r  is chosen 
accordingly. 

Changing the order of clauses for the member predicate (Program 3.12) 
also changes the order of search. As written, the program searches the 
list until the desired element is found. If the order of the clauses is 
reversed, the program always searches to the end of the list. The order 
of solutions will also be affected, for example, responding to the query 
member (X , [ I ,  2 ,31)  ?. In the standard order, the order of solutions is 
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intuitive: X = l ,  X=2, X=3. With the rules swapped, the order is X=3, X=2, 
X = l .  The order of Program 3.12 is more intuitive and hence preferable. 

When the search tree for a given goal has an infinite branch, the or- 
der of clauses can determine if any solutions are given at all. Consider 
the query append (Xs , Cc , dl , Ys) ? with respect to append. As can be seen 
from the search tree in Figure 5.4, no solutions would be given. If, how- 
ever, the append fact appeared before the append rule, an infinite number 
of pairs X s  , Y s  satisfying the query would be given. 

There is no consensus as to how to order the clauses of a Prolog pro- 
cedure. Clearly, the standard dictated in more conventional languages, 
of testing for the termination condition before proceeding with the iter- 
ation or recursion is not mandatory in Prolog. This is demonstrated in 
Program 3.15 for append as well as in other programs in thls book. The 
reason is that the recursive or iterative clause tests its applicability by 
unification. This test is done explicitly and independently of the other 
clauses in the procedure. 

Clause order is more important for general Prolog programs than it 
is for pure Prolog programs. Other control features, notably the cut to 
be discussed in Chapter 11, depend significantly on the clause order. 
When such constructs are used, clauses lose their independence and 
modularity, and clause order becomes significant. 

In this chapter, for the most part, the convention that the recursive 
clauses precede the base clauses is adopted. 

7.1.1 Exercises for Section 7.1 

(i) Verify the order of solutions for the query ances to r  (abraham,X)? 
with respect to Program 7.1, and its variant with different rule order 
for ances tor ,  claimed in the text. 

(ii) What is the order of solutions for the query ances to r  (X, benja- 
min)? with respect to Program 7.1? What if the rule order for 
ances to r  were swapped? 

7.2 Termination 

Prolog's depth-first traversal of search trees has a serious problem. If 
the search tree of a goal with respect to a program contains an infinite 
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branch, the computation will not terminate. Prolog may fail to find a 
solution to a goal, even though the goal has a finite computation. 

Nontermination arises with recursive rules. Consider adding a relation- 
s h p  married (Male,Female) to our database of family relationshps. A 
sample fact from the biblical situation is married(abraham,sarah). A 
user querying the married relationship should not care whether males 
or females are first, as the relationship is commutative. The "obvious" 
way of overcoming the commutativity is adding a recursive rule mar- 
ried(X ,Y) - married(Y, X). If t h s  is added to the program, no com- 
putation involving married would ever terminate. For example, the trace 
of the query married(abraham, sarah) ? is given in Figure 7.1. 

Recursive rules that have the recursive goal as the first goal in the 
body are known as left recursive rules. The problematic married axiom 
is an example. Left recursive rules are inherently troublesome in Prolog. 
They cause nonterminating computations if called with inappropriate 
arguments. 

The best solution to the problem of left recursion is avoidance. The 
married relationship used a left recursive rule to express commutativity. 
Commutative relationships are best handled differently, by defining a 
new predicate that has a clause for each permutation of the arguments 
of the relationship. For the relationship married, a new predicate, are- 
married (Person1 , Person2), say, would be defined using two rules: 

are-married (X, Y) - married (X, Y) . 
are-married(X,Y) - married(Y ,X) . 
Unfortunately, it is not generally possible to remove all occurrences of 
left recursion. All the elegant minimal recursive logic programs shown 
in Chapter 3 are left recursive, and can cause nontermination. However, 

married(X,Y) - married(Y,X). 
married(abraham,sarah). 

married(abraham,sarah) 
married(sarah, abraham) 

married(abraham,sarah) 
married(sarah,abraham) 

Figure 7.1 A nonterminating computation 
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the appropriate analysis, using the concepts of domains and complete 
structures introduced in Section 5.2, can determine which queries will 
terminate with respect to recursive programs. 

Let us consider an example, Program 3.1 5 for appending two lists. The 
program for append is everywhere terminating for the set of goals whose 
first and/or last argument is a complete list. Any append query whose 
first argument is a complete list will terminate. Similarly, all queries 
where the third argument is a complete list will terminate. The program 
will also terminate if the first and/or third argument is a ground term 
that is not a list. The behavior of append is best summed up by consid- 
ering the queries that do not terminate, namely, when both the first and 
third arguments are incomplete lists that are unifiable. 

The condition for when a query to Program 3.12 for member terminates 
is also stated in terms of incomplete lists. A query does not terminate if 
the second argument is an incomplete list. If the second argument of a 
query to member is a complete list, the query terminates. 

Another guaranteed means of generating nonterminating computa- 
tions, easy to overlook, is circular definitions. Consider the pair of rules 

parent (X, Y) - child (Y X) . 
child (x, Y) - parent (Y, X) . 
Any computation involving parent or child, for example, parent 
(haran, lot)?, will not terminate. The search tree necessarily contains 
an infinite branch, because of the circularity. 

7.2.1 Exercises for Section 7.2 

(i) Discuss the termination behavior of both programs in Program 3.13 
determining prefixes and suffutes of lists. 

(ii) Discuss the termination of Program 3 . 1 4 ~  for sublist 

7.3 Goal Order 

Goal order is more significant than clause order. It is the principal means 
of specifying sequential flow of control in Prolog programs. The pro- 
grams for sorting lists, e.g., Program 3.22 for quicksort, exploit goal 
order to indicate the sequence of steps in the sorting algorithms. 

PROYECTO
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We first discuss goal order from the perspective of database program- 
ming. The order of goals can affect the order of solutions. Consider 
the query daughter  (X, haran) ? with respect to a variant of Program 
1.2, where the order of the facts female (milcah) and female (y iscah)  
is interchanged. The two solutions are given in the order X=milcah, 
X=yiscah. If the goal order of the daughter  rule were changed to be 
daughter  (X, Y) - female (X) , f a t h e r  ( Y ,  X) . , the order of the solutions 
to the query, given the same database, would be X=yiscah, X=milcah. 

The reason that the order of goals in the body of a clause affects 
the order of solutions to a query is different from the reason that the 
order of rules in a procedure affects the solution order. Changing rule 
order does not change the search tree that must be traversed for a given 
query. The tree is just traversed in a different order. Changing goal order 
changes the search tree. 

Goal order determines the search tree. 

Goal order affects the amount of searching the program does in solv- 
ing a query by determining whch search tree is traversed. Consider the 
two search trees for the query son(X, haran) ?, given in Figure 5.2. They 
represent two different ways of finding a solution. In the first case, solu- 
tions are found by searching for children of haran and checlung if they 
are male. The second case corresponds to the rule for son being written 
with the order of the goals in its body swapped, namely, son(X,Y) +- 

male (X) , parent  (Y, X). Now the query is solved by searching through 
all the males in the program and checlung if they are chldren of ha- 
ran. If there were many male facts in the program, more search would 
be involved. For other queries, for example, son(sarah,X)?,  the reverse 
order has advantages. Since sa rah  is not male, the query would fail more 
quickly. 

The optimal goal order of Prolog programs varies with different uses. 
Consider the definition of grandparent .  There are two possible rules: 

grandparent  (X, Z) - parent  (X,Y) , parent  (Y 9 Z, . 
(X, Z) - paren t  (Y, Z) , 7 Y, . 

If you wish to find someone's grandson with the g randfa the r  relation- 
ship with a query such as grandparent(abraham,X)?, the first of the 
rules searches more directly. If looking for someone's grandparent with 
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a query such as grandparent  (X, i s aac )  ?, the second rule finds the solu- 
tion more directly. If efficiency is important, then it is advisable to have 
two distinct relationshps, grandparent  and grandchild,  to be used ap- 
propriately at the user's discretion. 

In contrast to rule order, goal order can determine whether computa- 
tions terminate. Consider the recursive rule for ances tor :  

ances to r  (X, Y) +- parent  (X, Z) , ances tor  (Z, Y) . 

If the goals in the body are swapped, the ances to r  program becomes 
left recursive, and all Prolog computations with ances to r  are nontermi- 
nating. 

The goal order is also important in the recursive clause of the quicksort 
algorithm in Program 3.22: 

qu ickso r t  ( [X 1 Xsl , Ys) - 
p a r t i t i ~ n ( X ~  , X , L i t t l e s  ,B igs ) ,  
qu ickso r t  ( L i t t l e s  , L s ) ,  
qu ickso r t  (Bigs ,Bs) , 
append(Ls, [X 1 B s l  ,Ys) . 

The list should be partitioned into its two smaller pieces before recur- 
sively sorting the pieces. If, for example, the order of the p a r t i t i o n  goal 
and the recursive sorting goal is swapped, no computations terminate. 

We next consider Program 3.16a for reversing a list: 

r e v e r s e ( [  I , [  I ) .  
reverse ( [X ( X s ]  , Zs) - r eve r se  (XS , Ys) , append (Ys, [XI ,Zs) - 
The goal order is significant. As written, the program terminates with 
goals where the first argument is a complete list. Goals where the first 
argument is an incomplete list give nonterminating computations. If the 
goals in the recursive rule are swapped, the determining factor of the ter- 
mination of r eve r se  goals is the second argument. Calls to r eve r se  with 
the second argument a complete list terminate. They do not terminate if 
the second argument is an incomplete list. 

A subtler example comes from the definition of the predicate sub- 
l i s t  in terms of two append goals, specifying the sublist as a suf- 
fur of a prefuc, as given in Program 3.14e. Consider the query sub- 
l i s t  ( [2,31 , [ I ,  2 ,3 ,41)  ? with respect to the program. The query is 
reduced to append(AsXs ,Bs, [ I ,  2 ,3 ,41)  , append(As, [2,3l ,AsXs)?. 



Chapter 7 Programming in Pure Prolog 

This has a finite search tree, and the initial query succeeds. If Pro- 
gram 3.14e had its goals reversed, the initial query would be reduced 
to append (As, [2,3] , AsXs) ,append ( AsXs , Bs , [I ,  2,3,41 I? .  This leads 
to a nonterrninating computation because of the first goal, as illustrated 
in Figure 5.4. 

A useful heuristic for goal order can be given for recursive programs 
with tests such as arithmetic comparisons, or determining whether two 
constants are different. The heuristic is to place the tests as early as 
possible. An example comes in the program for partition, which is part 
of Program 3.22. The first recursive rule is 

The test X I Y should go before the recursive call. This leads to a 
smaller search tree. 

In Prolog programming (in contrast, perhaps, to life in general) our goal 
is to fail as quickly as possible. Failing early prunes the search tree and 
brings us to the right solution sooner. 

7.3.1 Exercises for Section 7.3 

(i) Consider the goal order for Program 3.14e defining a sublist of 
a list as a suffix of a prefix. Why is the order of the append 
goals in Program 3.14e preferable? (Hint: Consider the query sub- 

I 
list (Xs, [a,b, cl ) ? . I  I 

! 
(ii) Discuss the clause order, goal order, and termination behavior for I 

substitute, posed as Exercise 3 .W.  
I 

I 
Redundant Solutions 

An important issue when composing Prolog programs, irrelevant for 
logic programs, is the redundancy of solutions to queries. The mean- 
ing of a logic program is the set of ground goals deducible from it. No 
distinction is made between whether a goal in the meaning could be 
deduced uniquely from the program, or whether it could be deduced 
in several distinct ways. This distinction is important for Prolog when 
considering the efficiency of searchng for solutions. Each possible de- 

duction means an extra branch in the search tree. The bigger the search 
tree, the longer a computation will take. It is desirable in general to keep 
the size of the search tree as small as possible. 

Having a redundant program may cause, in an extreme case, exponen- 
tial increase in runtime, in the event of backtraclung. If a conjunction of 
n goals is solved, and each goal has one redundant solution, then in the 
event of backtraclung, the conjunction may generate Zn solutions, thus 
possibly changing a polynomial-time program (or even a linear one) to be 
exponential. 

One way for redundancy to occur in Prolog programs is by covering the 
same case with several rules. Consider the following two clauses defining 
the relation minimum. 

The query minimum(2,2,M)? with respect to these two clauses has a 
unique solution M=2, which is given twice; one is redundant. 

Careful specification of the cases can avoid the problem. The second 
clause can be changed to 

Now only the first rule covers the case when the two numbers have equal 
values. 

Similar care is necessary with the definition of partition as part of 
Program 3.22 for quicksort. The programmer must ensure that only one 
of the recursive clauses for partition covers the case when the number 
being compared is the same as the number being used to split the list. 

Another way redundancy appears in programs is by having too many 
special cases. Some of these can be motivated by efficiency. An extra fact 
can be added to Program 3.15 for append, namely, append(Xs, [ I ,Xs), 
to save recursive computations when the second argument is an empty 
list. In order to remove redundancy, each of the other clauses for append 
would have to cover only lists with at least one element as their second 
argument. 

We illustrate these points when composing Program 7.2 for the relation 
merge (Xs ,Ys , Zs), which is true if Xs and Ys are lists of integers sorted in 
ascending order and Zs is the ordered list resulting from merging them. 
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merge(Xs,Ys,Zs) - 
Z s  is an ordered list of integers obtained from 
merging the ordered lists of integers Xs and Ys. 

merge(CXIXsl,CYlYsl,CXIZsl) - 
X < Y ,  merge(Xs,[YIYsl ,Zs). 

merge(CXIXsl,[YIYsl,[X,XIZsl) - 
X =:= Y ,  merge(Xs,Ys,Zs). 

merge([XlXsl,[YIYsl,[YIZsl) - 
X > Y ,  merge([XIXsl ,Ys,Zs). 

merge([ I ,  CXIXsl, [XIXsl). 
merge(Xs, [ I ,Xs). 

Program 7.2 Merging ordered lists 

There are three separate recursive clauses. They cover the three pos- 
sible cases: when the head of the first list is less than, equal to, or 
greater than the head of the second list. We discuss the predicates <, 
=:=, and > in Chapter 8. Two cases are needed when the elements in ei- 
ther list have been exhausted. Note that we have been careful that the 
goal merge ( C 1 , [ 1 , [ I ) is covered by only one fact, the bottom one. 

Redundant computations occur when using member to find whether 
a particular element occurs in a particular list, and there are multiple 
occurrences of the particular element being checked for in the list. For 
example, the search tree for the query member (a, [a, b , a, cl ) would have 
two success nodes. 

The redundancy of previous programs was removed by a careful con- 
sideration of the logic. In t h s  case, the member program is correct. If we 
want a different behavior, the solution is to compose a modified version 
of member. 

Program 7.3 defines the relation member-check (X , Xs) whch checks 
whether an element X is a member of a list Xs. The program is a vari- 
ant of Program 3.12 for member that adds a test to the recursive clause. 
It has the same meaning but, as a Prolog program, it behaves differ- 
ently. Figure 7.2 shows the difference between the search trees for the 
identical query to the two programs. The left tree is for the goal mem- 
ber (a, [a, b , a, cl ) with respect to Program 3.12. Note there are two suc- 
cess nodes. The right tree is for the goal member-check(a, Ca,b,a,cl) 
with respect to Program 7.3. It has only one success node. 
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member-check (X,Xs) - 
X is a member of the list Xs. 

member-check(X, [X 1 Xs1 ) . 
member-check()(, [Y IYsl) - X # Y ,  member-check(X,Ys) . 

Program 7.3 Checking for list membership 

Figure 7.2 Variant search trees 

We restrict use of Program 7.3 to queries where both arguments are 
ground. This is because of the way # is implemented in Prolog, discussed 
in Section 11.3. 

p- -- -- 

7.5 Recursive Programming in Pure Prolog 

Lists are a very useful data structure for many applications written in 
Prolog. In this section, we revise several logic programs of Sections 3.2 
and 3.3 concerned with list processing. The chosen clause and goal or- 
ders are explained, and their termination behavior presented. The section 
also discusses some new examples. Their properties are analyzed, and a 
reconstruction offered of how they are composed. 
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select-first (X,Xs, Y s )  - 
Y s  is the list obtained by removing the 
first occurrence of X from the list Xs. 

s e l e c t - f  i r s t  ( X ,  [ X  IXs] ,Xs)  . 
select-first(X,[Y1Ysl,[YIZsl) - 

X f Y ,  s e l e c t - f  i r s t  (X , Y s ,  Zs )  . 

Program 7.4 Selecting the first occurrence of an element from a list 

Programs 3.12 and 3.1 5 for member and append, respectively, are cor- 
rect Prolog programs as written. They are both minimal recursive pro- 
grams, so there is no issue of goal order. They are in their preferred 
clause order, the reasons for whch have been discussed earlier in this 
chapter. The termination of the programs was discussed in Section 7.2. 

Program 3.19 for select is analogous to the program for member: 

select (X, [XI Xsl ,Xs) . 
select(X, [YIYS], [YIZsl) - select(X,YsyZs). 
The analysis of select is similar to the analysis of member. There is no 
issue of goal order because the program is minimal recursive. The clause 
order is chosen to reflect the intuitive order of solutions to queries such 
as select (X, [a,b, cl ,Xs), namely, {X=a,Xs=[b,c] 1 ,  {X=b,Xs=Ca,cll, 
{X=c , Xs= [a, b] }. The first solution is the result of choosing the first 
element, and so forth. The program terminates unless both the second 
and third arguments are incomplete lists. 

A variant of select is obtained by adding the test X # Y in the recur- 
sive clause. As before, we assume that # is only defined for ground argu- 
ments. The variant is given as Program 7.4 defining the relation select- 
first(X,Xs,Ys). Programs 3.12 and 7.3 defining member and member- 
check have the same meaning. Program 7.4, in contrast, has a different 
meaning from Program 3.19. The goal select (a, [a,b,a,cl , [a,b, cl ) is 
in the meaning of select, whereas select-first(a, [a,b,a,cl , Ca,b, 
cl ) is not in the meaning of select-f irst. 

The next program considered is Program 3.20 for permutation. The 
order of clauses, analogously to the clause order for append, reflects the 
more likely mode of use: 

permutation(Xs, [XI Ys] ) - select (X,Xs ,Zs) , permutation(~s,Ys). 
permutation( [ I ,  [ I). 

P r o g r a m m i n g  i n  Pure Prolog 

n o n m e m b e r  (X,Xs)  - 
X is not a member of the list Xs. 

nonmember ( X  , [Y I Ys l  ) - X f Y ,  nonmember (X ,Ys) . 
nonmember ( X  , C 1 ) . 

Program 7.5 Nonrnembershp of a list 

The goal order and the termination behavior of permutation are closely 
related. Computations of permutation goals where the first argument 
is a complete list will terminate. The query calls select with its sec- 
ond argument a complete list, whch terminates generating a complete 
list as its third argument. Thus there is a complete list for the recur- 
sive permutation goal. If the first argument is an incomplete list, the 
permutation query will not terminate, because it calls a select goal 
that will not terminate. If the order of the goals in the recursive rule 
for permutation is swapped, the second argument of a permutation 
query becomes the significant one for determining termination. If it 
is an incomplete list, the computation will not terminate; otherwise it 
will. 

A useful predicate using # is nonmember (X, Ys) which is true if X is not 
a member of a list Ys. Declaratively the definition is straightforward: An 
element is a nonmember of a list if it is not the head and is a nonmember 
of the tail. The base case is that any element is a nonmember of the 
empty list. Ths program is given as Program 7.5. 

Because of the use of f ,  nonmember is restricted to ground instances. 
This is sensible intuitively. There are arbitrarily many elements that are 
not elements of a given list, and also arbitrarily many lists not containing 
a given element. Thus the behavior of Program 7.5 with respect to these 
queries is largely irrelevant. 

The clause order of nonmember follows the convention of the recursive 
clause preceding the fact. The goal order uses the heuristic of putting the 
test before the recursive goal. 

We reconstruct the composition of two programs concerned with the 
subset relation. Program 7.6 defines a relation based on Program 3.12 
for member, and Program 7.7 defines a relation based on Program 3.19 
for select. Both consider the occurrences of the elements of one list in 
a second list. 



Chapter 7 

members(Xs,Ys) - 
Each element of the list X s  is a member of the list Ys. 

members( [X 1 Xs] ,Ys) - member (X ,Ys) , members (XS ,Ys) . 
members( [ 1 ,Ys). 

Program 7.6 Testing for a subset 

selects(Xs,Ys) - 
The list Xs is a subset of the list Ys. 

select(X,Ys,Zs) - See Program 3.19. 

Program 7.7 Testing for a subset 

Program 7.6 defining members(Xs ,Ys) ignores the multiplicity of ele- 
ments in the lists. For example, members ( [b , b] , [a, b , c] is in the mean- 
ing of the program. There are two occurrences of b in the first list, but 
only one in the second. 

Program 7.6 is also restrictive with respect to termination. If either 
the first or the second argument of a members query is an incomplete 
list, the program will not terminate. The second argument must be a 
complete list because of the call to member, whde the first argument 
must also be complete, since that is providing the recursive control. The 
query members (Xs , [I, 2,31) ? aslung for subsets of a given set does not 
terminate. Since multiple copies of elements are allowed in Xs, there 
are an infinite number of solutions, and hence the query should not 
terminate. 

Both these limitations are avoided by Program 7.7. The revised relation 
is selects(Xs,Ys). Goals in the meaning of Program 7.7 have at most 
as many copies of an element in the first list as appear in the second. 
Related to this property, Program 7.7 terminates whenever the second 
argument is a complete list. A query such as selects (Xs, [a, b, cl > has 
as solution all the subsets of a given set. 

We now consider a different example: translating a list of English 
words, word for word, into a list of French words. The relation is trans- 
late(Words ,Mots), where Words is a list of English words and Mots the 
corresponding list of French words. Program 7.8 performs the trans- 
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translate(Words,Mots) - 
Mots is a list of French words that is the 
translation of the list of English words Words. 

translate ( [Word I Words] , [Mot I Mots] ) - 
dict(Word,Mot), translate(Words,Mots). 

translate([: I ,  [ 1). 

dict (the, le) . dict(dog,chien) 
dict(chases,chasse). dict(cat,chat). 

Program 7.8 Translating word for word 

lation. It assumes a dictionary of pairs of corresponding English and 
French words, the relation scheme being dict (Word, Mot). The trans- 
lation is very naive, ignoring issues of number, gender, subject-verb 
agreement, and so on. Its range is solving a query such as trans- 
late ( [the, dog, chases, the, cat1 ) , X) ? with solution X= [le, chien, 
chasse, le, chat]. Ths  program can be used in multiple ways. English 
sentences can be translated to French, French ones to English, or two 
sentences can be checked to see if they are correct mutual translations. 

Program 7.8 is a typical program performing m a p p i n g ,  that is, convert- 
ing one list to another by applying some function to each element of the 
list. The clause order has the recursive rule(s) first, and the goal order 
calls dict first, so as not to be left recursive. 

We conclude this section with a discussion of the use of data structures 
in Prolog programs. Data structures are handled somewhat differently in 
Prolog than in conventional programming languages. Rather than having 
a global structure, all parts of whlch are accessible, the programmer 
specifies logical relations between various substructures of the data. 

Talung a more procedural view, in order to build and modify struc- 
tures, the Prolog programmer must pass the necessary fields of the struc- 
ture to subprocedures. These fields are used and/or acquire values dur- 
ing the computation. Assignment of values to the structures happens via 
unification. 

Let us look more closely at a generic example - producing a single 
output from some given input. Examples are the standard use of ap- 
pend, joining two lists together to get a thlrd, and using Program 7.8 to 
translate a list of English words into French. The computation proceeds 
recursively. The initial call instantiates the output to be an incomplete 
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list [X I Xsl . The head X is instantiated by the call to the procedure, often 
in unification with the head of the clause. The tail Xs is progressively in- 
stantiated whle solving the recursive call. The structure becomes fully 
instantiated with the solution of the base case and the termination of the 
computation. 

Consider appending the list [c, dl to the list [a, bl , as illustrated 
in Figure 4.3. The output Ls= [a, b, c ,dl is constructed in stages, as 
Ls= [a I Zsl , Zs= [blZsl] , and finally Zs1= [c, dl, when the base fact of 
append is used. Each recursive call partially instantiates the originally in- 
complete list. Note that the recursive calls to append do not have access 
to the list being computed. This is a t o p - d o w n  construction of recursive 
structures and is typical of programming in Prolog. 

The top-down construction of recursive data structures has one limi- 
tation. Pieces of the global data structure cannot be referred to deeper 
in the computation. This is illustrated in a program for the relation no- 
doubles (XXs , Xs), which is true if Xs is a list of all the elements appear- 
ing in the list XXs with all duplicates removed. 

Consider trying to compose no-doubles top-down. The head of the 
recursive clause will be 

no-doubles ( [X I Xsl , . . . ) - 
where we need to fill in the blank. The blank is filled by calling no- 
doubles recursively on Xs with output Ys and integrating Ys with X. If 
X has not appeared in the output so far, then it should be added, and the 
blank will be [X/Ysl. If X has appeared, then it should not be added and 
the blank is Ys. This cannot be easily said. There is no way of knowing 
what the output is so far. 

A program for no-doubles can be composed by thinlung differently 
about the problem. Instead of determining whether an element has al- 
ready appeared in the output, we can determine whether it will appear. 
Each element X is checked to see if it appears again in the tail of the list 
Xs. If X appears, then the result is Ys, the output of the recursive call to 
no-doubles. If X does not appear, then it is added to the recursive result. 
This version of no-doubles is given as Program 7.9. It uses Program 7.5 
for nonmember. 

A problem with Program 7.9 is that the list without duplicates may not 
have the elements in the desired order. For example, no-doubles ( [a, b, 
c , bl , Xs) ? has the solution Xs= [a, c , bl , where the solution Xs= [a, b , cl 
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no-doubles(Xs,Ys) - 
Ys is the list obtained by removing 
duplicate elements from the list Xs. 

no-doubles ( [X 1 Xsl , Ys) - 
member(X,Xs), no-doubles(Xs,Ys). 

no-doubles ( [X 1 Xsl , [X I YS] ) - 
nonmember(X,Xs), no-doubles(Xs,Ys). 

no-doubles( [ 1 ,  [ 1). 

nonmember (X ,Xs) - See Program 7.5. 

Program 7.9 Removing duplicates from a list 

may be preferred. This latter result is possible if the program is rewrit- 
ten. Each element is deleted from the remainder of the list as it is found. 
In terms of Program 7.9, this is done by replacing the two recursive calls 
by a rule 

no-doubles ( [X I Xs] , [X I Ys] ) - 
delete(X,Xs,Xsl), no-doubles(Xs1,Ys). 

The new program builds the output top-down. However, it is inefficient 
for large lists, as will be discussed in Chapter 13. Briefly, each call to 
delete rebuilds the whole structure of the list. 

The alternative to building structures top-down is building them 
bottom-up. A simple example of bottom-up construction of data struc- 
tures is Program 3.16b for reversing a list: 

reverse (Xs ,Ys) - reverse (XS, [: 1 , Ys) 

reverse ( [X 1 Xs] ,Revs, Ys) - reverse (Xs , [X 1 ~ e v s l  , Ys) . 
reverse([ I ,Ys,Ys). 

An extra argument is added to reverse/2 and used to accumulate the 
values of the reversed list as the computation proceeds. This procedure 
for reverse builds the output list bottom-up rather than top-down. In 
the trace in Figure 7.3 solving the goal reverse ( [a, b , cl , Xs ) , the suc- 
cessive values of the middle argument of the calls to reverse/3 [ I ,  
[a], [b , a1 , and [c , b , a1 represent the structure being built. 

A bottom-up construction of structures allows access to the partial 
results of the structure during the computation. Consider a relation nd- 
reverse(Xs,Ys) combining the effects of no-doubles and reverse. The 
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reverse( Ca,b,cl ,Xs) 
reverse( [a,b, cl , [ 1 ,Xs) 

reverse( [b,c] , [a] ,Xs) 
reverse ( [cl , [b , a1 ,Xs) 

reverse([ I ,  Cc,b,al ,Xs) Xs=[c,b,al 
true 

Figure 7.3 Tracing a reverse computation 

nd-reverse (Xs, Ys) - 
Ys is the reversal of the list obtained by 
removing duplicate elements from the list Xs. 

nd-reverse(Xs,Ys) - nd-reverse(xs,[ 1 ,Ys). 
nd-reverse( [XI Xs] ,Revs ,Ys) - 

mernber(X,Revs), nd-reverse(Xs,Revs,Ys). 
nd-reverse( [XI Xs] ,Revs ,Ys) - 

nonmember(X ,Revs) , nd-reverse(Xs, [XI ~ e v s ]  ,Ys). 

nd-reverse( [ 1 ,Ys,Ys) . 

nonmember (X ,XS) - See Program 7.5. 

Program 7.10 Reversing .with no duplicates 

meaning of nd-reverse is that Ys is a list of elements in Xs in reverse or- 
der and with duplicates removed. Analogously to reverse, nd-reverse 
calls nd_reverse/3 with an extra argument that builds the result bottom- 
up. This argument is checked to see whether a particular element ap- 
pears, rather than checking the tail of the list as in Program 7.9 for 
no-doubles. The program is given as Program 7.10. 

We emphasize the characteristics of bottom-up construction illus- 
trated here. One argument behaves as an accumulator of the final data 
structure. It is augmented in the recursive call, so that the more complex 
version is in the body of the clause rather than in its head. T h s  contrasts 
with top-down construction, where the more complex version of the data 
structure being built is in the head of the clause. Another argument is 
used solely for returning the output, namely, the final value of the ac- 
cumulator. It is instantiated with the satisfaction of the base fact. The 
argument is explicitly carried unchanged in the recursive call. 

The technique of adding an accumulator to a program can be general- 
ized. It is used in Chapter 8 discussing Prolog programs for arithmetic. 
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Accumulators can also be viewed as a special case of incomplete data 
structures, as is discussed in Chapter 15. 

7.5.1 Exercise for Section 7.5 

(i) Write Program 7.9 for no-doubles, building the structure bottom- 
UP. 

7.6 Background 

Prolog was envisaged as a first approximation to logic programming, 
whch would be superseded by further research. Its control has always 
been acknowledged as being limited and naive. An oft-cited slogan, cred- 
ited to Kowalslu (1979b), is "Algorithm = Logic + Control." The particular 
control provided in pure Prolog was intended as just one solution on the 
path to declarative programming and intelligent control. Time has shown 
otherwise. The control of Prolog has proven adequate for a large range of 
applications, and the language has not only endured but has blossomed. 

Nonetheless, logic programming researchers have investigated other 
forms of control. For example, LOGLISP (Robinson and Sibert, 1982) has 
breadth-first traversal of the search tree, and IC-Prolog (Clark and Mc- 
Cabe, 1979) has co-routining. MU-Prolog (Naish, 1986) allows suspension 
to provide a correct implementation of negation and to prevent the com- 
putation from searchmg infinite branches in certain cases. Wait declara- 
tions are generated (Naish, 1985b) that are related to the conditions on 
termination of Prolog programs given in Section 7.2. 

A methodology for systematically constructing simple Prolog pro- 
grams is given in Deville (1990). Essential to Deville's methods are 
specifications, a subject touched upon in Section 13.3. 

Analysis of Prolog programs, and logic programs more generally, has 
become a hot topic of research. Most analyses are based on some form of 
abstract interpretation, a topic beyond the scope of this book. The initial 
work in Prolog can be found in Mellish (1985), and a view of leading 
research groups can be found in a special issue of the Journal of Logic 
Programming (1993). 

Extensive work has also appeared recently on analyzing termination of 
Prolog programs. A starting place for thls topic is Pliimer (1990). 



Arithmetic 

The logic programs for performing arithmetic presented in Section 3.1 
are very elegant, but they are not practical. Any reasonable computer 
provides very efficient arithmetic operations directly in hardware, and 
practical logic programming languages cannot afford to ignore thls fea- 
ture. Computations such as addition take unit time on most computers 
independent of the size of the addends (as long as they are smaller than 
some large constant). The recursive logic program for p lus  (Program 3.3) 
takes time proportional to the first of the numbers being added. This 
could be improved by switching to binary or decimal notation but still 
won't compete with direct execution by dedicated hardware. 

Every Prolog implementation reserves some predicate names for 
system-related procedures. Queries to these predicates, called system 
predicates, are handled by special code in the implementation in contrast 
to calls to predicates defined by pure Prolog programs. A Prolog imple- 
mentor should build system predicates that complement pure Prolog 
naturally and elegantly. Other names for system predicates are evaluable 
predicates, builtin predicates, or bips, the latter two being referred to in 
the draft for Standard Prolog. 

8.1 System Predicates for Arithmetic 

The role of the system predicates for arithmetic introduced in Prolog is 
to provide an interface to the underlying arithmetic capabilities of the 
computer in a straightforward way. The price paid for t h s  efficiency is 
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that some of the machne-oriented arithmetic operations are not as gen- 
eral as their logical counterparts. The interface provided is an arithmetic 
evaluator, whch uses the underlying arithmetic facilities of the com- 
puter. Standard Prolog has a system predicate is (Value ,Expression) 
for arithmetic evaluation. Goals with the predicate is are usually written 
in binary infix form, talung advantage of the operator facility of Prolog, 
about whch we now digress. 

Operators are used in order to make programs more readable. People 
are very flexible and learn to adjust to strange surroundings-they can 
become accustomed to reading Lisp and Fortran programs, for example. 
We believe nonetheless that syntax is important; the power of a good 
notation is well known from mathematics. An integral part of a good 
syntax for Prolog is the ability to specify and use operators. 

Operators, for example # and <, have already been used in earlier 
chapters. Standard Prolog provides several operators, whch we intro- 
duce as they arise. Programmers can also define their own operators 
using the built-in predicate op/3. An explanation of the mechanism for 
operator declarations, together with a list of pre-defined operators and 
their precedences is given in Appendix B. 

Queries using the arithmetic evaluator provided by Prolog have the 
form Value is Expression?. Queries to the evaluator are interpreted 
as follows. The arithmetic expression Expression is evaluated and the 
result is unified with Value. Once arithmetic evaluation succeeds, the 
query succeeds or fails depending on whether unification succeeds or 
fails. 

Here are some examples of simple addition, illustrating the use and 
behavior of the evaluator. The query (X is 3+5)? has the solution X=8. 
T h s  is the standard use of the evaluator, instantiating a variable to the 
value of an arithmetic expression. The query (8 is 3+5)? succeeds. Hav- 
ing both arguments to is instantiated allows checlung the value of an 
arithmetic expression. (3+5 is 3+5)? fails because the left-hand argu- 
ment, 3+5, does not unify with 8, the result of evaluating the expression. 

Standard Prolog specifies a range of arithmetic operations that should 
be supported by Prolog for both integers and reals represented as 
floating-point numbers. In particular, the evaluator provides for addi- 
tion, subtraction, multiplication, and division (+, -, *, /) with their usual 
mathematical precedences. In this book, we restrict ourselves to integer 
arithmetic. 

Arithmetic 

What happens if the term to be evaluated is not a valid arithmetic ex- 
pression? An expression can be invalid for one of two reasons, whlch 
should be treated differently, at least conceptually. A term such as 
3+x for a constant x cannot be evaluated. In contrast, a term 3+Y 
for a variable Y may or may not be evaluable, depending on the value 
of Y. 

The semantics of any logic program is completely defined, and, in this 
sense, logic programs cannot have runtime "errors." For example, the 
goal X is 3+Y has solutions {X=3, Y=O}. However, when interfacing logic 
programs to a computer, the limitations of the machne should be taken 
into account. A runtime error occurs when the machine cannot determine 
the result of the computation because of insufficient information, that 
is, uninstantiated variables. Ths  is distinct from goals that simply fail. 
Extensions to Prolog and other logic languages handle such "errors" by 
suspending until the values of the concerned variables are known. The 
execution model of Prolog as introduced does not permit suspension. 
Instead of simply failure, we say an error condition occurs. 

The query (X is 3+x)? fails because the right-hand argument cannot 
be evaluated as an arithmetic expression. The query (X is 3+Y)? is an 
example of a query that would succeed if Y were instantiated to an arith- 
metic expression. Here an error condition should be reported. 

A common misconception of beginning Prolog programmers is to re- 
gard is as taking the place of assignment as in conventional program- 
ming languages. It is tempting to write a goal such as (N is N+I). This 
is meaningless. The goal fails if N is instantiated, or causes an error if N 
is a variable. 

Further system predicates for arithmetic are the comparison operators. 
Instead of the logically defined <, I (written = <), >, 2 (written > =), 
Prolog directly calls the underlying arithmetic operations. We describe 
the behavior of <; the others are virtually identical. To answer the query 
(A < B)?, A and B are evaluated as arithmetic expressions. The two 
resultant numbers are compared, and the goal succeeds if the result of 
evaluating A is less than the result of evaluating B. Again, if A or B is not 
an arithmetic expression, the goal will fail, and an error condition should 
result if A or B are not ground. 

Here are some simple examples. The query (1 < 2)? succeeds, as 
does the query (3-2 < 2*3+1)?. On the other hand, (2 < I)? fails, and 
(N < 1) ? generates an error when N is a variable. 
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Tests for equality and inequality of values of arithmetic expressions 
are implemented via the builtin predicates =: = and =/=, which evaluate 
both of their arguments and compare the resulting values. 

8.2 Arithmetic Logic Programs Revisited 

Performing arithmetic via evaluation rather than logic demands a recon- 
sideration of the logic programs for arithmetic presented in Section 3.1. 
Calculations can certainly be done more efficiently. For example, finding 
the minimum of two numbers can use the underlying arithmetic com- 
parison. The program syntactically need not change from Program 3.7. 
Similarly, the greatest common divisor of two integers can be computed 
efficiently using the usual Euclidean algorithm, given as Program 8.1. 
Note that the explicit condition J > 0 is necessary to avoid multiple 
solutions when J equals 0 and errors from calling mod with a zero ar- 
gument. 

Two features of logic programs for arithmetic are missing from their 
Prolog counterparts. First, multiple uses of programs are restricted. Sup- 
pose we wanted a predicate p l u s  (X ,Y, Z) that performed as before, built 
using i s .  The obvious definition is 

This works correctly if X and Y are instantiated to integers. However, 
we cannot use the same program for subtraction with a goal such as 
p l u s  (3, X ,  8) ?, which raises an error condition. Meta-logical tests are 
needed if the same program is to be used for both addition and sub- 
traction. We defer this until meta-logical predicates are introduced in 
Chapter 10. 

Programs effectively become specialized for a single use, and it is 
tricky to understand what happens when the program is used differently. 

greatest~common~divisor ( X ,  Y,Z) - 
Z is the greatest common divisor of the integers X and Y 

greatest~common~divisor(I,O,I). 
greatest~common~divisor(I,J,Gcd) - 

J > 0 ,  R is I mod J ,  g r e a t e s t ~ c o m m o n ~ d i v i s o r ( ~ , ~ , ~ ~ d ) .  

Program 8.1 Computing the greatest common divisor of two integers 

Arithmetic 

factorial (N,F) - 
F is the integer N factorial. 

factorial(N,F) - 
N > 0 ,  N1 is N-1, factorial(Nl,Fl), F is N*Fl. 

factorial(0,l). 

Program 8.2 Computing the factorial of a number 

Program 3.7 for minimum, for example, can be used reliably only for find- 
ing the minimum of two integers. 

The other feature missing from Prolog programs for arithmetic is the 
recursive structure of numbers. In logic programs, the structure is used 
to determine whch rule applies, and to guarantee termination of compu- 
tations. Program 8.2 is a Prolog program for computing factorials closely 
corresponding to Program 3.6. The recursive rule is more clumsy than 
before. The first argument in the recursive call of f a c t o r i a l  must be cal- 
culated explicitly rather than emerging as a result of unification. Further- 
more, the explicit condition determining the applicability of the recursive 
rule, N > 0, must be given. This is to prevent nonterminating computa- 
tions with goals such as f a c t o r i a l  (-1 ,N)? or even f  a c t o r i a l ( 3 , F ) ? .  
Previously, in the logic program, unification with the recursive structure 
prevented nonterminating computations. 

Program 8.2 corresponds to the standard recursive definition of the 
factorial function. Unlike Program 3.6, the program can be used only to 
calculate the factorial of a given number. A f a c t o r i a l  query where the 
first argument is a variable will cause an error condition. 

We must modify the concept of correctness of a Prolog program to 
accommodate behavior with respect to arithmetic tests. Other system 
predicates that generate runtime "errors" are handled similarly. A Prolog 
program is totally correct over a domain D of goals if for all goals in D 
the computation terminates, does not produce a runtime error, and has 
the correct meaning. Program 8.2 is totally correct over the domain of 
goals where the first argument is an integer. 

8.2.1 Exercisesfor Section8.2 

(i) The Nth triangular number is the sum of the numbers up to and in- 
cluding N. Write a program for the relation t r i a n g l e  (N,T), where 
T is the Nth triangular number. (Hint: Adapt Program 8.2.) 

PROYECTO
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(ii) Write a Prolog program for power(X,N,V), where V equals xN. 

Whch way can it be used? (Hint: Model it on Program 3.5 for exp.) 

(iii) Write Prolog programs for other logic programs for arithmetic given 
in the text and exercises in Section 3.1. 

(iv) Write a Prolog program to generate a Huffman encoding tree from a 
list of symbols and their relative frequencies. 

8.3 Transforming Recursion into Iteration 

In Prolog there are no iterative constructs as such, and a more general 
concept, namely recursion, is used to specify both recursive and iterative 
algorithms. The main advantage of iteration over recursion is efficiency, 
mostly space efficiency. In the implementation of recursion, a data struc- 
ture (called a stack frame) has to be maintained for every recursive call 
that has not terminated yet. A recursive computation involving n recur- 
sive procedure calls would require, therefore, space linear in n. On the 
other hand, an iterative program typically uses only a constant amount 
of memory, independent of the number of iterations. 

Nevertheless, there is a restricted class of recursive programs that cor- 
responds quite closely to conventional iterative programs. Under some 
conditions, explained further in Section 11.2 on tail recursion optimiza- 
tion, such Prolog programs can be implemented with almost the same 
efficiency as iterative programs in conventional languages. For t h s  rea- 
son, it is preferable to express a relation using an iterative program, if 
possible. In this section, we show how recursive programs can be made 
iterative using accumulators. 

Recall that a pure Prolog clause is iterative if it has one recursive call 
in the body. We extend t h s  notion to full Prolog, and allow zero or 
more calls to Prolog system predicates before the recursive call. A Prolog 
procedure is iterative if it contains only unit clauses and iterative clauses. 

Most simple arithmetic calculations can be implemented by iterative 
programs. 

Factorials can be computed, for example, in a loop where the numbers 
up to the desired factorial are multiplied together. A procedure in a 

Arithmetic 

f a c t o r i a l  ( N )  ; 
I i s  0 ;  T i s  1 ;  
while I < N do 

I  i s 1  + 1 ;  T i s T  * I  end; 
r e tu rn  T. 

Figure 8.1 Computing factorials iteratively 

factorial (N,F) - 
F is the integer N factorial. 

Program 8.3 An iterative factorial 

Pascal-like language using a while loop is given in Figure 8.1. Its iterative 
behavior can be encoded directly in Prolog with an iterative program. 

Prolog does not have storage variables, whlch can hold intermediate 
results of the computation and be modified as the computation pro- 
gresses. Therefore, to implement iterative algorithms, whch require the 
storage of intermediate results, Prolog procedures are augmented with 
additional arguments, called accumulators. Typically, one of the interme- 
diate values constitutes the result of the computation upon termination 
of the iteration. Ths  value is unified with the result variable using the 
unit clause of the procedure. 

This technique is demonstrated by Program 8.3, which is a Prolog def- 
inition of f a c t o r i a l  that mirrors the behavior of the while loop in Fig- 
ure 8.1. It uses f a c t o r i a l  ( I  ,N,T, F) ,  which is true if F is the value of N 
factorial, and I and T are the values of the corresponding loop variables 
before the (I+l) th  iteration of the loop. 

The basic iterative loop is performed by the iterative procedure f  ac to-  
r i a l / 4 .  Each reduction of a goal using f  a c t o r i a l / 4  corresponds to an 
iteration of the while loop. The call of f  a c t o r i a l / 4  by f  a c t o r i a l / 2  cor- 
responds to the initialization stage. The first argument of f  a c t o r i a l / 4 ,  
the loop counter, is set to 0. 

PROYECTO
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factorial (N,F) - 
F is the integer N factorial. 

factorial(N,F) - factorial(N,l,F). 
factorial(N,T,F) - 

N > 0, TI is T*N, N1 is N-1, factorial(Nl,TI,F) 
factorial(O,F,F). 

Program 8.4 Another iterative factorial 

The third argument of f a c t o r i a l / 4  is used as an accumulator of the 
running value of the product. It is initialized to 1 in the call to f ac -  
t o r i a l / 4  by f a c t o r i a l / 2 .  The handling of both accumulators in Pro- 
gram 8.3 is a typical programming techmque in Prolog. It is closely re- 
lated to the use of accumulators in Programs 3.16b and 7.10 for collect- 
ing elements in a list. 

Accumulators are logical variables rather than locations in memory. 
The value is passed between iterations, not an address. Since logical 
variables are "write-once," the updated value, a new logical variable, is 
passed each time. Stylistically, we use variable names with the suffix 1, 
for example, TI and 11, to indicate updated values. 

The computation terminates when the counter I equals N. The rule for 
f a c t o r i a l / 4  in Program 8.3 no longer applies, and the fact succeeds. 
With this successful reduction, the value of the factorial is returned. 
This happens as a result of the unification with the accumulator in the 
base clause. Note that the logical variable representing the solution, the 
final argument of f a c t o r i a l / 4 ,  had to be carried throughout the whole 
computation to be set on the final call of f a c t o r i a l .  This passing of 
values in arguments is characteristic of Prolog programs and might seem 
strange to the newcomer. 

Program 8.3 exactly mirrors the while loop for factorial given in Fig- 
ure 8.1. Another iterative version of f a c t o r i a l  can be written by count- 
ing down from N to 0, rather than up from 0 to N. The basic program 
structure remains the same and is given as Program 8.4. There is an ini- 
tialization call that sets the value of the accumulator, and recursive and 
base clauses implementing the while loop. 

Program 8.4 is marginally more efficient than Program 8.3. In general, 
the fewer arguments a procedure has, the more readable it becomes, and 
the faster it runs. 

Arithmetic 

between(l,J,K) - 
K is an integer between the integers I and J inclusive. 

between(I,J,I) -- I I J. 
between(I,J,K) - I < J, I1 is I+1, between(Il,J,K). 

Program 8.5 Generating a range of integers 

sumlist (Is,Sum) - 
S u m  is the sum of the list of integers Is. 

sumlist([IIIs],Sum) - sumlist(Is,IsSum), Sum is I+IsSum. 
sumlist ( [ I ,O) . 

Program 8.6a Summing a list of integers 

sumlist (ls,Sum) - 
Sum is the sum of the list of integers Is. 

sumlist(Is,Sum) - sumlist(Is,O,Sum). 
sumlist ( [I I Is] ,Temp, Sum) - 

Temp1 is Temp+I, sumlist(Is,Templ,Sum). 
sumlist( [ I ,Sum,Sum) . 

Program 8.6b Iterative version of summing a list of integers using an accu- 
mulator 

A useful iterative predicate is between(1, J ,K), which is true if K is an 
integer between I and J inclusive. It can be used to generate nondeter- 
ministically integer values within a range (see Program 8.5). This is useful 
in generate-and-test programs, explained in Section 14.1, and in failure- 
driven loops, explained in Section 12.5. 

Iterative programs can be written for calculations over lists of integers 
as well. Consider the relation suml is t  ( I n t e g e r l i s t ,  Sum), where Sum is 
the sum of the integers in the list In t ege rL i s t .  We present two pro- 
grams for the relation. Program 8.6a is a recursive formulation. To sum 
a list of integers, sum the tail, and then add the head. Program 8.6b uses 
an accumulator to compute the progressive sum precisely as Program 8.3 
for f a c t o r i a l  uses an accumulator to compute a progressive product. 
An auxiliary predicate, suml is t /3 ,  is introduced with an extra argument 
for the accumulator, whose starting value, 0, is set in the initial call to 
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inner-product (Xs, Ys,Value) - 
Value is the inner product of the vectors 
represented by the lists of integers Xs and Ys. 

inner-product ( [XI Xsl , [Y I Ysl , IP) - 
inner-product(Xs,Ys,IPl), IP is X*Y+IP1. 

inner-product ( [ 1 , [ ],0) . 

Program 8.7a Computing inner products of vectors 

inner-product (Xs, Ys, Value) - 
Value is the inner product of the vectors 
represented by the lists of integers Xs and Ys. 

inner-product(Xs,Ys,IP) - inner-product(Xs,Ys,O,IP). 
inner-product ( [XI Xs] , [Y I Ys] ,Temp, I P )  - 

Temp1 is X*Y+Temp, inner-product(Xs,Ys,Templ,IP). 
inner-product ( [ 1 , C I , IP, IP) . 

Program 8.7b Computing inner products of vectors iteratively 

sumlist/3. The sum is passed out in the final call by unification with the 
base fact. The only difference between Program 8.6b and the iterative ver- 
sions of factorial is that the recursive structure of the list rather than 
a counter is used to control the iteration. 

Let us consider another example. The inner product of two vec- 
tors Xi,Yi is the sum XI . Yl + . . . + X ,  . Y,. If we represent vectors as 
lists, it is straightforward to write a program for the relation inner- 
product (Xs ,Ys, IP), where IP is the inner product of Xs and Ys. Pro- 
grams 8.7a and 8.7b are recursive and iterative versions, respectively. 
The iterative version of inner-product bears the same relation to the 
recursive inner-product that Program 8.6b for sumlist bears to Pro- 
gram 8.6a. 

Both Programs 8.7a and 8.7b are correct for goals inner-product (Xs, 
Ys, Zs), where xs and Ys are lists of integers of the same length. There 
is a built-in check that the vectors are of the same length. The programs 
fail if Xs and Ys are of different lengths. 

The similarity of the relations between Programs 8.6a and 8.6b, and 
Programs 8.7a and 8.7b, suggests that one may be automatically trans- 
formed to the other. The transformation of recursive programs to equiv- 
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area (Chain,Area) - 
Area is the area of the polygon enclosed by the list of points 
Chain, where the coordinates of each point are represented by 
a pair (X,Y) of integers. 

area( [Tuple] ,0) . 
area( [(XI ,Y1), (X2,Y2) IXYsl ,Area) - 

area( [(X2,Y2) 1 XYsl ,Areal), 
Area is (X1*~2-Y1*X2)/2 + Areal. 

Program 8.8 Computing the area of polygons 

alent iterative programs is an interesting research question. Certainly it 
can be done for the simple examples shown here. 

The sophistication of a Prolog program depends on the underlying 
logical relation it axiomatizes. Here is a very elegant example of a simple 
Prolog program solving a complicated problem. 

Consider the following problem: Given a closed planar polygon chain 
{Pl,P2,. . .,P,}, compute the area of the enclosed polygon and the orienta- 
tion of the chain. The area is computed by the line integral 

where the integral is over the polygon chain. 
The solution is given in Program 8.8, whlch defines the relation 

area(Chain,Area). Chain is given as a list of tuples, for example, 
[(4,6), (4,2),  (0,8), (4,6)]. The magnitude of Area is the area of the poly- 
gon bounded by the chain. The sign of Area is positive if the orientation 
of the polygon is counterclockwise, and negative if it is clockwise. 

The query area( [(4,6) , (4,2) , (0,8) , (4,6)] ,Area)? has the soh-  
tion Area = -8. The polygon gains opposite orientation by reversing 
the order of the tuples. The solution of the query area( C (4,6) , (0,8) , 
(4,2),(4,6)l,Area)?isArea = 8. 

The program shown is not iterative. Converting it to be iterative is the 
subject of Exercise (v) at the end of the section. 

An iterative program can be written to find the maximum of a list of 
integers. The relation scheme is maxlist (Xs ,Max), and the program is 
given as Program 8.9. An auxiliary predicate maxlist (Xs , X , Max) is used 
for the relation that Max is the maximum of X and the elements in the 
list Xs. The second argument of maxlist/3 is initialized to be the first 
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maxlist (Xs,N) - 
N is the maximum of the list of integers Xs. 

maxlist( [XIXs] ,M) - maxlist (Xs,X,M) . 
maxlist ([XIXsl ,Y,M) - maximum(X,Y,Yl), maxlist(Xs,Y1 ,M). 
maxlist(C 1 ,M,M). 

maximum(X,Y,Y) - X I Y. 
maximum(X,Y,X) - X > Y. 

Program 8.9 Finding the maximum of a list of integers 

length (Xs,N) - 
Xs is a list of length N. 

length([XIXs],N) - N > 0, N1 is N-1, length(xs,~l). 
length( [ 1 ,0) . 

Program 8.10 Checking the length of a list 

element of the list. Note that the maximum of an empty list is not defined 
by this program. 

The standard recursive program for finding the maximum of a list of 
integers constitutes a slightly different algorithm. The recursive formula- 
tion finds the maximum of the tail of the list and compares it to the head 
of the list to find the maximum element. In contrast, Program 8.9 keeps 
track of the running maximum as the list is traversed. 

Program 3.1 7 for finding the length of a list is interesting, affording 
several ways of translating a logic program into Prolog, each of which has 
its separate features. One possibility is Program 8.10, which is iterative. 
Queries length(Xs,N)? are handled correctly if N is a natural number, 
testing if the length of a list is N, generating a list of N uninstantiated 
elements, or failing. The program is unsuitable, however, for finding 
the length of a list with a call such as length( [1,2,31 ,N)?. This query 
generates an error. 

The length of a list can be found using Program 8.11. This program 
cannot be used, however, to generate a list of N elements. In contrast to 
Program 8.10, the computation does not terminate if the first argument 
is an incomplete list. Different programs for length are needed for the 
different uses. 

Arithmetic 

length(Xs,N) - 
N is the length of the list Xs. 

length( [XIXs] ,N) +- length(xs,~l), N is N1+1. 
length( [ 1,O). 

Program 8.1 1 Finding the length of a list 

range(M,N,Ns) - 
N s  is the list of integers between M and N inclusive. 

range(~,N, [MI NS] ) - M < N, MI is M+1, range (MI, N ,Ns) . 
range ( N ,  N, [Nl ) . 

Program 8.12 Generating a list of integers in a given range 

Similar considerations about the intended use of a program occur 
when trying to define the relation range (M,N, Ns), where Ns is the list 
of integers between M and N inclusive. Program 8.12 has a specific use: 
generating a list of numbers in a desired range. The program is totally 
correct over all goals range (M , N , Ns) where M and N are instantiated. The 
program cannot be used, however, to find the upper and lower limits 
of a range of integers, because of the test M < N. Removing this test 
would allow the program to answer a query range (M, N, [ I ,  2,31) ?, but 
then it would not terminate for the intended use, solving queries such as 
range(1,3,Ns)?. 

8.3.1 Exercises for Section 8.3 

(i) Write an iterative version for triangle(N,T), posed as Exer- 
cise 8.2(i). 

(ii) Write an iterative kersion for power (X, N, V)  , posed as Exercise 
8.2(ii). 

(iii) Rewrite Program 8.5 so that the successive integers are generated 
in descending order. 

fiv) Write an iterative program for the relation timeslist (Integer- 
List,Product) computing the product of a list of integers, anal- 
ogous to Program 8.6b for sumlist. 
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(v) Rewrite Program 8.8 for finding the area enclosed by a polygon so 
that it is iterative. 

(vi) Write a program to find the minimum of a list of integers. 

(vii) Rewrite Program 8.11 for finding the length of a list so that it is 
iterative. (Hint: Use a counter, as in Program 8.3.) 

(viii) Rewrite Program 8.12 so that the range of integers is built bottom- 
up rather than top-down. 

8.4 Background 

The examples given in t h s  chapter are small and do not especially ex- 
ploit Prolog's features. Algorithms that are fundamentally recursive are 
more interesting in Prolog. A good example of such a program is the Fast 
Fourier Transform, for which efficient versions have been written in Pro- 
log. 

A good place for reading about Huffman encoding trees for Exercise 
8.2(iv) is Abelson and Sussman (1985). 

A program for transforming recursive programs to iterative ones, 
whlch handles the examples in the text, is described in Bloch (1984). 

Program 8.8, computing the area of a polygon, was shown to us by 
Martin Nilsson. 

Structure Inspection 

Standard Prolog has several predicates related to the structure of terms. 
These predicates are used to recognize the different types of terms, to 
decompose terms into their functor and arguments, and to create new 
terms. Ths  chapter discusses the use of predicates related to term struc- 
ture. 

9.1 Type Predicates 

Type predicates are unary relations that distinguish between the different 
types of terms. System predicates exist that test whether a given term is 
a structure or a constant, and further, whether a constant is an atom, an 
integer or floating-point. Figure 9.1 gives the four basic type predicates 
in Standard Prolog, together with their intended meanings. 

Each of the basic predicates in Figure 9.1 can be regarded as an infi- 
nite table of facts. The predicate i n t e g e r / l  would consist of a table of 
integers: 

in teger  ( 0 )  . in teger  (1) . in teger  (-1) . 

The predicate atom/l would consist of a table of atoms in the program: 

The predicate compound/l would consist of a table of the function sym- 
bols in the program with variable arguments, etc. 
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integer(X) - X is an integer. 
atom(X) - X is an atom. 
real(X) - X is a floating-point number. 
compound(X) - X is a compound term. 
Figure 9.1 Basic system type predicates 

Other type predicates can be built from the basic type predicates. For 
example, that a number is either an integer or floating-point can be rep- 
resented by two clauses: 

number (X) - in teger  (X) . 
number (X) - r e a l  (X) . 

Standard Prolog includes a predicate number/l effectively defined in 
this way. It also includes a predicate atomic(X), which is true if X is an 
atom or a number. In this book, we prefer to call the predicate con- 
s t a n t / l .  To run under Standard Prolog, the following clause may be 
necessary: 

constant  (XI -- atomic ()o 

To illustrate the use of type predicates, the query in teger  (3)? would 
succeed, but the query atom(3)? would fail. One might expect that a 
call to a type predicate with a variable argument, such as in teger  (X)?, 
would generate different integers on backtracking. This is not practical 
for implementation, however, and we would prefer that such a call re- 
port an error condition. In fact, Standard Prolog specifies that the call 
i n t e g e r  (XI? should fail. 

The only terms not covered by the predicates in Figure 9.1 are vari- 
ables. Prolog does provide system predicates relating to variables. The 
use of such predicates, however, is conceptually very different from the 
use of structure inspection predicates described in thls chapter. Meta- 
logical predicates (their technical name) are the subject of Chapter 10. 

We give an example of the use of a type predicate as part of a pro- 
gram for flattening a list of lists. The relation f la t ten(Xs,Ys)  is true if 
Y s  is the list of elements occurring in the list of lists Xs. The elements 
of X s  can themselves be lists or elements, so elements can be arbitrarily 
deeply nested. An example of a goal in the meaning of f l a t t e n  is f l a t -  
t e n ( [ [ a l ,  [b, [ c ,d l l  , e l ,  [ a , b , c , d , e l ) .  

Structure Inspection 

flatten(Xs,Ys) - 
Ys is a list of the elements of Xs. 

flatten( [XlXsl ,Ys) + 

flatten(X,Ysl), flatten(Xs,Ys2), append(Ysl,Ys2,Ys) 

f latten(X, [XI ) - 
constant ( 0 ,  X# C 1 . 

flatten([ I , [  1). 

Program 9. la Flattening a list with double recursion 

The simplest program for flattening uses double recursion. To flatten 
an arbitrary list [XIXsl , where X can itself be a list, flatten the head of the 
list X, flatten the tail of the list X s ,  and concatenate the results: 

What are the base cases? The empty list is flattened to itself. A type 
predicate is necessary for the remaining case. The result of flattening a 
constant is a list containing the constant: 

f l a t t en (X,  [XI - constant (10, X #  C I . 

The condition constant  (X) is necessary to prevent the rule being used 
when X is a list. The complete program for f l a t t e n  is given as Pro- 
gram 9.la. 

Program 9,la, although very clear declaratively, is not the most effi- 
cient way of flattening a list. In the worst case, whlch is a left-linear tree, 
the program would require a number of reductions whose order is qua- 
dratic in the number of elements in the flattened list. 

A program for f l a t t e n  that constructs the flattened list top-down is a 
little more involved than the doubly recursive version. It uses an auxiliary 
predicate f l a t t en (Xs ,  Stack,  Ys), where Y s  is a flattened list containing 
the elements in Xs and a stack Stack to keep track of what needs to be 
flattened. The stack is represented as a list. 

The call of f l a t t e n / 3  by f l a t t e n / 2  initializes the stack to the empty 
list. We discuss the cases covered by f l a t t e n / %  The general case is 
flattening a list [XIXsl, where X is itself a list. In this case X s  is pushed 
onto the stack, and X is recursively flattened. The predicate l i s t  (X) is 
used to recognize a list. It is defined by the fact l i s t  ( [XIXsl ) :  
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flatten(Xs,Ys) - 
Ys is a list of the elements of Xs. 

f l a t t e n (  [ X I X s l  ,S,Ys) - 
l is t  (X) , f l a t t en (X ,  [XSI S] ,Ys). 

flatten(CXIXs1 , S ,  [XIYsl) - 
constant  (XI, ~f [ I , f la t ten(Xs , S  ,Ys) . 

f l a t t e n (  [ 1 ,  [XIS] ,Ys) - 
f la t ten(X,S,Ys) .  

f l a t t e n ( [  I , [  I , [  I ) .  

l i s t  ( [XI  Xsl ) 

Program 9.lb Flattening a list using a stack 

f l a t t e n (  [ X I  XS] ,S ,Ys) - l i s t  (X) , f l a t t e n ( X ,  [ X s  IS1 yYs) 

When the head of the list is a constant other then the empty list, it is 
added to the output, and the tail of the list is flattened recursively: 

f l a t t e n (  [ X I X s l  , S ,  [XIYsl) - 
cons tant  (X) ,Xf [ 1 , f l a t t e n ( X s ,  S  ,Ys) . 

When the end of the list is reached, there are two possibilities, depending 
on the state of the stack. If the stack is nonempty, the top element is 
popped, and the flattening continues: 

If the stack is empty, the computation terminates: 

The complete program is given as Program 9.lb. 
A general technique of using a stack is demonstrated in Program 9.lb. 

The stack is managed by unification. Items are pushed onto the stack 
by recursive calls to a consed list. Items are popped by unifylng with 
the head of the list and recursive calls to the tail. Another application 
of stacks appears in Programs 17.3 and 17.4 simulating pushdown au- 
tomata. 

Note that the stack parameter is an example of an accumulator. 
The reader can verify that the revised program requires a number of 

reductions linear in the size of the flattened list. 

Structure Inspection 

9.1.1 Exercise for Section 9.1 

(i) Rewrite Program 9.la for f la t ten(Xs ,Ys)  to use an accumulator 
instead of the call to append, keeping it doubly recursive. 

9.2 Accessing Compound Terms 

Recognizing a term as compound is one aspect of structure inspection. 
Another aspect is providing access to the functor name, arity, and argu- 
ments of a compound term. One system predicate for delving into com- 
pound terms is f u n c t o r  (Term, F ,  Ar i ty) .  Ths  predicate is true if Term is 
a term whose principal functor has name F and arity Ari ty.  For example, 
func to r  (f a t h e r  (haran,  l o t ) ,  f  a t h e r ,  2 )?  succeeds. 

The functor predicate can be defined, analogously to the type pred- 
icates, by a table of facts of the form func to r  (f (X1,. . . , XN) , f , N) for 
each functor f  of arity N, for example, f u n c t o r  (f a t h e r  (X , Y  , f a t h e r ,  
2), f u n c t o r  (son (X, Y) , son,  2), . . . . Standard Prolog considers constants 
to be functors of arity 0, with the appropriate extension to the functor 
table. 

Calls to f u n c t o r  can fail for various reasons. A goal such as func- 
t o r  (f a t h e r  (X , Y) , son ,  2) does not unify with an appropriate fact in 
the table. Also, there are type restrictions on the arguments of func- 
t o r  goals. For example, the third argument of func to r ,  the arity of the 
term, cannot be an atom or a compound term. If these restrictions are 
violated, the goal fails. A distinction can be made between calls that fail 
and calls that should give an error because there are infinitely many so- 
lutions, such as func to r  (X,Y, 2)?.  

The predicate func to r  is commonly used in two ways, term decompo- 
sition and creation. The first use finds the functor name and arity of a 
given term. For example, the query func to r  ( f a t h e r  (haran,  l o t  , X , Y) ? 
has the solution {X=father,Y=2}. The second use builds a term with a 
particular functor name and arity. A sample query is func to r  (T, f  a t h e r ,  
2)? with solution T=f a t h e r  (X ,Y) . 

The companion system predicate to func to r  is a r g  (N , Term, Arg) , 
whlch accesses the arguments of a term rather than the functor name. 



Chapter 9 

subterm(Sub, T e r m )  - 
Sub is a subterm of the ground term T e r m .  

subterm(Term,Term). 
subterm(Sub,Term) - 

compound(Term) , functor (Term,F,N) , subterm(N, Sub ,Term) . 
subterm(N, Sub, Term) - 

N > 1, N1 is N-1, subterm(Nl,Sub,Term) 
subterm(N,Sub,Term) - 

arg(N ,Term, Arg) , subterm(Sub ,Arg) . 

Program 9.2 Finding subterms of a term 

The goal arg (N ,Term, Arg) is true if Arg is the Nth argument of Term. For 
example, arg ( 1, father (haran, lot) , haran) is true. 

Like functor/3, arg/3 is commonly used in two ways. The term de- 
composition use finds a particular argument of a compound term. A 
query exemplifying t h s  use is arg (2, father (haran, lot) , X) ? with so- 
lution X=lot. The term creation use instantiates a variable argument of a 
term. For example, the query arg(1, f ather (X, lot) , haran) ? succeeds, 
instantiating X to haran. 

The predicate arg is also defined as if there is an infinite table of facts. 
A fragment of the table is 

Calls to arg fail if the goal does not unify with the appropriate fact in the 
table, for example, arg (1, father (haran, lot) , abraham) . They also fail 
if the type restrictions are violated, for example, if the first argument is 
an atom. An error is reported with a goal such as arg(1, X, Y) . 

Let us consider an example of using functor and arg to inspect terms. 
Program 9.2 axiomatizes a relation subterm (TI, T2), whch is true if TI is 
a subterm of T2. For reasons that will become apparent later, we restrict 
TI and T2 to be ground. 

The first clause of Program 9.2 defining subterm/:! states that any term 
is a subterm of itself. The second clause states that Sub is a subterm of 
a compound term Term if it is a subterm of one of the arguments. The 
number of arguments, i.e., the arity of the principal functor of the term, 
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is found and used as a loop counter by the auxiliary subterm/3, whch 
iteratively tests all the arguments. 

The first clause of subterm/3 decrements the counter and recursively 
calls subterm. The second clause covers the case when Sub is a subterm 
of the Nth argument of the term. 

The subterm procedure can be used in two ways: to test whether the 
first argument is indeed a subterm of the second; and to generate sub- 
terms of a given term. Note that the clause order determines the order 
in which subterms are generated. The order in Program 9.2 gives sub- 
terms of the first argument before subterms of the second argument, 
and so on. Swapping the order of the clauses changes the order of solu- 
tions. 

Consider the query subterm(a,f (X,Y) I? ,  where the second argument 
is not ground. Eventually the subgoal subterm(a,X) is reached. Thls suc- 
ceeds by the first subterm rule, instantiating X to a. The subgoal also 
matches the second subterm rule, involung the goal compound(X), which 
generates an error. This is undesirable behavior. 

We defer the issues arising when performing structure inspection on 
nonground terms to Chapter 10, where meta-logical predicates with suit- 
able expressive power are introduced. For the rest of thls chapter, all 
programs are assumed to take only ground arguments unless otherwise 
stated. 

Program 9.2 is typical code for programs that perform structure in- 
spection. We look at another example, substituting for a subterm in a 
term. 

The relation scheme for a general program for substituting subterms 
is substitute (Old, New, OldTerm, NewTerm), where NewTerm is the result 
of replacing all occurrences of Old in OldTerm by New. Program 9.3 imple- 
menting the relation generalizes substituting for elements in a list, posed 
as Exercise 3.3(i) and the logic program (Program 3.26) substituting for 
elements in binary trees. 

Program 9.3 is a little more complicated than Program 9.2 for sub- 
term but conforms to the same basic pattern. The clauses for substi- 
tute/4 cover three different cases. The last, handling compound terms, 
calls an auxiliary predicate substitute/5, whch iteratively substitutes 
in the subterms. The arity of the principal functor of the term is used 
as the initial value of a loop counter that is successively decremented 
to control the iteration. We present a particular example to illustrate 
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substitute( Old,New,OldTerm,NewTerm) - 
NewTerm is the result of replacing all occurrences of Old 
in OldTerm by N e w .  

substitute(Old,New,Old,New). 
substitute(0ld,New,Term,Term) - 

constant (Term), Term # Old. 
substitute(0ld,New,Term,Terml) - 

compound(Term), 
functor(Term,F,N), 
functor (Terml ,F ,N) , 
substitute(N,Old,New,Term,Terml). 

substitute(N,Old,New,Term,Terml) - 
N > 0, 
arg(N , Term, Arg) , 
substitute(Old,New,Arg,Argl) , 
arg(N,Terml,Argl), 
N1 is N-1, 
substitute(Nl,Old,New,Term,Terml). 

substitute(0,0ld,New,Term,Terml). 

Program 9.3 A program for substituting in a term 

the interesting points lurking in the code. A trace of the query substi- 
tute (cat, dog, owns ( j  ane, cat) , X)? is given in Figure 9.2. 

The query fails to unify with the fact in Program 9.3. The second rule 
is also not applicable because owns ( j  ane , cat) is not a constant. 

The th rd  substitute rule is applicable to the query. The second call 
of functor is interesting. Name and Arity have been instantiated to owns 
and 2, respectively, in the previous call of functor, so thls call builds a 
term that serves as the answer template to be filled in as the computation 
progresses. Ths  explicit term building has been acheved by implicit uni- 
fication in previous Prolog programs. The call to substitute/5 succes- 
sively instantiates the arguments of Terml. In our example, the second 
argument of owns (XI, X2) is instantiated to dog, and then XI is instanti- 
ated to jane. 

The two calls to arg serve different tasks in substitute/5. The first 
call selects an argument, whle the second call of arg instantiates an 
argument. 

Substitution in a term is typically done by destructive assignment in 
conventional languages. Destructive assignment is not possible directly 

Structure Inspection 

substitute(cat ,dog,owns( jane ,cat) ,XI X=owns (jane , 
constant (owns(jane ,cat)) f cat) 

substitute(cat ,dog,owns(jane ,cat) ,x) 
compound(owns(jane,cat)) 
functor(owns(jane, cat) ,F,N) F=owns,N=2 

functor(X,owns,2) X=owns(Xl,X2) 
substitute(2,cat,dog,owns(jane,cat),o~ns(~1,~2)) 

2 > 0  
arg (2, owns (j ane , cat , Arg) Arg=cat 

substitute (cat ,dog, cat ,~rgl) Argl=dog 

arg(2,owns(X1 ,X2) ,dog) X2=dog 

N1 is 2-1 N1=l 
substitute(1 ,cat ,dog,owns(jane,cat) , owns(~1 ,dog)) 

1 > 0  
arg(l,owns(jane,cat) ,Arg2) Arg2= j ane 

substitute(cat,dog,jane,Arg3) Arg3= j ane 

constant (jane) 
jane f cat 

arg(1 ,owns(X1 ,dog), jane) XI= j ane 

N2 substitute(0,cat,dog,owns(jane,cat),owns(jane,dog)) is 1-1 N2=0 

o > o  f 
substitute(0,cat ,dog,owns(jane, cat) ,owns(jane ,dog)) 

true 
Output : (X=owns (j ane ,dog) ) 

Figure 9.2 Tracing the substitute predicate 

in Prolog. Program 9.3 typifies how Prolog handles changing data struc- 
tures. The new term is recursively built as the old term is being traversed, 
by logically relating the corresponding subterms of the terms. 

Note that the order of the second arg goal and the recursive call to 
substitute/5 can be swapped. The modified clause for substitute/5 
is logically equivalent to the previous one and gives the same result 
in the context of Program 9.3. Procedurally, however, they are radically 
different. 

Another system predicate for structure inspection is a binary operator 
= . . , called, for historical reasons, univ. The goal Term =.. List succeeds 
if List is a list whose head is the functor name of the term Term and 
whose tail is the list of arguments of Term. For example, the query (fa- 
ther (haran, lot) =. . [father, haran, lot] ) ?  succeeds. 
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subterm (Sub, T e r m )  - 
Sub is a subterm of the ground term T e r m .  

subterm(Term,Term). 
subterm(Sub,Term) - 

compound(Term), Term = . . [F I Args] , subterm-list ( ~ u b , ~ r g s )  . 

subterm-list(Sub,[ArglArgsl) - 
subterm(Sub,Arg). 

subterm-list (Sub, [Arg I Args] ) - 
subterm-list(Sub,Args). 

Program 9.4 Subterm defined using univ 

Like functor and arg, univ has two uses. Either it builds a term 
given a list, for example, (X =. . [father, haran, lotl ) ?  with solution 
X=f ather (haran, lot), or it builds a list given a term, for example, (fa- 
ther (haran, lot) =. . Xs)? with solution Xs= [father, haran, lotl. 

In general, programs written using functor and arg can also be written 
with univ. Program 9.4 is an alternative definition of subterm, equivalent 
to Program 9.2. As in Program 9.2, an auxiliary predicate investigates the 
arguments; here it is subterm-list. Univ is used to access the list of 
arguments, Args, of whch subterms are recursively found by subterm- 
list. 

Programs using univ to inspect structures are usually simpler. How- 
ever, programs written with functor and arg are in general more effi- 
cient than those using univ, since they avoid building intermediate struc- 
tures. 

A neat use of univ is formulating the chain rule for symbolic differ- 
entiation. The chain rule states that d/dx{f(g(x)} = d/dg(x){f(g(x)l x 
d/dx{g(x)}. In Section 3.5, we noted that t h s  rule could not be expressed 
as a single clause of a logic program as part of Program 3.30. A Prolog 
rule encapsulating the chain rule is 

derivative (F-G-X, X, DF*DG) - 
F-G-X =. . [F,G-XI, 
derivative(F-G-X,G-X,DF), 
derivative(G-X,X,DG). 

The function F-G-X is split up by univ into its function F and argument 
G-X, checking that F is a function of arity 1 at the same time. The deriva- 

Structure Inspection 

T e r m  =.. List - 
List is a list containing the functor of T e r m  followed 
by the arguments of T e r m .  

Term =. . [F I Argsl - 
functor(Term,F ,N) , args ( 0  , ~ , ~ e r m , ~ r g s )  . 

args ( I ,  N ,Term, [Arg 1 Argsl ) - 
I < N ,  I1 is I+1, arg(Il,Term,Arg), a r g s ( l l , ~ , ~ e r m , A r g s ) .  

args(N,N,Term, [ I ) .  

Program 9.5a Constructing a list corresponding to a term 

tive of F with respect to its argument is recursively calculated, as is the 
derivative of G-X. These are combined to give the solution. 
Univ can be defined in terms of functor and arg. Two different def- 

initions are necessary, however, to cover both building lists from terms 
and building terms from lists. One definition does not suffice, because of 
errors caused by uninstantiated variables. Other system predicates are 
similarly precluded from flexible use. 

Program 9.5a behaves correctly for building a list from a term. The 
functor F is found by the call to functor, and the arguments are re- 
cursively found by the predicate args. The first argument of args is a 
counter that counts up, so that the arguments will appear in order in the 
final list. If Program 9.5a is called with Term uninstantiated, an error will 
be generated because of an incorrect call of functor. 

Program 9.5b behaves correctly for constructing a term from a list. The 
length of the list is used to determine the number of arguments. The 
term template is built by the call to functor, and a different variant of 
args is used to fill in the arguments. Program 9.5b results in an error 
if used to build a list, because of the goal length(Args ,N) being called 
with uninstantiated arguments. 

9.2.1 Exercises for Section 9.2 

(i) Define a predicate occurrences (Sub, Term, N), true if N is the num- 
ber of occurrences of subterm Sub in Term. Assume that Term is 
ground. 

(ii) Define a predicate position(Subterm,Term,Position), where Po- 
sition is a list of argument positions identifying Subterm withn 
Term. For example, the position of X in 2.sin(X) is [2,1l, since 
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Tenn =.. List - 
The functor of Term is the first element of the list List, 
and its arguments are the rest of List's elements. 

Term =. . [F I Args] - 
length(Args ,N) , functor (Term,F, N) , args(Args ,Term, 1) 

args ( [Arg l Args] ,Term, N) - 
arg(N,Term,Arg), N1 is N+1, args(Args,Term,Nl). 

args([ 1 ,Term,N). 

length(Xs, N) - See Program 8.1 1. 

Program 9.5b Constructing a term corresponding to a list 

sin(X) is the second argument of the binary operator ".", and X 
is the first argument of sin(X). (Hint: Add an extra argument for 
Program 9.2 for subterm, and build the position list top-down.) 

(iii) Rewrite Program 9.5a so that it counts down. (Hint: Use an accumu- 
lator.) 

(iv) Define functor and arg in terms of univ. How can the programs be 
used? 

(v) Rewrite Program 9.3 for substitute SO that it uses univ. 

9.3 Background 

Prolog does not distinguish between object-level and meta-level type 
predicates. We have taken a different approach, by defining the type test 
predicates to work only on instantiated terms and by treating the meta- 
logical test predicates (e.g., var/1, discussed in Section 10.1) separately. 
The predicates for accessing and constructing terms, functor, arg, and 
=. . , originate from the Edinburgh family. The origin of =. . is in the old 
Prolog-10 syntax for lists, whch used the operator , . . instead of the 
current I in lists, e.g., [a, b, c, . .Xs] instead of [a, b,clXsl . The . . on 
the right-hand side suggested or reminded that the right-hand side of 
the equality is a list. 

Several of the examples in this section were adapted from O'Keefe 
(1983). 

Exercises 9.2(i) and 9.2(ii) are used in the equation solver in Chapter 23. 

Me ta-Logical Predicates 

A useful extension to the expressive power of logic programs is provided 
by the meta-logical predicates. These predicates are outside the scope of 
first-order logic, because they query the state of the proof, treat variables 
(rather than the terms they denote) as objects of the language, and allow 
the conversion of data structures to goals. 

Meta-logical predicates allow us to overcome two difficulties involving 
the use of variables encountered in previous chapters. The first difficulty 
is the behavior of variables in system predicates. For example, evaluating 
an arithmetic expression with variables gives an error. So does calling 
type predicates with variable arguments. A consequence of this behavior 
is to restrict Prolog programs to have a single use in contrast to the 
multiple uses of the equivalent logic programs. 

The second difficulty is the accidental instantiation of variables during 
structure inspection. Variables need to be considered as specific objects 
rather than standing for an arbitrary unspecified term. In Chapter 9 we 
handled the difficulty by restricting inspection to ground terms only. 

Ths  chapter has four sections, each for a different class of meta-logical 
predicates. The first section discusses type predicates that determine 
whether a term is a variable. The second section discusses term com- 
parison. The next sections describe predicates enabling variables to be 
manipulated as objects. Finally, a facility is described for converting data 
into executable goals. 
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10.1 Meta-Logical Type Predicates 

The basic meta-logical type predicate is var (Term), which tests whether 
a given term is at present an uninstantiated variable. Its behavior is simi- 
lar to the type predicates discussed in Section 9.1. The query var (Term)? 
succeeds if Term is a variable and fails if Term is not a variable. For exam- 
ple, var  (X)? succeeds, whereas both var ( a )?  and var ( [XIXsl ) ?  fail. 

The predicate var is an extension to pure Prolog programs. A table 
cannot be used to give all the variable names. A fact var (X) means that 
all instances of X are variables rather than that the letter X denotes a 
variable. Being able to refer to a variable name is outside the scope of 
first-order logic in general or pure Prolog in particular. 

The predicate nonvar(Term) has the opposite behavior to var. The 
query nonvar (Term) ? succeeds if Term is not a variable and fails if Term 
is a variable. 

The meta-logical type predicates can be used to restore some flexibility 
to programs using system predicates and also to control goal order. We 
demonstrate this by revising some programs from earlier chapters. 

Consider the relation plus  (X , Y , Z) . Program 10.1 is a version of p lus  
that can be used for subtraction as well as addition. The idea is to check 
which arguments are instantiated before calling the arithmetic evaluator. 
For example, the second rule says that if the first and third arguments, 
X and Z, are not variables, the second argument, Y, can be determined as 
their difference. Note that if the arguments are not integers, the evalua- 
tion will fail, the desired behavior. 

The behavior of Program 10.1 resembles that of Program 3.3, the logic 
program for plus.  Further, it does not generate any errors. Nonetheless, 
it does not have the full flexibility of the recursive logic program: it 
cannot be used to partition a number into tw7o smaller numbers, for 

plus(X,Y,Z) -- 

The sum of the numbers X and Y is Z. 

plus(X,Y,Z) - nonvar(X1, nonvar(~), Z is X+Y. 
plus(X,Y,Z) - nonvar(X), nonvar(z), Y is Z-X. 
plus(X,Y,Z) - nonvar(Y), nonvar(z), X is Z-Y. 

Program 10.1 Multiple uses for plus 

me fa-Logical Predicates 

length(Xs,N) - 
The list X s  has length N. 

length(Xs ,N) - nonvar(Xs) , lengthl (Xs,N). 
length(Xs,N) - var (Xs) , nonvar (N) , lengthZ(Xs ,N) . 
lengthl (XS , N )  - See Program 8.11. 
lengthZ(Xs,N) - See Program 8.10. 

Program 10.2 A multipurpose length program 

example. To partition a number involves generating numbers, for which 
a different program is needed. This is posed as Exercise (ii) at the end of 
this section. 

Meta-logical goals placed initially in the body of a clause to decide 
which clause in a procedure should be used are called meta-logical tests. 
Program 10.1 for p lus  is controlled by meta-logical tests. These tests re- 
fer to the current state of the computation. Knowledge of the operational 
semantics of Prolog is required to understand them. 

Standard Prolog in fact endows the type predicates with a meta-logical 
ability. For example, if X is a variable the goal in teger  (XI fails, rather 
than giving an error. Ths  enables the rules from Program 10.1 to be writ- 
ten using the system predicate in teger  rather than nonvar, for example, 

p lus  (X,Y, Z) - in teger  (X) , integer(Y) , Z is  X+Y 

We feel it is preferable to separate type checlung, whlch is a perfectly le- 
gitimate first-order operation, from meta-logical tests, which are a much 
stronger tool. 

Another relation that can have multiple uses restored is length(Xs , N )  
determining the length N of a list Xs. Separate Prolog programs (8.10 and 
8.11) are needed to find the length of a given list and to generate an 
arbitrary list of a given length, despite the fact that one logic program 
(3.17) performs both functions. Program 10.2 uses meta-logical tests to 
define a single length  relation. The program has an added virtue over 
Programs 8.10 and 8.1 1. It avoids the non-terminating behavior present 
in both, when both arguments are uninstantiated. 

Meta-logical tests can also be used to make the best choice of the goal 
order of clauses in a program. Section 7.3 discusses the definition of 
grandparent: 
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g r a n d p a r e n t  (X,Z) - 
X is the grandparent of Z. 

grandparent  (X, Z) - nonvar (X) , paren t  (X , Y) , paren t  (Y , Z) . 
grandparent  (X, Z) - nonvar (Z) , paren t  (Y, Z) , paren t  (X,Y). 

Program 10.3 A more efficient version of grandparent 

g r o u n d (  Term)  - 
Term is a ground term. 

ground(Term1 - 
nonvar(Term), constant(Term).  

ground(Term) - 
nonvar(Term), 
compound(Term), 
f u n c t o r  (Term, F ,  N) , 
ground(N,Term). 

Program 10.4 Testing if a term is ground 

grandparent (X,Z) - parent  (X,Y) , parent  (Y ,Z) . 

The optimum goal order changes depending on whether you are search- 
ing for the grandchildren of a given grandparent or the grandparents of 
a given grandchld. Program 10.3 is a version of grandparent that will 
search more efficiently. 

The basic meta-logical type predicates can be used to define more in- 
volved meta-logical procedures. Consider a relation ground(Term) , whch 
is true if Term is ground. Program 10.4 gives a definition. 

The program is in the style of the programs for structure inspection 
given in Section 9.2, in particular Program 9.3 for s u b s t i t u t e .  The two 
clauses for ground/l are straightforward. In both cases, a meta-logical 
test is used to ensure that no error is generated. The first clause says 
that constant terms are ground. The second clause deals with structures. 

It calls an auxiliary predicate ground/2, which iteratively checks that all 
the arguments of the structure are ground. 

We look at a more elaborate example of using meta-logical type predi- 
cates; writing a unification algorithm. The necessity of Prolog to support 
unification for matchng goals with clause heads means that explicit uni- 
fication is readily available. Prolog's underlying unification can be used 
to give a trivial definition 

unify (X , X) . 

whch is the definition of the system predicate =/2, namely, X=X. 
Note that t h s  definition depends on Prolog's underlying mechanism 

for unification, and hence does not enforce the occurs check. 
A more explicit definition of Prolog's unification is possible using meta- 

logical type predicates. Although more cumbersome and less efficient, 
t h s  definition is useful as a basis for more elaborate unification algo- 
rithms. One example is unification with the occurs check, described in 
Section 10.2. Another example is unification in other logic programming 
languages that can be embedded in Prolog, such as read-only unification 
of Concurrent Prolog. 

Program 10.5 is an explicit definition of unification. The relation 
unify (Terml ,Term2) is true if Terml unifies with Term2. The clauses 
of unify outline the possible cases. The first clause of the program says 
that two variables unify. The next clause is an encapsulation of the rule 
for unification that if X is a variable, then X unifies with Y. 

The other case bearing discussion in Program 10.5 is unifying two com- 
pound terms, as given in the predicate term-unif y (X , Y) . This predicate 
checks that the two terms X and Y have the same principal functor and 
arity, and then checks that all the arguments unify, using unif y-args, in 
a way similar to the structure inspection programs shown before. 

10.1.1 Exercises for Section 10.1 

(i) Write a version of Program 8.12 for range that can be used in mul- 
tiple ways. 

(ii) Write a version of Program 10.1 for p lus  that partitions a number 
as well as performing addition and subtraction. (Hint: Use between 
to generate numbers.) 
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unify(Term1 ,Term2) - 
Terml and Term2 are unified, ignoring the occurs check. 

unify(X,Y) - 
var (X) , var (Y) , X=Y. 

unify(X,Y) - 
var(X), nonvar(Y1, X=Y. 

unify(X,Y) - 
var (Y) , nonvar (X) , Y=X . 

unify(X,Y) - 
nonvar (X) , nonvar (Y) , constant (x) , constant (Y) , X=Y . 

unify(X,Y) - 
nonvar (X) , nonvar (Y) , compound(X),  compound(^) , term-unif y(x ,Y) . 

term-unify(X,Y) - 
functor(X,F,N), functor(Y,F,N), unify-args(N,X,Y). 

unify-args(N,X,Y) - 
N > 0 ,  unify-arg(N,X,Y), N1 is N-1, unify-args(N1,x,Y). 

unify-args(O,X,Y). 

unify-arg(N,X,Y) - 
arg(N ,X, ArgX) , arg(N ,Y ,ArgY) , unify . 

Program 10.5 Unification algorithm 

10.2 Comparing Nonground Terms 

Consider the problem of extending the explicit unification program, Pro- 
gram 10.5, to handle the occurs check. Recall that the occurs check is 
part of the formal definition of unification, whch requires that a variable 
not be unified with a term containing this variable. In order to implement 
it in Prolog, we need to check whether two variables are identical (not just 
unifiable, as any two variables are). This is a meta-logical test. 

Standard Prolog provides a system predicate, ==/2, for this purpose. 
The query X == Y? succeeds if X and Y are identical constants, identical 
variables, or both structures whose principal functors have the same 
name and arity, and recursively xi == Yi? succeeds for all corresponding 
arguments Xi and Yi of X and Y. The goal fails otherwise. For example, X 
== 5? fails (in contrast to X = 5?). 

There is also a system predicate that has the opposite behavior to ==. 

The query X \== Y? succeeds unless X and Y are identical terms. 

Meta-Logical Predicates 

unify( Term1,TermZ) - 
Terml and Term2 are unified with the occurs check. 

unify(X,Y) - 
var(X), var(Y), X=Y. 

unify(X,Y) - 
var(X), nonvar(Y1, not-occurs-in(X,Y), X=Y. 

unify(X,Y) - 
var(Y), nonvar(X1, not-occurs-in(Y,X), Y=X. 

unify(X,Y) - 
nonvar(X) , nonvar(Y1, constant (x) , constant (Y) , X=Y. 

unify(X,Y) - 
nonvar (X) , nonvar (Y) , compound(X) ,  compound(^) , term-unif (x,Y) 

not-occurs-in (X,Term) - 
The variable X does not occur in Term 

term-unify (X,Y) - See Program 10.5. 

Program 10.6 Unification with the occurs check 

The predicate \== can be used to define a predicate not-occurs- 
in(Sub,Term), which is true if Sub does not occur in Term, the relation 
that is needed in the unification algorithm with the occurs check. not- 
occurs-in(Sub,Term) is a meta-logical structure inspection predicate. It 
is used in Program 10.6, a variant of Program 10.5, to implement unifica- 
tion with the occurs check. 

Note that the definition of not-occurs-in is not restricted to ground 
terms. Lifting the restriction on Program 9.2 for subterm is not as 
easy. Consider the query subterm (X , Y) ?. This would succeed using Pro- 
gram 9.2, instantiating X to Y. 

We define a meta-logical predicate occurs-in(Sub,Term) that has the 
desired behavior. 
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occurs-in (Sub, Term) - 
Sub is a subterm of the (possibly nonground) term Term. 

a: Using == 

occurs-in(X,Term) - 
subterm(Sub,Term), X == Sub. 

b: Using freeze 

occurs-in(X,Term) - 
freeze (X , Xf ) , freeze (Term, Termf , subterm(Xf, Termf ) . 

subterm(X,Term) - See Program 9.2. 

Program 10.7 Occurs in 

The predicate == allows a definition of occurs-in based on Pro- 
gram 9.2 for subterm. All the subterms of the given term are generated 
on backtracking and tested to see if they are identical to the variable. 
The code is given in Program 10.7a. 

As defined, subterm works properly only for ground terms. However, 
by adding meta-logical type tests, as in the definition of not-occurs-in 
in Program 10.6, this problem is easily rectified. 

10.3 Variables as Objects 

The delicate handling of variables needed to define occurs-in in Sec- 
tion 10.2 highlights a deficiency in the expressive power of Prolog. Vari- 
ables are not easily manipulated. When trying to inspect, create, and 
reason about terms, variables can be unwittingly instantiated. 

A similar concern occurs with Program 9.3 for substitute. Consider 
the goal substitute(a,b,X,Y, substituting a for b in a variable X to 
give Y. There are two plausible behaviors for substitute in t h s  case. 
Logically there is a solution when X is a and Y is b. T h s  is the solution 
actually given by Program 9.3, acheved by unification with the base fact 
substitute(Old,New,Old,New). 

In practice, another behavior is usually preferred. The two terms X and 
a should be considered different, and Y should be instantiated to X. The 
other base case from Program 9.3, 

substitute (Old,New ,Term,Term) - constant (Term) , Term f Old. 

Meta-Logical Predicates 

covers t h s  behavior. However, the goal would fail because a variable is 
not a constant. 

We can prevent the first (logical) solution by using a meta-logical test 
to ensure that the term being substituted in is ground. The unification 
implicit in the head of the clause is then only performed if the test 
succeeds, and so must be made explicit. The base fact becomes the rule 

substitute(Old,New,Term,New) -- ground(Term), Old = Term. 

Treating a variable as different from a constant is handled by a special 
rule, again relying on a meta-logical test: 

Adding the two preceding clauses to Program 9.3 for substitute and 
adding other meta-logical tests allows the program to handle nonground 
terms. However, the resultant program is inelegant. It is a mixture of 
procedural and declarative styles, and it demands of the reader an under- 
standing of Prolog's control flow. To make a medical analogy, the syrnp- 
toms have been treated (undesirable instantiation of variables), but not 
the disease (inability to refer to variables as objects). Additional meta- 
logical primitives are necessary to cure the problem. 

The difficulty of mixing object-level and meta-level manipulation of 
terms stems from a theoretical problem. Strictly spealung, meta-level 
programs should view object-level variables as constants and be able to 
refer to them by name. 

We suggest two system predicates, freeze (Term,Frozen) and melt 
(Frozen, Thawed), to allow explicit manipulation of variables. Freezing a 
term Term makes a copy of the term, Frozen, where all the uninstantiated 
variables in the term become unique constants. A frozen term looks like, 
and can be manipulated as, a ground term. 

Frozen variables are regarded as ground atoms during unification. Two 
frozen variables unify if and only if they are identical. Similarly, if a 
frozen term and an uninstantiated variable are unified, they become an 
identical frozen term. The behavior of frozen variables in system predi- 
cates is the behavior of the constants. For example, arithmetic evaluation 
involving a frozen variable will fail. 

The predicate freeze is meta-logical in a simdar sense to var. It en- 
ables the state of a term during the computation to be manipulated di- 
rectly. 
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The predicate freeze allows an alternative definition of occurs-in 
from the one given in Section 10.2. The idea is to freeze the term so that 
variables become ground objects. Ths  makes Program 9.2 for subterm, 
which works correctly for ground terms, applicable. The definition is 
given as Program 10.7b. 

Freezing gives the ability to tell whether two terms are identical. Two 
frozen terms, X and Y, unify if and only if their unfrozen versions are 
identical, that is, X == Y. This property is essential to the correct behav- 
ior of Program 10.7b. 

The difference between a frozen term and a ground term is that the 
frozen term can be "melted back" into a nonground term. The compan- I 

ion predicate to freeze is melt (Frozen, Thawed). The goal melt (X , Y) 
produces a copy Y of the term X where frozen variables become regular 
Prolog variables. Any instantiations to the variables in X during the time 
when X has been frozen are taken into account when melting Y. 

1 
I 

The combination of freeze and melt allows us to write a variant of I 

substitute, non-ground-substitute, where variables are not acciden- 
tally instantiated. The procedural view of non-ground-substitute is as 
follows. The term is frozen before substitution; the substitution is per- 
formed on the frozen term using the version of substitute, which works 
correctly on ground terms; and then the new term is melted: 

non-ground-substitute(X,Y,Old,New) - 
f reeze(Old,Oldl), substitute(X,Y ,Old1 ,old21 , 
melt (0ld2, New) . 

The frozen term can also be used as a template for making copies. 
The system predicate melt-new (Frozen, Term) makes a copy Term of the 
term Frozen, where frozen variables are replaced by new variables. 

One use of melt-new is to copy a term. The predicate copy (Term, Copy) 
produces a new copy of a term. It can be defined in a single rule: 

copy (Term, Copy) - freeze (~erm, Frozen) , melt-new(~roze~9 

Standard Prolog provides the predicate copy-term(Term1 ,Term2) for 
copying terms. It is true if and only if Term2 unifies with a term T that is 
a copy of Terml except that all the variables of Terml have been replaced 
by fresh variables. 

Unfortunately, the predicates freeze/2, melt/2, and rnelt_new/2 as 
described here are not present in existing Prolog implementations. They 

numbewars(Term,Nl,NZ) - 
The variables in Term are numbered from N1 to N 2  - 1. 

numbervars('$VAR'(N),N,NI) 
N1 is N+1. 

numbervars(Term,N,N) - 
nonvar(Term), constant(Term1. 

numbervars(Term,Nl ,N2) - 
nonvar (Term) , compound(Term) , 
functor (Term, Name, N) , 
numbervars(O,N,Term,Nl,N2). 

numbervars(N,N,Term,N1,NI). 
numbervars(I,N,Term,Nl,N3) - 

I < N  
I1 is I+1, 
arg(I1 ,Term,Arg) , 
numbervars (Arg,Nl ,N2) , 
numbervars(Il,N,Term,N2,N3). 

Program 10.8 Numbering the variables in a term 

will be useful nonetheless in expressing and explaining the behavior of 
extra-logical predicates, discussed in Chapter 12. 

A useful approximation to freeze is the predicate numbervars (Term, 
Nl , N2), which is provided in many Edinburgh Prolog libraries. A call to 
the predicate is true if the variables appearing in Term can be numbered 
from Nl to N2-1. The effect of the call is to replace each variable in the 
term by a term of the form '$VARJ (N) where N lies between Nl and N2. 
For example, the goal numbervars (append( [XIXsl ,Ys , [XIZsl , I, N) suc- 
ceeds with the substitution {X='$VAR(I) ' , Xs='$VAR' (2) , Ys='$VAR7 
(3), Zs='$VAR1 (4) ,  N=5}. Code implementing numbervars is given as 
Program 10.8. It is in the same style as the structure inspection utilities 
given in Chapter 9. 

10.4 The Meta-Variable Facility 

A feature of Prolog is the equivalence of programs and data - both 
can be represented as logical terms. In order for this to be exploited, 
programs need to be treated as data, and data must be transformed into 
programs. In thls section, we mention a facility that allows a term to be 

PROYECTO
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X ; Y  - 
X or Y .  

X ; Y - X .  
X ; Y - Y .  

Program 10.9 Logical disjunction 

converted into a goal. The predicate call (X)  calls the goal X for Prolog 
to solve. 

In practice, most Prolog implementations relax the restriction we have 
imposed on logic programs, that the goals in the body of a clause must 
be nonvariable terms. The meta-variable facility allows a variable to ap- 
pear as a goal in a conjunctive goal or in the body of the clause. During 
the computation, by the time it is called, the variable must be instan- 
tiated to a term. It will then be treated as usual. If the variable is not 
instantiated when it comes to be called, an error is reported. The meta- 
variable facility is a syntactic convenience for the system predicate call. 

The meta-variable facility greatly facilitates meta-programming, in par- 
ticular the construction of meta-interpreters and shells. Two important 
examples to be discussed in later chapters are Program 12.6, a simple 
shell, and Program 17.5, a meta-interpreter. It is also essential for defin- 
ing negation (Program 11.6) and allowing the definition of hlgher-order 
predicates to be described in Section 16.3. 

We give an example of using the meta-variable facility with a definition 
of logical disjunction, denoted by the binary infix operator "; ". The goal 
(X;Y) is true if X or Y is true. The definition is given as Program 10.9. 

10.5 Background 

An excellent discussion of meta-logical system predicates in DEC-10 Pro- 
log, and how they are used, can be found in O'Keefe (1983). 

The unification procedure for Concurrent Prolog, written in Prolog, is 
in Shapiro (1983b). 

The difficulty in correctly manipulating object-level variables in Prolog 
at the meta-level has been raised by several people. The discussion first 
extensive discussion is in Nakashima et al. (1984), where the predicates 
freeze, melt, and melt-new are introduced. The name freeze was a little 
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unfortunate, as it has been suggested for other additions to pure Prolog. 
Most notable is Colmerauer's geler (Colmerauer, 1982a), whlch allows 
the suspension of a goal and gives the programmer more control over 
goal order. Tlvs predicate is provided by Sicstus Prolog as freeze. The 
discussion of Nakashima and colleagues, although publicized in the first 
editon of thls book, was largely ignored, to be revived by Barklund (1989) 
musing over "What is a variable in Prolog?" and by attempts to do meta- 
programming in constraint logic programming languages, for example, 
Heintze et al. (1989) and Lim and Stuckey (1990). 

The Godel project (Hill and Lloyd, 1993) has advocated replacing Pro- 
log by a language that facilitates explicit manipulation of variables at a 
meta-level. In Lloyd and Hill (1989), the terms ground and nonground 
representation are used. Prolog uses a nonground representation, and 
adding freeze and numbervars allows a ground representation. 



Cuts and Negation 

Prolog provides a single system predicate, called cut, for affecting the 
procedural behavior of programs. Its main function is to reduce the 
search space of Prolog computations by dynamically pruning the search 
tree. The cut can be used to prevent Prolog from following fruitless com- 
putation paths that the programmer knows could not produce solutions. 

The cut can also be used, inadvertently or purposefully, to prune com- 
putation paths that do contain solutions. By doing so, a weak form of 
negation can be effected. 

The use of cut is controversial. Many of its uses can only be inter- 
preted procedurally, in contrast to the declarative style of programming 
we encourage. Used sparingly, however, it can improve the efficiency of 
programs without compromising their clarity. 

1 1.1 Green Cuts: Expressing Determinism 

Consider the program merge (Xs , Ys , Zs) (Program 11.1), whch merges 
two sorted lists of numbers Xs and Ys into the combined sorted list Zs. 

Merging two lists of sorted numbers is a deterministic operation. Only 
one of the five merge clauses applies for each nontrivial goal in a given 
computation. To be more specific, when comparing two numbers X and 
Y, for example, only one of the three tests X < Y, X = : = Y, and X > Y can 
be true. Once a test succeeds, there is no possibility that any other test 
will succeed. 
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merge(Xs,Ys,Zs) - 
Zs is an ordered list of integers obtained from merging 
the ordered lists of integers Xs and Ys. 

merge([XIXsl,[YIYsl,CYlZs]) - X > Y, merge(CXIXsl,Ys,Zs). 
merge (Xs, C I ,Xs). 
merge([ I ,Ys,Ys). 

Program 11.1 Merging ordered lists 

The cut, denoted ! ,  can be used to express the mutually exclusive 
nature of the tests. It is placed after the arithmetic tests. For example, 
the first merge clause is written 

Operationally, the cut is handled as follows. 
The goal succeeds and commits Prolog to all the choices made since the 

parent goal was unified with the head of the clause the cut occurs in. 
Although t h s  definition is complete and precise, its ramifications and 

implications are not always intuitively clear or apparent. 
Misunderstandings concerning the effects of a cut are a major source 

for bugs for experienced and inexperienced Prolog programmers alike. 
The misunderstandings fall into two categories: assuming that the cut 
prunes computation paths it does not, and assuming that it does not 
prune solutions where it actually does. 

The following implications may help clarify the foregoing terse defini- 
tion: 

First, a cut prunes all clauses below it. A goal p unified with a clause 
containing a cut that succeeded would not be able to produce solutions 
using clauses that occur below that clause. 

Second, a cut prunes all alternative solutions to the conjunction of 
goals that appear to its left in the clause. For example, a conjunctive 
goal followed by a cut will produce at most one solution. 

On the other hand, the cut does not affect the goals to its right in 
the clause. They can produce more than one solution in the event of 
backtraclung. However, once t h s  conjunction fails, the search proceeds 

Figure 11.1 The effect of cut 

from the last alternative prior to the choice of the clause containing the 
cut. 

Let us consider a fragment of the search tree of the query merge ( [ I ,  3 ,  
51 , [2,3] , Xs) ? with respect to Program 11.2, a version of merge with 
cuts added. The fragment is given as Figure 11.1. The query is first re- 
duced to the conjunctive query 1 < 2 ,  ! , merge ( [3,51 , [2,31,  Xs 1) ?; the 
goal 1 < 2 is successfully solved, reachng the node marked (*) in the 
search tree. The effect of executing the cut is to prune the branches 
marked (a) and (b). 

Continuing discussion of Program 11.2, the placement of the cuts in 
the three recursive clauses of merge is after the test.' The two base cases 
of merge are also deterministic. The correct clause is chosen by unifica- 
tion, and thus a cut is placed as the first goal (and in fact the only goal) in 
the body of the rule. Note that the cuts eliminate the redundant solution 
to the goal merge ( [ ] , [ I , Xs) . Previously, t h s  was accomplished more 
awkwardly, by specifying that Xs (or Ys) had at least one element. 

1. The cut after the third merge clause is unnecessary in any practical sense. Proce- 
durally, it will not cause any reduction of search. But it makes the program more 
symmetric, and like the old joke says about chicken soup, it doesn't hurt. 
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merge(Xs,Ys,Zs) - 
Z s  is an ordered list of integers obtained from merging 
the ordered lists of integers Xs and Ys. 

Program 1 1.2 Merging with cuts 

We restate the effect of a cut in a general clause C = A - B1,  . . . , Bk, !, 
Bk+*, . . . , B, in a procedure defining A. If the current goal G unifies with 
the head of C, and BI , .  . .,Bk further succeed, the cut has the following 
effect. The program is committed to the choice of C for reducing G; any 
alternative clauses for A that might unify with G are ignored. Further, 
should B, fail for i > k + 1, backtracking goes back only as far as the !. 
Other choices remaining in the computation of B,, i I k, are pruned from 
the search tree. If backtracking actually reaches the cut, then the cut fails, 
and the search proceeds from the last choice made before the choice of 
G to reduce C. 

The cuts used in the merge program express that merge is determinis- 
tic. That is, only one of the clauses can be used successfully for proving 
an applicable goal. The cut commits the computation to a single clause, 
once the computation has progressed enough to determine that this is 
the only clause to be used. 

The information conveyed by the cut prunes the search tree, and hence 
shortens the path traversed by Prolog, which reduces the computation 
time. In practice, using cuts in a program is even more important for 
saving space. Intuitively, knowing that a computation is deterministic 
means that less information needs to be kept for use in the event of 
backtracking. This can be exploited by Prolog implementations with tail 
recursion optimization, discussed in Section 11.2. 

Let us consider some other examples. Cuts can be added to the pro- 
gram for computing the minimum of two numbers (Program 3.7) in pre- 
cisely the same way as for merge. Once an arithmetic test succeeds, there 
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minimum(X,Y,Min) - 
Min is the minimum of the numbers X and Y. 

Program 11.3 minimum with cuts 

polynomial ( Term,X ) - 
T e r m  is a polynomial in X .  

polynomial(X,X) - ! .  
polynomial (Term,X) - 

constant (Term), ! . 
polynomial(~erml+Term2,X) - 

! , polynomial (Term1 , X) , polynomial (Term2, X) . 
polynomial (Terml-Term2, X) - 

! ,  polynomial(Terml,X), polynomial(Term2,X). 

polynomial(Terml*Term2,X) - 
! ,  polynomial(Terml,X), polynomial(Term2,X). 

polynomial(Terml/Term2,X) - 
! ,  polynomial(Terml,X), constant(Term2). 

polynomial(TermTN,X) - 
! ,  integer(N), N 2 0, polynomial(Term,X). 

Program 11.4 Recognizing polynomials 

is no possibility for the other test succeeding. Program 11.3 is the appro- 
priately modified version of minimum. 

A more substantial example where cuts can be added to indicate that 
a program is deterministic is provided by Program 3.29. The program 
defines the relation polynomial(Term,X) for recognizing if Term is a 
polynomial in X. A typical rule is 

Once the term being tested has been recognized as a sum (by unifying 
with the head of the rule), it is known that none of the other polynomial 
rules will be applicable. Program 11.4 gives the complete polynomial 
program with cuts added. The result is a deterministic program that has 
a mixture of cuts after conditions and cuts after unification. 
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When discussing the Prolog programs for arithmetic, whch use the un- 
derlylng arithmetic capabilities of the computer rather than a recursive 
logic program, we argued that the increased efficiency is often acheved 
at the price of flexibility. The logic programs lost their multiple uses 
when expressed as Prolog programs. Prolog programs with cuts also have 
less flexibility than their cut-free equivalents. Ths  is not a problem if the 
intended use of a program is one-way to begin with, as is often the case. 

The examples so far have demonstrated pruning useless alternatives 
for the parent goal. We give an example where cuts greatly aid efficiency 
by removing redundant computations of sibling goals. Consider the re- 
cursive clause of an interchange sort program: 

sort (Xs ,Ys) - 
append(As, [X,Y I Bsl ,Xs), 
X > Y, 
append(As, [Y,XIBs] ,Xsl), 
sort (Xsl ,Ys) . 

The program searches for a pair of adjacent elements that are out 
of order, swaps them, and continues until the list is ordered. The base 
clause is 

Consider a goal sort ( [3,2,11 , Xs). T h s  is sorted by swapping 3 and 
2, then 3 and 1, and finally 2 and 1 to produce the ordered list [I, 2,31. 
It could also be sorted by first swapping 2 and 1, then swapping 3 and 
1, and finally swapping 3 and 2, to arrive at the same solution. We know 
there is only one sorted list. Consequently there is no point in searchng 
for another alternative once an interchange is made. Ths  can be indi- 
cated by placing the cut after the test X > Y. Ths  is the earliest it is 
known that an interchange is necessary. The interchange sort program 
with cut is given as Program 11.5. 

The addition of cuts to the programs described in t h s  section does not 
alter their declarative meaning; all solutions to a given query are found. 
Conversely, removing the cuts should similarly not affect the meaning of 
the program. Unfortunately, t h s  is not always the case. A distinction has 
been made in the literature between green cuts and red cuts. Green cuts 
have been considered in t h s  section. The addition and removal of green 
cuts from a program do not affect the program's meaning. Green cuts 
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sort (Xs, Ys) - 
Ys is an ordered permutation of the list of integers Xs. 

sort (Xs,Ys) - 
append(As, [X ,Y I BSI ,Xs), 
X > Y, 
, 

append(As, [Y ,XIBsl ,Xsl), 
sort (Xsl ,Ys). 

sort (Xs ,Xs) - 
ordered(Xs1, 
! .  

ordered(Xs) - See Program 3.20. 

Program 1 1.5 Interchange sort 

prune only computation paths that do not lead to new solutions. Cuts 
that are not green are red. 

The cut interacts with system predicates such as call and ;, intro- 
duced in Chapter 10, and with predicates such as not, introduced later in 
t h s  chapter. The question is what scope should cut have, that is, whch 
choice points should be affected. Since such tricky uses of cut are not 
presented or advocated in t h s  book, we defer discussion of the scope of 
cut until Chapter 17 on interpreters. 

Exercises for Section 11.1 

(i) Add cuts to the partition program from quicksort, Program 3.22. 

(ii) Add cuts to the differentiation program, Program 3.30. 

(iii) Add cuts to the insertion sort program, Program 3.21. 

11.2 Tail Recursion Optimization 

As noted in Section 8.3, the main difference from a performance point 
of view between recursion and iteration is that recursion requires, in 
general, space linear in the number of recursive calls to execute, whereas 
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iteration can be executed in constant space, independent of the number 
of iterations performed. 

Recursive programs defined free of side effects might be considered 
more elegant and pleasing than their iterative counterparts defined in 
terms of iteration and local variables. However, an order of magnitude 
in space complexity seems an unacceptable price for such aesthetic plea- 
sures. Fortunately, there is a class of recursive programs, precisely those 
that can be translated directly into iterative ones, that can be executed in 
constant space. 

The implementation techmque that achieves t h s  space saving is called 
tail recursion optimization, or more precisely, last call optimization. Intu- 
itively, the idea of tail recursion optimization is to execute a recursive 
program as if it were an iterative one. 

Consider the reduction of a goal A using the clause 

with most general unifier 0. The optimization is potentially applicable to 
the last call in the body of a clause, B,. It reuses the area allocated for 
the parent goal A for the new goal B,. 

The key precondition for t h s  optimization to apply is that there be 
no choice points left from the time the parent goal A reduced to this 
clause to the time the last goal B, is reduced. In other words, A has no 
alternative clauses for reduction left, and there are no choice points left 
in the computation of goals to the left of B,, namely, the computation of 
the conjunctive goal (B1,B2,. . .rBn-l)O, was deterministic. 

Most implementations of tail recursion optimization can recognize to 
a limited extent at runtime whether t h s  condition occurs, by comparing 
backtracking-related information associated with the goals Bn and A. An- 
other implementation technique, clause indexing, also interacts closely 
with tail recursion optimization and enhances the ability of the imple- 
mentation to detect that t h s  precondition occurs. Indexing performs 
some analysis of the goal, to detect which clauses are applicable for 
reduction, before actually attempting to do the unifications. Typically, 
indexing is done on the type and value of the first argument of the goal. 

Consider the append program: 
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If it is used to append two complete lists, then by the time the recursive 
append goal is executed, the preconditions for tail recursion optimiza- 
tion hold. No other clause is applicable to the parent goal (if the first 
argument unifies with [XIXsl, it certady won't unify with [ 1, since we 
assumed that the first argument is a complete list). There are no other 
goals in the body besides append, so the second precondition holds vac- 
uously. 

However, for the implementation to know that the optimization ap- 
plies, it needs to know that the second clause, although not tried yet, 
is not applicable. Here indexing comes into play. By analyzing the first 
argument of append, it is possible to know that the second clause would 
fail even before trying it, and to apply the optimization in the recursive 
call to append. 

Not all implementations provide indexing, and not all cases of deter- 
minism can be detected by the indexing mechanisms available. Therefore 
it is in the interest of the programmer to help an implementation that 
supports tail recursion optimization to recognize that the preconditions 
for applying it hold. 

There is a sledgehammer techmque for doing so: Add a cut before the 
last goal of a clause, in which tail recursion optimization should always 
apply, as in 

Ths  cut prunes both alternative clauses left for the parent goal A, and 
any alternatives left for the computation of (B1,B2,. . .,B,-l)O. 

In general, it is not possible to answer if such a cut is green or red, and 
the programmer's judgment should be applied. 

It should be noted that the effect of tail recursion optimization is en- 
hanced greatly when accompanied with a good garbage collector. Stated 
negatively, the optimization is not very significant without garbage col- 
lection. The reason is that most tail recursive programs generate some 
data structures on each iteration. Most of these structures are tempo- 
rary and can be reclaimed (see, for instance, the editor in Program 12.5). 
Together with a garbage collector, such programs can run, in principle, 
forever. Without it, although the stack space they consume would remain 
constant, the space allocated to the uncollected temporary data stmc- 
tures would overflow. 
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no tX  - 
X is not provable. 

n o t  X - X, ! ,  f a i l .  
no t  X. 

Program 11.6 Negation as failure 

1 1.3 Negation 

The cut can be used to implement a version of negation as failure. Pro- 
gram 11.6 defines a predicate not (Goal), whch succeeds if Goal fails. As 
well as using cut, the program uses the meta-variable facility described in 
Chapter 10, and a system predicate fail that always fails. 

Standard Prolog provides a predicate f ail-if (Goal), whlch has the 
same behavior as not/l. Other Prologs provide the same predicate under 
the name \+/I. The rationale for not calling the system predicate not 
is that the predicate does not implement true logical negation, and it 
is misleading to label it as such. We believe that the user easily learns 
how the predicate differs from true negation, as we will explain, and 
programmers are helped rather than misled by the name. 

Let us consider the behavior of Program 11.6 in answering the query 
not G? The first rule applies, and G is called using the meta-variable 
facility. If G succeeds, the cut is encountered. The computation is then 
committed to the first rule, and not G fails. If the call to G fails, then the 
second rule of Program 11.6 is used, which succeeds. Thus not G fails if 
G succeeds and succeeds if G fails. 

The rule order is essential for Program 11.6 to behave as intended. T h s  
introduces a new, not entirely desirable, dimension to Prolog programs. 
Previously, changing the rule order only changed the order of solutions. 
Now the meaning of the program can change. Procedures where the rule 
order is critical in this sense must be considered as a single unit rather 
than as a collection of individual clauses. 

The termination of a goal not G depends on the termination of G. If G 
terminates, so does not G. If G does not terminate, then not G may or 
may not terminate depending on whether a success node is found in the 
search tree before an infinite branch. Consider the following nonterrni- 
nating program: 
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married(abraham, sarah) . 
married(X,Y) - married(Y,X). 
The query not married(abraham, sarah)? terminates (with failure) even 
though married (abraham , sarah) ? does not terminate. 

Program 11.6 is incomplete as an implementation of negation by fail- 
ure. The incompleteness arises from Prolog's incompleteness in realizing 
the computation model of logic programs. The definition of negation as 
failure for logic programs is in terms of a finitely failed search tree. A 
Prolog computation is not guaranteed to find one, even if it exists. There 
are goals that could fail by negation as failure, that do not terminate un- 
der Prolog's computation rule. For example, the query not (p(X) ,q(X) ) ?  

does not terminate with respect to the program 

The query would succeed if the q(X) goal were selected first, since that 
gives a finitely failed search tree. 

The incorrectness of Program 11.6 stems from the order of traver- 
sal of the search tree and arises when not is used in conjunction with 
other goals. Consider using not to define a relationshp unmarried- 
student(X) for someone who is both not married and a student, as 
in the following program: 

umarried-student (X) - not married(X), student (X) 

student (bill) . 
married( joe) . 

The query unmarried-student (X)? fails with respect to the preceding 
data, ignoring that X=bill is a solution logically implied by the rule and 
two facts. The failure occurs in the goal not married(](), since there is a 
solution X=j oe. The problem can be avoided here by swapping the order 
of the goals in the body of the rule. 

A similar example is the query not (X=l), X=2?, whch fails although 
there is a solution X=2. 

The implementation of negation as failure is not guaranteed to work 
correctly for nonground goals, as the foregoing examples demonstrate. 
In most implementations of Prolog, it is the responsibility of the pro- 
grammer to ensure that negated goals are ground before they are solved. 
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variants ( Terml, Term21 - 
Terml and Term2 are variants. 

variants(Terml,Term2) - 
verify((numbervars(Terml,O,N), 
numbervars(Term2,O,N), 
Terml=Term2)). 

verify ( Goal) - 
Goal has a true instance. Verifying this is not done 
constructively, so variables are not instantiated in the process. 

verify(Goa1) - nothot Goal). 
numbervars (Term, N, N1) - See Program 10.8. 

Program 11.7 Testing if terms are variants 

Thls can be done either by a static analysis of the program or by a run- 
time check, using the predicate ground defined in Program 10.4. 

The predicate not is very useful. It allows us to define interesting con- 
cepts. For example, consider a predicate disjoint (Xs,Ys), true if two 
lists Xs and Ys have no elements in common. It can be defined as 

disjoint (Xs ,Ys) - not (member(Z,Xs) , member (z,Ys)). 
Many other examples of using not will appear in the programs through- 
out this book. 

An interesting property of not (Goal) is that it never instantiates the 
arguments in Goal. This is because of the explicit failure after the call 
to Goal succeeds, which undoes any bindings made. This property can 
be exploited to define a procedure verify(Goal1, given as part of Pro- 
gram 11.7, whch determines whether a goal is true without affecting 
the current state of the variable bindings. Double negation provides the 
means. 

We note in passing that negation as implemented in Prolog shares a 
feature with negation in natural language. A doubly negated statement is 
not the same as the equivalent affirmative statement. 

The program for verify can be used in conjunction with Program 10.8 
for numbervars to define a notion of equality intermediate between unifi- 
ability provided by =/2 and syntactic equality provided by ==/2. The 
predicate variants(X,Y) defined in Program 11.7 is true if two terms 
X and Y are variants. Recall from Chapter 4 that two terms are variants 

X f Y -  
X and Y are not unifiable. 

X # X - ! ,  fail. 
x f  Y .  

Program 11.8 Implementing f 

if they are instances of each other. Ths  can be acheved with the follow- 
ing trick, implemented in Program 11.7. Instantiate the variables using 
numbervars, test whether the terms unify, and undo the instantiation. 

The three forms of comparison =/2, variant/2, and ==/2 are pro- 
gressively stronger, with unifiability being the weakest and most general. 
Identical terms are variants, and variant terms are unifiable. The distinc- 
tion between the different comparisons vanishes for ground terms; for 
ground terms all three comparisons return the same results. 

The conjunction of cut and fail used in the first clause of not in Pro- 
gram 11.6 is known as the cut-fail combination. The cut-fail combination 
is a technique that can be used more generally. It allows early failure. A 
clause with a cut-fail combination says that the search need not (and will 
not) proceed. 

Some cuts in a cut-fail combination are green cuts. That is, the program 
has the same meaning if the clause containing the cut-fail combination 
is removed. For example, consider Program 10.4 defining the predicate 
ground. An extra clause can be added, which can reduce the search with- 
out affecting the meaning: 

ground(Term) - var (Term) , ! , fail 

The use of cut in Program 11.6 implementing not is not green, but red. 
The program does not behave as intended if the cut is removed. 

The cut-fail combination is used to implement other system predi- 
cates involving negation. For example, the predicate # (written as \= in 
Standard Prolog) can be simply implemented via unification and cut-fail, 
rather than via an infinite table, with Program 11.8. Ths  program is also 
only guaranteed to work correctly for ground goals. 

With ingenuity, and a good understanding of unification and the ex- 
ecution mechanism of Prolog, interesting definitions can be found for 
many meta-logical predicates. A sense of the necessary contortions can 
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be found in the program for same-var (X ,Y), whch succeeds if X and Y 
are the same variable and otherwise fails: 

same-var (f oo, Y) -- var (Y) , ! , fail. 
same-var (X, Y) - var (X) , var (Y) . 
The argument for its correctness follows: "If the arguments to same-var 
are the same variable, binding X to foo will bind the second argument 
as well, so the first clause will fail, and the second clause will succeed. 
If either of the arguments is not a variable, both clauses will fail. If the 
arguments are different variables, the first clause will fail, but the cut 
stops the second clause from being considered." 

Exercises for Section 1 1.3 

(i) Define the system predicate \== using == and the cut-fail combina- 
tion. 

(ii) Define nonvar using var and the cut-fail combination. 

1 1.4 Red Cuts: Omitting Explicit Conditions 

Prolog's sequential choice of rules and its behavior in executing cut are 
the key features necessary to compose the program for not. The pro- 
grammer can take into account that Prolog ulll only execute a part of 
the procedure if certain conditions hold. T h s  suggests a new, and rnis- 
guided, style of programming in Prolog, where the explicit conditions 
governing the use of a rule are omitted. 

The prototypical (bad) example in the literature is a modified version 
of Program 11.3 for minimum. The comparison in the second clause of 
the program can be discarded to give the program 

The reasoning offered to justify the program is as follows: "If X is less 
than or equal to Y, then the minimum is X. Otherwise the minimum 
is Y, and another comparison between X and Y is unnecessary." Such a 
comparison is performed, however, by Program 11.3. 
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There is a severe flaw with t h s  reasoning. The modified program has 
a different meaning from the standard program for minimum. It succeeds 
on the goal minimum (2,5,5). The modified program is a false logic pro- 
gram. 

The incorrect minimum goal implied by the modified program can be 
avoided. It is necessary to make explicit the unification between the first 
and th rd  arguments, whlch is implicit in the first rule. The modified rule 
is 

Ths  techmque of using the cut to commit to a clause after part of the 
unification has been done is quite general. But for minimum the resultant 
code is contrived. It is far better to simply write the correct logic pro- 
gram, adding cuts if efficiency is important, as done in Program 11.3. 

Using cut with the operational behavior of Prolog in mind is problem- 
atic. It allows the writing of Prolog programs that are false when read 
as logic programs, that is, have false conclusions but behave correctly 
because Prolog is unable to prove the false conclusions. For example, if 
minimum goals are of the form minimum(X, Y, Z), where X and Y are instan- 
tiated, but Z is not, the modified program behaves correctly. 

The only effect of the green cuts presented in Section 11.1 is to prune 
from the search tree branches that are known to be useless. Cuts whose 
presence in a program changes the meaning of that program are called 
red cuts. The removal of a red cut from a program changes its meaning, 
i.e., the set of goals it can prove. 

A standard Prolog programming techmque using red cuts is the omis- 
sion of explicit conditions. Knowledge of the behavior of Prolog, specifi- 
cally the order in which rules are used in a program, is relied on to omit 
conditions that could be inferred to be true. Ths  is sometimes essen- 
tial in practical Prolog programming, since explicit conditions, especially 
negative ones, are cumbersome to specify and inefficient to run. But mak- 
ing such omissions is error-prone. 

Omitting an explicit condition is possible if the failure of the previous 
clauses implies the condition. For example, the failure of the comparison 
XIY in the minimum code implies that X is greater than Y. Thus the test 
X > Y can be omitted. In general, the explicit condition is effectively the 
negation of the previous conditions. By using red cuts to omit conditions, 
negation is being expressed implicitly. 
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delete(Xs,X,Ys) - 
Ys is the result of deleting all occurrences of X from the list Xs. 

Program 11.9a Deleting elements from a list 

delete(Xs,X,Ys) - 
Ys is the result of deleting all occurrences of X from the list Xs. 

Program 11.9b Deleting elements from a list 

Consider Program 11.5 for interchange sort. The first (recursive) rule 
applies whenever there is an adjacent pair of elements in the list that 
are out of order. When the second sort rule is used, there are no such 
pairs and the list must be sorted. Thus the condition ordered(Xs) can 
be omitted, leaving the second rule as the fact sort (Xs ,Xs). As with 
minimum, this is an incorrect logical statement. 

Once the ordered condition is removed from the program, the cut 
changes from green to red. Removing the cut from the variant without 
the ordered condition leaves a program that gives false solutions. 

Let us consider another example of omitting an explicit condition. Con- 
sider Program 3.18 for deleting elements in a list. The two recursive 
clauses cover distinct cases, corresponding to whether or not the head 
of the list is the element to be deleted. The distinct nature of the cases 
can be indicated with cuts, as shown in Program 11.9a. 

By reasoning that the failure of the first clause implies that the head 
of the list is not the same as the element to be deleted, the explicit 
inequality test can be omitted from the second clause. The modified 
program is given as Program 11.9b. The cuts in Program 11.9a are green 
in comparison to the red cut in the first clause of Program 11.9b. 

In general, omitting simple tests as in Program 11.9b is inadvisable. 
The efficiency gain by their omission is minimal compared to the loss of 
readability and modifiability of the code. 

Cuts and Negation 

if-then-else(P,Q,R) - 
Either P and Q , or not P and R. 

Program 11.10 If-then-else statement 

Let us investigate the use of cut to express the if-then-else control 
structure. Program 11.10 defines the relation i f  -then-else (P, Q, R ) .  
Declaratively, the relation is true if P and Q are true, or not P and R are 
true. Operationally, we prove P and, if successful, prove Q, else prove R. 

The utility of a red cut to implement t h s  solution is self-evident. The 
alternative to using a cut is to make explicit the condition under whlch R 
is run. The second clause would read 

if-then-else(P,Q,R) - not P, R. 
This could be expensive computationally. The goal P will have to be com- 
puted a second time in the determination of not. 

We have seen so far two hnds  of red cuts. One kind is built into the 
program, as in the definitions of not and f .  A second lund was a green 
cut that became red when conditions in the programs were removed. 
However, there is a th rd  kind of red cut. A cut that is introduced into 
a program as a green cut that just improves efficiency can turn out to be 
a red cut that changes the program's meaning. 

For example, consider trying to write an efficient version of member 
that does not succeed several times when there are multiple copies of 
an element in a list. Taking a procedural view, one might use a cut to 
avoid backtracking once an element is found to be a member of a list. 
The corresponding code is 

member (X, [X 1 Xsl) -- ! . 
member (X , [Y I Ysl ) - member (X , Ys) . 
Adding the cut indeed changes the behavior of the program. However, 
it is now not an efficient variant of member, since, for example, the 
query member (X , [I ,  2 , 3 ]  ) ? gives only one solution, X=l. It is a variant 
of member-check, given as Program 7.3, with the explicit condition X # 
Y omitted, and hence the cut is red. 
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Exercises for Section 1 1.4 

(i) Discuss where cuts could be placed in Program 9.3 for substi- 
tute. Consider whether a cut-fail combination would be useful, and 
whether explicit conditions can be omitted. 

(ii) Analyze the relation between Program 3.19 for select and the pro- 
gram obtained by adding a single cut: 

select (X, [XI Xsl , XS) -- ! . 
select (X, [Y IYs] , [Y I Zs] ) - select (X,Ys,Zs). 
(Hint: Consider variants of select.) 

11.5 Default Rules 

Logic programs with red cuts essentially consist of a series of special 
cases and a default rule. For example, Program 11.6 for not had a special 
case when the goal G succeeded and a default fact not G used otherwise. 
The second rule for if-then-else in Program 11.10 is 

It is used by default if P fails. 
Using cuts to acheve default behavior is in the logic programming 

folklore. We argue, using a simple example, that often it is better to 
compose an alternative logical formulation than to use cuts for default 
behavior. 

Program 11.1 l a  is a naive program for determining social welfare pay- 
ments. The relation pension(Person,Pension) determines which pen- 
sion, Pension, a person, Person, is entitled to. The first pension rule 
says that a person is entitled to an invalid's pension if he is an invalid. 
The second rule states that people over the age of 65 are entitled to an 
old age pension if they have contributed to a suitable pension scheme 
long enough, that is, they must be paid-up. People who are not paid up 
are still entitled to supplementary benefit if they are over 65. 

Consider extending Program 11.1 l a  to include the rule that people re- 
ceive nothng if they do not qualify for one of the pensions. The proce- 
dural "solution" is to add cuts after each of the three rules, and an extra 
default fact 

Ths  version is given as Program 1 1.1 lb.  
Program 11.1 l b  behaves correctly on queries to determine the pension 

to whch people are entitled, for example, pension (mc-tavish, X) ?. The 
program is not correct, though. The query pension (mc-t avish , noth- 
ing)? succeeds, whch mc-tavish wouldn't be too happy about, and 
pension(X,old-age-pension)? has the erroneous unique answer X=mc- 
tavish. The cuts prevent alternatives being found. Program 11.1 l b  only 
works correctly to determine the pension to whch a given person is 
entitled. 

A better solution is to introduce a new relation entitlement (X, Y), 
whch is true if X is entitled to Y. It is defined with two rules and uses 
Program 11.1 la  for pension: 

entitlement (X,Y) - pension(X,Y) . 
entitlement (X ,nothing) - not ~ension(X,Y) . 

Ths  program has all the advantages of Program 1 l . l l b  and neither 
of the disadvantages mentioned before. It shows that making a person 

pension (Person,Pension) - 
Pension is the type of pension received by Person. 

Program 11.1 l a  Determining welfare payments 

pension (Person,Pension) - 
Pension is the type of pension rcccivcd by Person. 

pension(X,invalid-pension) - invalid()(), ! .  
pension(X, old-age-pension) - over-65 (X) , paid-upO() , ! . 
pension(X,supplementary-benefit) - over_65(X), ! .  

~ension(x,nothing). 

Program 11.1 l b  Determining welfare payments 
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entitled to nothing as the default rule is really a new concept and should 
be presented as such. 

11.6 Cuts for Efficiency 

Earlier in this chapter, we claimed that the efficiency of some Prolog 
programs could be improved through sparing use of the cut. Thls sec- 
tion explores the claim. Two issues are addressed. The first is the mean- 
ing of efficiency in the context of Prolog. The second is appropriate uses 
of cut. 

Efficiency relates to utilization of resources. The resources used by 
computations are space and time. To understand Prolog's use of space 
and time, n7e need to consider Prolog implementation technology. 

The two major areas of memory manipulated during a Prolog computa- 
tion are the stack and the heap. The stack, called the local stack in many 
Edinburgh Prolog implementations, is used to govern control flow. The 
heap, called the global stack in many Edinburgh Prolog implementations, 
is used to construct data structures that are needed throughout the com- 
putation. 

Let us relate stack management to the computation model of Prolog. 
Each time a goal is chosen for reduction, a stack frame is placed on the 
stack. Pointers are used to specify subsequent flow of control once the 
goal succeeds or fails. The pointers depend on whether other clauses can 
be used to reduce the chosen goal. Handling the stack frame is simplified 
considerably if it is known that only one clause is applicable. Techrucally, 
a choice point needs to be put on the stack if more than one clause is 
applicable. 

Experience has shown that avoiding placing choice points on the stack 
has a large impact on efficiency. Indeed, Prolog implementation tech- 
nology has advanced to the stage that deterministic code, i.e., without 
choice points, can be made to run almost as efficiently as conventional 
languages. 

Cuts are one way that Prolog implementations know that only one 
clause is applicable. Another way is by the effective use of indexing. 
Whether a cut is needed to tell a particular Prolog implementation that 
only one clause is applicable depends on the particular indexing scheme. 

In this book, we often use the first argument to differentiate between 
clauses. Indexing on the first argument is the most common among Pro- 
log implementations. For effective use, consult your Prolog manual. 

Efficient use of space is determined primarily by controlling the growth 
of the stack. Already we have discussed the advantages of iterative code 
and last call optimization. Too many frames placed on the stack can 
cause computations to abort. In practice this is a major concern. Running 
out of stack space is a common symptom of an infinite loop or running a 
highly recursive program. For example, Program 3.9 implementing Ack- 
ermann's function, when adapted for Prolog arithmetic, quickly exhausts 
an implementation's capacity. 

Time complexity is approximated by number of reductions. Thus effi- 
cient use of time can be determined by analyzing the number of reduc- 
tions a program makes. In Part I, we analyzed different logic programs by 
the size of proof trees. In Prolog, size of search tree is a better measure, 
but it becomes difficult to incorporate Prolog's nondeterminism. 

Probably the most important approach to improving time performance 
is better algorithms. Although Prolog is a declarative language, the no- 
tion of an algorithm applies equally well to Prolog as to other languages. 
Examples of good and bad algorithms for the same problem, together 
with their Prolog implementations, have been given in previous chap- 
ters. Linear reverse using accumulators (Program 3.16b) is clearly more 
efficient than naive reverse (Program 3.16a). Quicksort (Program 3.22) is 
better than permutation sort (Program 3.20). 

Besides coming up with better algorithms, several things can be done 
to influence the performance of Prolog programs. One is to choose a bet- 
ter implementation. An efficient implementation is characterized by its 
raw speed, its indexing capabilities, support for tail recursion optimiza- 
tion, and garbage collection. The speed of logic programming languages 
is usually measured in LIPS, or logical inferences per second. A logical 
inference corresponds to a reduction in a computation. Most Prolog im- 
plementations claim a LIPS rating. The standard benchmark, by no means 
ideal, is to time Program 3.16a, naive reverse, reversing a list. There are 
496 reductions for a list of 30 elements. 

Once the implementation is fixed, the programs themselves can be 
tuned by 

Good goal ordering, where the rule is "fail as early as possible" 
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Exploitation of the indexing facility, by ordering arguments appropri- 
ately 

Elimination of nondeterminism using explicit conditions and cuts 

Let us elaborate on the third item and discuss guidelines for using 
cut. As discussed, Prolog implementations will perform more efficiently 
if they know a predicate is deterministic. The appropriate sparing use 
of cut is primarily for saying that predicates are deterministic, not for 
controlling backtraclung. 

The two basic principles for using a cut are 

Make cuts as local as possible. 

Place a cut as soon as it is known that the correct clause has been 
chosen. 

Let us illustrate the principles with the quicksort program, Program 
3.22. The recursive clause is as follows 

quicksort ( [X I Xsl ,Ys) - 
partition(~s , ~ , ~ i t t l e s  ,Bigs), quicksort(Littles3Ls) 9 

quicksort (Bigs ,Bs) , a p p e n d b ,  [X I Bsl ,Ys) . 

We know there is only one solution for the partition of the list. Rather 
than place a cut in the clause for quicksort, the partition predicate 
should be made deterministic. Thls is in accordance with the first princi- 
ple. 

One of the partition clauses is 

If the clause succeeds, then no other will be applicable. But the cut 
should be placed before the recursive call to partition rather than after, 
according to the second principle. 

Where and whether to place cuts can depend on the Prolog implemen- 
tation being used. Cuts are needed only if Prolog does not know the 
determinism of a predicate. If, for example, indexing can determine that 
only one predicate is applicable, no cuts are needed. In a system without 
indexing, cuts would be needed for the same program. 

Having discussed appropriate use of cuts, we stress that adding cuts 
to a program should typically be done after the program runs correctly. 

Cuts a n d  Negation 

A common misconception is that a program can be lixed from giving 
extraneous answers and behaving incorrectly by adding cuts. Ths  is not 
so. Prolog code should be debugged as declaratively as possible, a topic 
we discuss in Chapter 13. Only when the logic is correct should efficiency 
be addressed. 

The final factor that we consider in evaluating the efficiency of Prolog 
programs is the creation of intermediate data structures, which primarily 
affects use of the heap. Minimizing the number of data structures being 
generated is a subject that has not received much attention in the Prolog 
literature. We analyze two versions of the predicate sublist (Xs ,Ys) to 
illustrate the type of reasoning possible. 

The two versions of sublist that we consider involve Program 3.13 
for calculating prefutes and suffixes of lists. We must also specify the 
comparison with respect to a particular use. The one chosen for the 
analysis is whether a given list is a sublist of a second given list. The 
first clause that follows denotes a sublist as a prefix of a suffix, and the 
second clause defines a sublist as a suffix of a prefix: 

Although both programs have the same meaning, there is a difference 
in the performance of the two programs. If the two arguments to sub- 
list are complete lists, the first clause simply goes down the second list, 
returning a s u m ,  then goes down the first list, checlung if the suffix is a 
prefix of the first list. Ths  execution does not generate any new interme- 
diate data structures. On the other hand, the second clause creates a new 
list, which is a prefix of the second list, then checks if\this list is a suffix 
of the first list. If the check fails, backtraclung occurs, and a new prefix 
of the first list is created. 

Even though, on the average, the number of reductions performed by 
the two clauses is the same, they are different in their efficiency. The first 
clause does not generate new structures (does not cons, in Lisp jargon). 
The second clause does. When analyzing Lisp programs, it is common to 
examine the consing performance in great detail, and whether a program 
conses or not is an important efficiency consideration. We feel that the 
issue is important for Prolog programs, but perhaps the state of the art 
of studying the performance of large Prolog programs has not matured 
enough to dictate such analyses. 
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1 1.7 Background 

The cut was introduced in Marseilles Prolog (Colmerauer et al., 1973) 
and was perhaps one of the most influential design decisions in Pro- 
log. Colmerauer experimented with several other constructs, whch cor- 
responded to special cases of the cut, before coming up with its full 
definition. 

The terminology green cuts and red cuts was introduced by van Emden 
(1982), in order to, try to distinguish between legitimate and illegitimate 
uses of cuts. Alternative control structures, whlch are more structured 
then the cut, are constantly being proposed, but the cut still remains the 
workhorse of the Prolog programmer. Some of the extensions are if-then- 
else constructs (O'Keefe, 1985) and notations for declaring that a relation 
is functional, or deterministic, as well as "weak-cuts," "snips," remote- 
cuts (Chikayama, 1984), and not itself, whlch, as currently implemented, 
can be viewed as a structured application of the cut. 

The controversial nature of cut has not been emphasized in this book. 
A good starting place to read about some of cut's problems, and the 
variation in its implementation, is Moss (1986). Many of the difficulties 
arise from the scope of the cut, and how cuts interact with the system 
predicates for control such as conjunction, disjunction, and the meta- 
variable facility. For example, two versions of call have been suggested, 
one that blocks the cut and one that does not. Further discussion of cut 
can be found in O'Keefe (1990), including an exposition on when cut 
should be used. 

Some Prologs provide i f  -then-else (P ,  4 ,  R )  under the syntax P - 9; 
R and an abridged if-then form P - 9. Whether to include if-then-else 
in Standard Prolog has been a controversial issue. The trade-off is con- 
venience for some programming tasks versus thorny semantic anoma- 
lies. T h s  issue has been raised several times on the USENET newsgroup 
comp.lang.prolog. Relevant comments were collected in the May 1991 is- 
sue of the Newsletter of the Association for Logic Programming, Volume 
4, No. 2. 

The cut is also the ancestor of the commit operator of concurrent 
logic languages, whch was first introduced by Clark and Gregory (1981) 
in their Relational Language. The commit cleans up one of the major 
drawbacks of the cut, whch is destroying the modularity of clauses. 

Cuts and Negation 

The cut is asymmetric, because it eliminates alternative clauses below 
the clause in whch it appears, but not above. Hence a cut in one clause 
affects the meaning of other clauses. The commit, on the other hand, is 
symmetric and therefore cannot implement negation as failure; it does 
not destroy the modularity of clauses. 

The pioneering work on Prolog implementation technology was in 
D.H.D. Warren's Ph.D. thesis (1977). Warren later added tail recursion 
optimization to h s  original DEC-10 compiler (1986). Tail recursion op- 
timization was implemented concurrently by Bruynooghe (1982) in h s  
Prolog system. A motley collection of papers on Prolog implementations 
can be found in Campbell (1984). 

Most current compilers and implementation technology are based on 
the WAM (Warren Abstract Machne), published as a somewhat cryptic 
techmcal report (Warren, 1983). Readers seriously interested in program 
efficiency need to understand the WAM. The best places to start reading 
about the WAM are Maier and Warren (1988) and Ait-~aci (1991). 

References to negation in logic programming can be found in Sec- 
tion 5.6. Implementations of a sound negation as failure rule in dialects 
of Prolog can be found in Prolog-I1 (van Caneghem, 1982) and MU-Prolog 
(Naish, 1985a). 

The program for same-var and its argument for correctness are due to 
O'Keefe (1983). 

Program 1 l . l l b  for pension is a variant of an example due to Sam 
Steel for a Prolog course at the University of Edinburgh - hence the 
Scottish flavor. Needless to say, t h s  is not intended as, nor is it an 
accurate expression, of the Scottish or British social welfare system. 



Extra-Logical Predicates 

There is a class of predicates in Prolog that lie outside the logic program- 
ming model, and are called extra-logical predicates. These predicates 
acheve a side effect in the course of being satisfied as a logical goal. 
There are basically three types of extra-logical system predicates: pred- 
icates concerned with I/O, predicates for accessing and manipulating the 
program, and predicates for interfacing with the underlying operating 
system. Prolog 1/0 and program manipulation predicates are discussed 
in t h s  chapter. The interface to the operating system is too system- 
dependent to be discussed in this book. 

A very important class of predicates that produces side effects is that 
concerned with I/O. Any practical programming language must have a 
mechanism for both input and output. The execution model of Prolog, 
however, precludes the expression of 1/0 withn the pure component of 
the language. 

The basic predicate for input is reado[). Ths  goal reads a term from 
the current input stream, usually from the terminal. The term that has 
been read is unified with X, and read succeeds or fails depending on the 
result of unification. 

The basic predicate for output is wr i t e  (X). Ths  goal writes the term 
X on the current output stream, as defined by the underlying operating 
system, usually to the terminal. Neither read nor wri te  give alternative 
solutions on backtraclung. 
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writeln( [XI Xsl ) - write (XI, writeln(Xs) 
writeln( [ 1 )  - nl. 
Program 12.1 Writing a list of terms 

The normal use of read is with a variable argument X, whch acquires 
the value of the first term in the current input stream. The instantiation 
of X to somethng outside the program lies outside the logical model, 
since each time the procedure is called, reado() succeeds with a (pos- 
sibly) different value for X. 
Read attempts to parse the next term on the input stream. If it fails, it 

prints an error message on the terminal. 
There is an asymmetry between the extra-logical nature of read and 

write. If all calls to write were replaced with the goal true, whch always 
succeeded once, the semantics of the program would be unaffected. That 
is not true for read. 

Early Prolog implementations did not concentrate on input and output 
facilities, providing the basic predicates read and write, or their equiva- 
lents, and little else. More recent Prolog implementations have a wider 
range of formatted 1/0 options, some of which have been adopted in 
Standard Prolog. In t h s  book, the emphasis is not on I/O, and so we re- 
strict outselves to basic predicates and some simple utilities described 
in the rest of t h s  section. For more elaborate I/O, consult your particular 
Prolog manual. 

A useful utility is a predicate writeln(Xs), analogous to the Pascal 
command, whch writes the list of terms Xs as a line of output on the cur- 
rent output stream. It is defined in Program 12.1. The predicate writeln 
uses the builtin predicate nl, whch causes the next output character to 
be on a new line. As an example of its use, executing the conjunctive goal 
(X=3, writeln( ['The value of X is ' ,XI ) produces the output 

The value of X is 3 

Note the use of the quoted atom 'The value of X is '. Both read and 
write operate at the term level. A lower level for I/O is the character 
level. Edinburgh Prolog assumed that characters were represented by 
ASCII codes. Standard Prolog takes a broader perspective to support such 
character sets as Kanji. The basic output predicate is put-char(Char), 

read-word-list ( Words) - 
Words is a list of words read from the input stream via side effects. 

read-word-list(Words) - 
get-char(FirstChar1, 
read-words(FirstChar,Words). 

read-words (Char, [Word l Words] ) - 
word-char(Char1, 
read-word(Char,Word,NextChar), 
read-words(NextChar,Words). 

read-words(Char,Words) - 
f ill-char (Char), 
get-char(NextChar), 
read-words(NextChar,Words). 

read-words(Char,[ 1 )  - 
end-of-words-char(Char-1. 

read-word(Char,Word,NextChar) - 
word-chars(Char,Chars,NextChar), 
atom-list(Word,Chars). 

word-chars(Char,[CharlChars],FinalChar) + 

word-char(Char), ! ,  
get-char(NextChar1, 
word-chars(NextChar,Chars,FinalChar). 

word-chars(Char, [ ],Char) - 
not word-char(Chax-). 

Program 12.2 Reading in a list of words 

which outputs the character Char on the current output stream. Stan- 
dard Prolog allows you to specify the output stream, but we do not give 
examples here. The basic input predicate at the character level is get- 
char (Char), whch reads a character C from the current input stream 
and then unifies C with Char. 

Program 12.2 defines read-word-list (Words), a utility predicate for 
reading in a list of words, Words, from the current input, terminated 
by an end-of-words character, for example a period. Specific definitions 
of the predicates word-char/l, f ill-char/l, and end-of -words-char/l 
need to be added. It can be used to allow freer form input. In Pro- 
gram 12.2, words can be separated by arbitrarily many fill characters. 
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The predicate read-word-list reads a character, FirstChar, and calls 
read-words (FirstChar, Words). Ths  predicate does one of three ac- 
tions, depending on what FirstChar is. If FirstChar is a word character, 
then the next word is found. Word characters in Standard Prolog are up- 
percase and lowercase letters, underscores, and digits. The second action 
is to ignore filling characters, and so the next character is read, and the 
program continues recursively. Finally, if the character denoting the end 
of the words is reached, the program terminates and returns the list of 
words. 

It is important that the program must always read a character ahead 
and then test what it should do. If the character is useful, for example, a 
word character, it must be passed down to be part of the word. Otherwise 
characters can get lost when backtracking. Consider the following read 
and process loop: 

process ( [ I )  - 
get-char (C) , end-of -words-char(C) . 

process ( [W I Words1 - 
get-char (C) , word-char (C) , get-word(C ,W) process (Words) ' 

If the first character in a word is not an end-of-words-char, the first 
clause will fail, and the second clause will cause the reading of the next 
character. 

Returning to Program 12.2, the predicate read-word(Char , Word, 
NextChar) reads a word Word given the current character Char and re- 
turns the next character after the word, NextChar. The list of characters 
composing the word is found by word_chars/3 (with the same argu- 
ments as read-word). The word is created from the list of characters 
using the system predicate atom_list/2. In word-chars there is the 
same property of loolung ahead one character, so that no character is 
lost. 

Predicates such as f ill-char/l and word-char/l exemplify data ab- 
straction in Prolog. 

Exercise for Section 12.1 

(i) Extend Program 12.2 to handle a wider range of inputs, for example, 
numbers. 

12.2 Program Access and Manipulation 

So far programs have been assumed to be resident in computer memory, 
without discussion of how they are represented or how they got there. 
Many applications depend on accessing the clauses in the program. Fur- 
thermore, if programs are to be modified at runtime, there must be a way 
of adding (and deleting) clauses. 

The first Prologs, implemented as simple interpreted systems, classi- 
fied predicates as'builtin and static or user-defined and dynamic. The 
subsequent development of compilers and libraries require a more so- 
phsticated classification. 

Each user-defined predicate is either dynamic or static. The procedure 
of a dynamic predicate can be altered, whereas the procedure of a static 
predicate cannot. Builtin predicates are assumed to be static. The system 
predicates introduced in t h s  section apply only to dynamic predicates 
and will probably cause error messages if applied to static predicates. 
In this book, we assume all predicates are dynamic unless otherwise 
specified. In many Prologs, declarations are needed to make a predicate 
dynamic. 

The system predicate for accessing a program is clause (Head, Body). 
The goal clause (Head,Body) must be called with Head instantiated. The 
program is searched for the first clause whose head unifies with Head. 
The head and body of this clause are then unified with Head and Body. 
On backtraclung, the goal succeeds once for each unifiable clause in the 
procedure. Note that clauses in the program cannot be accessed via their 
body. 

Facts have the atom true as their body. Conjunctive goals are repre- 
sented using the binary functor , . The actual representations can be 
easily abstracted away, however. 

Consider Program 3.12 for member: 

member (X, [X I Xsl ) . 
member (X , [Y I Ys] ) - member (X ,Ys) 
The goal clause (member (X , Ys) ,Body) has two solutions: {YS= [X/Xs] , 
Body=true) and {Ys= [Y JYsll , Body=member (X, Ysl) 1. Note that a fresh 
copy of the variables appearing in the clause is made each time a unifi- 
cation is performed. In terms of the meta-logical primitives freeze and 
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melt, the clause is stored in frozen form in the program. Each call to 
c lause  causes a new melt of the frozen clause. Thls is the logical coun- 
terpart of the classic notion of reentrant code. 

System predicates are provided both to add clauses to the program 
and to remove clauses. The basic predicate for adding clauses is as- 
s e r t z  (Clause), which adds Clause as the last clause of the correspond- 
ing procedure. For example, a s s e r t z  (f a the r  (haran, l o t )  ) ? adds the 
f a t h e r  fact to the program. When describing rules an extra level of 
brackets is needed for technical reasons concerning the precedence of 
terms. For example, a s s e r t z  ( (parent (X, Y) - f a t h e r  (X ,Y) ) ) is the 
correct syntax. 

There is a variant of a s se r t z ,  a s se r t a ,  that adds the clause at the 
beginning of a procedure. 

If Clause is uninstantiated (or if Clause has the form H-B with H 
uninstantiated), an error condition occurs. 

The predicate r e t r a c t  (C) removes from the program the first clause 
in the program unifying with C. Note that to retract a clause such as 
a - b,  c ,  d, you need to specify r e t r a c t  ( (a - C) ). A call to r e t r a c t  
may only mark a clause for removal, rather than physically removing it, 
and the actual removal would occur only when Prolog's top-level query is 
solved. This is for implementation reasons, but may lead to anomalous 
behavior in some Prologs. 

Asserting a clause freezes the terms appearing in the clause. Retracting 
the same clause melts a new copy of the terms. In many Prologs this 
is exploited to be the easiest way of copying a term. Standard Prolog, 
however, provides a builtin predicate copy_term/2 for this purpose. 

The predicates a s s e r t  and r e t r a c t  introduce to Prolog the possibil- 
ity of programming with side effects. Code depending on side effects for 
its successful execution is hard to read, hard to debug, and hard to rea- 
son about formally. Hence these predicates are somewhat controversial, 
and using them is sometimes a result of intellectual laziness or incompe- 
tence. They should be used as little as possible when programming. Many 
of the programs to be given in this book can be written using a s s e r t  and 
r e t r a c t ,  but the results are less clean and less efficient. Further, as Pro- 
log compiler technology advances, the inefficiency in using a s s e r t  and 
r e t r a c t  will become more apparent. 

It is possible, however, to give logical justification for some limited 
uses of a s s e r t  and r e t r a c t .  Asserting a clause is justified, for exam- 
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ple, if the clause already logically follows from the program. In such a 
case, adding it will not affect the meaning of the program, since no new 
consequences can be derived. Perhaps program efficiency will improve, 
as some consequences could be derived faster. T h s  use is exemplified in 
the lemma construct, introduced in Section 12.3.  

Similarly, retracting a clause is justified if the clause is logically re- 
dundant. In t h s  case, retracting constitutes a lund of logical garbage 
collection, whose purpose is to reduce the size of the program. 

1 2.3 Memo-Func tions 

Memo-functions save the results of subcomputations to be used later in 
a computation. Remembering partial results is impossible withn pure 
Prolog, so memo-functions are implemented using side effects to the 
program. Programming in this way can be considered bottom-up pro- 
gramming. 

The prototypical memo-function is lemma(Goa1). Operationally, it at- 
tempts to prove the goal Goal and, if successful, stores the result of the 
proof as a lemma. It is implemented as 

The next time the goal P is attempted, the new solution will be used, 
and there will be no unnecessary recomputation. The cut is present to 
prevent the more general program being used. Its use is justified only if 
P does not have multiple solutions. 

Using lemmas is demonstrated with Program 12.3  for solving the Tow- 
ers of Hanoi problem. The performance of Program 3.31 in solving the 
problem is dramatically improved. It is well known that the solution of 
the Towers of Hanoi with N disks requires ZN - 1 moves. For example, 
ten disks require 1,023 moves, or in terms of Program 3.31, 1,023 calls 
of hanoi ( I ,  A ,  B , C , Xs) . The overall number of general calls of hanoi/5 
is significantly more. 

The solution to the Towers of Hanoi repeatedly solves subproblems 
moving the identical number of disks. A memo-function can be used to 
recall the moves made in solving each subproblem of moving a smaller 
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hanoi(N,A,B,C,Moves) - 
Moves is the sequence of moves required to move N disks 
from peg A to peg B using peg C as an intermediary 
according to the rules of the Towers of Hanoi puzzle. 

hanoi(l,A,B,C, [A to B]) . 
hanoi(N,A,B,C,Moves) - 

N > 1, 
N1 is N-1, 
lernma(hanoi(Nl,A,C,B,Msl)), 
hanoi(Nl,C,B,A,Ms2), 
append(Ms1, [A to B IMs21 ,Moves) . 

lemma(P) - P, asserta((P - ! I ) .  

Testing 

test-hanoi(N,Pegs,Moves) - 
hanoi (N,A ,B ,C ,Moves) , Pegs = [A ,B ,CI . 

Program 12.3 Towers of Hanoi using a memo-function 

number of disks. Later attempts to solve the subproblem can use the 
computed sequence of moves rather than recomputing them. 

The idea is seen with the recursive clause of hanoi in Program 12.3. 
The first call to solve hanoi with N - 1 disks is remembered, and can be 
used by the second call to hanoi with N - 1 disks. 

The program is tested with the prebcate test-hanoi (N, Pegs ,Moves). 
N is the number of disks, Pegs is a list of the three peg names, and 
Moves is the list of moves that must be made. Note that in order to take 
advantage of the memo-functions, a general problem is solved first. Only 
when the solution is complete, and all memo-functions have recorded 
their results, are the peg names instantiated. 

Exercise for Section 12.3 

(i) Two players take turns to say a number between 1 and 3 inclusive. 
A sum is kept of the numbers, and the player who brings the sum 
to 20 wins. Write a program to play the game to win, using memo- 
functions. 

12.4 Interactive Programs 

A common form of a program requiring side effects is an interactive loop. 
A command is read from the terminal, responded to, and the next com- 
mand read. Interactive loops are implemented typically by while loops in 
conventional languages. Program 12.4 gives the basic skeleton of such 
programs, where a command is read, then echoed by being written on 
the screen. 

The read/echo loop is invoked by the goal echo. The heart of the pro- 
gram is the relation echo (X), where X is the term to be echoed. The pro- 
gram assumes a user-defined predicate last-input/l, which succeeds if 
the argument satisfies the termination condition for input. If the terrni- 
nation condition is satisfied by the input, the loop terminates; otherwise 
the term is written and a new term is read. 

Note that the testing of the term is separate from its reading. This 
is necessary to avoid losing a term: terms cannot be reread. The same 
phenomenon occurred in Program 12.2  for processing characters. The 
character was read and then separately processed. 

Program 12.4 is iterative and deterministic. It can be run efficiently on 
a system with tail recursion optimization, always using the same small 
amount of space. 

We give two examples of programs using the basic cycle of reading 
a term, and then processing it. The first is a line editor. The second 
interactive program is a shell for Prolog commands, which is essentially 
a top-level interpreter for Prolog in Prolog. 

The first decision in writing a simple line editor in Prolog is how to 
represent the file. Each line in the file must be accessible, together with 
the cursor position, that is the current position within the file. We use a 
structure file (Before, Af ter) , where Before is a list of lines before the 
cursor, and After is a list of lines after the cursor. The cursor position is 

echo - reado() , echo ()o . 
echo(X) - last-input ()o, ! . 
echo (x) - write(X) , nl, read(Y) , ! , echo(y) 

Program 12.4 Basic interactive loop 
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edit - edit(file([ I,[ I)). 

edit(Fi1e) - 
write-prompt, read(Command), edit(File,Command). 

edit(File,exit) - ! .  
edit (File ,Command) - 

apply(Command,File,Filel), ! ,  edit(File1). 
edit(File,Command) - 

writeln( [Command, ' is not applicable']), ! , edit(Fi1e). 

apply(up,file(CXIXsl ,Ys),file(Xs, [XIYsl)). 
apply(up(N),file(Xs,Ys),file(Xsl,Ysl)) - 

N > 0, up(N,Xs,Ys,Xsl,Ysl). 
apply(down,file(Xs, CYlYsl) ,file([~I~s] ,Ys)). 
apply(insert(Line),file(Xs,Ys),file(~s,[Line~Ysl)). 
apply(delete,file(Xs,[YIYsl),file(Xs,Ys)). 
apply(print,file(~XIXsl,Ys),file(~XIXsl,Ys)) - 

write(X) , nl. 
apply(print(*) ,file(Xs,Ys) ,file(Xs,Ys)) - 

reverse(Xs,Xsl), write-file(Xsl), write-file(Ys). 

up(N, [ 1 ,Ys, [ 1 ,Ys). 
up(0,Xs,Ys,Xs,Ys). 
up(N, [XIXsl ,Ys,Xsl,Ysl) - 

N > 0, N1 is N-1, up(~l,Xs, [XIYs] ,Xsl,Ysl). 

write-f ile( [XlXsl) - 
write(X), nl, write-file(Xs). 

write-file([ 1). 

write-prompt - write(' >> '1, nl. 

Program 12.5 A line editor 

restricted to be at the end of some line. The lines before the cursor will 
be in reverse order to give easier access to the lines nearer the cursor. 
The basic loop accepts a command from the keyboard and applies it to 
produce a new version of the file. Program 12.5 is the editor. 

An editing session is invoked by edit, which initializes the file be- 
ing processed to the empty file, file ( [ I , [ I ) ) .  The interactive loop 
is controlled by edit (File). It writes a prompt on the screen, using 
write-prompt, then reads and processes a command. The process- 
ing uses the basic predicate edit (File, Command), whch applies the 
command to the file. The application is performed by the goal ap- 
ply(Command,File,Filel), where Filel is the new version of the file 
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after the command has been applied. The editing continues by calling 
edit/l on Filel. The thrd  edit/2 clause handles the case when no 
command is applicable, indicated by the failure of apply. In thls case, 
an appropriate message is printed on the screen and the editing contin- 
ues. The editing session is terminated by the command exit, whch is 
separately tested for by edit/2. 

Let us look at a couple of apply clauses, to give the flavor of how 
commands are specified. Particularly simple are commands for moving 
the cursor. The .clause 

says that we move the cursor up by moving the line immediately above 
the cursor to be immediately below the cursor. The command fails if the 
cursor is at the top of the file. The command for moving the cursor down, 
also shown in Program 12.5, is analogous to moving the cursor up. 

Moving the cursor up N lines rather than a single line involves using an 
auxiliary predicate up/5 to change the cursor position in the file. Issues 
of robustness surface in its definition. Note that apply tests that the 
argument to up is sensible, i.e., a positive number of lines, before up 
is invoked. The predicate up itself handles the case when the number 
of lines to be moved up is greater than the number of lines in the file. 
The command succeeds with the cursor placed at the top of the file. 
Extending the editor program to move a cursor down N lines is posed 
as an exercise at the end of this section. 

Other commands given in Program 12.5 insert and delete lines. The 
command for insert, insert (Line), contains an argument, namely the 
line to be inserted. The command for delete is straightforward. It fails 
if the cursor is at the bottom of the screen. Also in the editor are com- 
mands for printing the line above the cursor, print, and for printing the 
whole file, print (*I .  

The editor commands are mutually exclusive. Only one apply clause is 
applicable for any command. As soon as an apply goal succeeds, there 
are no other possible alternatives. Prolog implementations that support 
indexing would find the correct clause immediately and leave no choice 
points. Imposing determinism via exploitation of indexing is a little dif- 
ferent than adding explicit cuts, as described in Section 11.1, where the 
cuts would have been applied directly to the apply facts themselves. The 
difference between the two approaches is merely cosmetic. Note that a 
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shell - 
shell-prompt, read(Goal1, shell(Goa1). 

shell(exit1 - ! . 
shell (Goal) - 

ground(Goal) , ! , shell-solve-ground(Goal), shell. 
shell(Goa1) - 

shell-solve(Goal), shell. 

shell-solve(Goa1) - 
Goal, write(Goal), nl, fail. 

shell-solve(Goa1) - 
write('No (more) solutions'), nl. 

shell-solve-ground(Goa1) - 
Goal, ! ,  write('Yes'), nl. 

shell-solve-ground(Goa1) - 
write('NoJ), nl. 

shell-prompt - write('Next command? '1.  

Program 12.6 An interactive shell 

cut is still needed in the second edit clause to indicate that successful 
execution of a command and reporting of an error message are mutually 
exclusive. 

A possible extension to the editor is to allow each command to handle 
its own error message. For example, suppose you wanted a more helpful 
message than "Command not applicable" when trying to move up when 
at the top of the file. T h s  would be handled by extending the apply 
clause for moving up in the file. 

We shift from editors to shells. A shell accepts commands from a 
terminal and executes them. We illustrate with an example of a shell for 
answering Prolog goals. Ths  is presented as Program 12.6. 

The shell is invoked by shell. The code is similar to the editor. The 
shell gives a prompt, using shell-prompt, then reads a goal and tries 
to solve it using shell(Goa1). A distinction is made between solving 
ground goals, where a yes/no answer is given, and solving nonground 
goals, where the answer is the appropriately instantiated goal. These two 
cases are handled by shell-solve-ground and shell-solve, respec- 
tively. The shell is terminated by the goal exit. 

Extra-Logical Predicates 

Both shell-solve-ground and shell-solve use the meta-variable fa- 
cility to call the goal to be solved. The success or failure of the goal 
determines the output message. These predicates are the simplest exam- 
ples of meta-interpreters, a subject discussed in Chapter 17. 

The shell-solve procedure shows an interesting solve-write-fail com- 
bination, whch is useful to elicit all solutions to a goal by forced back- 
traclung. Since we do not wish the shell to fail, an alternative clause is 
provided, which succeeds when all solutions to the goal are exhausted. It 
is interesting to note that it is not possible to collect all solutions to goals 
in a straightforward way without using some sort of side effect. Ths  is 
explained further in Chapter 16 on second-order programming. 

The shell can be used as a basis for a logging facility to keep a record 
of a session with Prolog. Such a facility is given as Program 12.7. Ths  
new shell is invoked by log, which calls the basic interactive predicate 
shell(F1ag) with Flag initialized to log. The flag takes one of two val- 
ues, log or nolog, and indicates whether the output is currently being 
logged. 

The logging facility is an extension of Program 12.6. The principal 
predicates take an extra argument, whch indicates the current state of 
logging. Two extra commands are added, log and nolog, to turn logging 
on and off. 

The flag is used by the predicates concerned with I/O. Each message 
written on the screen must also be written in the logging file. Also, each 
goal read is inserted in the log to increase the log's readability. Thus calls 
to read in Program 12.6 are replaced by a call to shell-read, and calls 
to write replaced by calls to shell-write. 

The definition of shell-write specifies what must be done: 

shell-write (X ,nolog) - write (XI . 
shell-write (x, log) -- write (x) , file-write ( [XI , 'prolog. log' ) . 

If the flag is currently nolog, the output is written normally to the screen. 
If the flag is log, an extra copy is written to the file prolog. log. The 
predicate f ile-write(X,File) writes the line X to file File. 

The remaining two predicates in Program 12.7, f ile_write/2 and 
close-logging-f ile, involve interacting with the underlying file sys- 
tem. Appropriate commands from Standard Prolog are given, and the 
reader is referred to a Prolog manual for more information. 



Chapter 12 Extra-Logical Predicates 

log - shell(1og) . 
shell(F1ag) - 

shell-prompt, shell-read(Goal,Flag), shell(~oa1,Flag). 

shell (exit ,Flag) - 
! ,  close-logging-file. 

shell(nolog,Flag) +- 

! ,  shell(no1og). 
shell(log,Flag) - 

! ,  shell(1og). 
shell (Goal ,Flag) - 

ground(Goa1) , ! , shell-solve-ground(Goa1 ,Flag) , shell (Flag) 
shell (Goal ,Flag) - 

shell-solve(Goal,Flag), shell(Flag1. 

shell~solve(Goal,Flag) +- 

Goal, shell-write(Goal,Flag), nl, fail. 
shell~solve(Goal,Flag) - 

shell-write('No (more) solutions',~lag), nl. 

shell-solve-ground(Goa1 ,Flag) - 
Goal, ! ,  shell-write('Yes',Flag), nl. 

shell~solve~ground(Goal,Flag) - 
shell-write('NoJ,Flag), nl. 

shell-prompt - write('Next command? '1. 

shell-read(X, log) - read(X) , 
file-write(['Next command? ',~],'prolog.log'). 

shell-read(X,nolog) - read(X). 
shell-write(X,nolog) - write(X). 
shell-write(X,log) - write(X), file-write(~,'prolog.log'). 

file-write(X,File) - write-term(File,Term,[ 1). 
close-logging-file - close('prolog.log'). 
Program 12.7 Logging a session 

Exercises for Section 12.4 

(i) Extend Program 12.5, the editor, to handle the following com- 
mands: 

(a) Move the cursor down N lines, 

(b) Delete N lines, 

(c) Move to a line containing a given term, 

(d) Replace one term by another, 

(e) Any command of your choice. 

(ii) Modify the logging facility, Program 12.7, so that the user can spec- 
ify the destination file of the logged output. 

-- -- - -- - -- - - 

12.5 Failure-Driven Loops 

The interactive programs in the previous section were all based on tail re- 
cursive loops. There is an alternative way of writing loops in Prolog that 
are analogous to repeat loops in conventional languages. These loops 
are driven by failure and are called failure-driven loops. These loops are 
useful only when used in conjunction with extra-logical predicates that 
cause side effects. Their behavior can be understood only from an opera- 
tional point of view. 

A simple example of a failure-driven loop is a query Goal, w r i t e  

(Goal) , n l  , f a i l ? ,  which causes all solutions to a goal to be written on 
the screen. Such a loop is used in the shells of Programs 12.6 and 12.7. 

A failure-driven loop can be used to define the system predicate 
tab(N) for printing N blanks on the screen. It uses Program 8.5 for be- 
tween: 

tab(N) - between(1 ,N9 1) 9 ' )  , f a i l  

Each of the interactive programs in the previous section can be rewrit- 
ten using a failure-driven loop. The new version of the basic interactive 
loop is given as Program 12.8. It is based on a nonterrninating system 
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echo - repeat, reado(), echo(X), ! .  

echo(X) - last-input (XI, ! . 
echo(X) - write(X), nl, fail. 

repeat. 
repeat - repeat. 
Program 12.8 Basic interactive repeat loop 

consult (File) - 
The clauses of the program in the file File are read and asserted. 

consult (File) + open(Fi1e ,read,DD) , consult-loop(DD), close(DD) . 
consult-loop(DD) - repeat, read(C1ause) , process (clause ,DD) , ! . 
process(Clause,DD) - at-end-of-stream(DD. 
process(Clause,DD) - assertz(Clause), fail. 

Program 12.9 Consulting a file 

predicate repeat ,  which can be defined by the minimal recursive proce- 
dure in Program 12.8. Unlike the Program 12.4 goal, the goal echo(X) 
fails unless the termination condition is satisfied. The failure causes 
backtracking to the repeat  goal, whch succeeds, and the next term is 
read and echoed. The cut in the definition of echo ensures that the repeat 
loop is not reentered later. 

Failure-driven loops that use repeat  are called repeat loops and are 
the analogue of repeat loops from conventional languages. Repeat loops 
are useful in Prolog for interacting with the outside system to repeatedly 
read and/or write. Repeat loops require a predicate that is guaranteed 
to fail, causing the iteration to continue, unless the loop should be ter- 
minated. The goal echo(X) in Program 12.8 serves that function, only 
succeeding when the last input is reached. A useful heuristic for building 
repeat loops is that there should be a cut in the body of the clause with 
the repeat  goal, whch prevents a nonterminating computation were the 
loop to be reentered via backtraclung. 

We use a repeat loop to define the system predicate consult  (F i l e )  
for reading in a file of clauses and asserting them. Program 12.9 contains 
its definition. The system predicates o p e d 3  and c lose / l  are used for 
opening and closing an input file, respectively. 

Tail recursive loops are preferable to repeat loops because the latter 
have no logical meaning. In practice, repeat loops are often necessary 
to run large computations, especially on Prolog implementations without 
tail recursion optimization or garbage collection. Explicit failure typically 
initiates some implementation-dependent reclamation of space. 

Exercise for Section 12.5 

(i) Write your own version of the builtin predicate abol ish  (F ,  N) that 
retracts all the clauses for the procedure F of arity N. 

12.6 Background 

1/0 has never really blended well with the rest of the language of Pro- 
log. Its standard implementation, with side effects, relies solely on the 
procedural semantics of Prolog and has no connection to the underlying 
logic programming model. For example, if an output is issued on a fail- 
ing branch of a computation, it is not undone upon backtraclung. If an 
input term is read, it is lost on backtraclung, as the input stream is not 
backtrackable. 

Concurrent logic languages attempt to remedy the problem and to in- 
tegrate 1/0 better with the logic programming model by identifying the 
1/0 streams of devices with the logical streams in the language (Shapiro, 
1986). Perpetual recursive processes can produce or consume incremen- 
tally those potentially unbounded streams. 

Self-modifying programs are a bygone concept in computer science. 
Modern programming languages preclude this ability, and good assem- 
bly language practice also avoids such programming tricks. It is ironic 
that a programming language attempting to open a new era in computer 
programming opens the front door to such arcane techmques, using the 
predicates a s s e r t  and r e t r a c t .  

These program manipulation predicates of Prolog were devised ini- 
tially as a low-level mechanism for loading and reloading programs, im- 
plemented in DEC-10 Prolog by the consult  and reconsult  predicates. 
However, like any other feature of a language, they ended up being used 
for tasks that, we believe, were not intended by their original designers. 
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Reluctantly, we must acknowledge that assert  and re t rac t  are part 
of Prolog, and clarify the anomalies. Attempts have been made in t h s  
direction. Inconsistencies between hfferent Prolog implementations are 
discussed in Moss (1986). The best way of handling retracts seems to be 
the logical update view presented in Lindholm and O'Keefe (1987). 

The discussion of static and dynamic predicates comes from the Stan- 
dard Prolog draft (Scowen, 1991). 

The program for the Towers of Hanoi was shown to us by Shmuel Safra. 
Memo-functions in the context of artificial intelligence were proposed by 
Donald Michie (1968). 

The line editor is originally due to Warren (1982b). 

Program Development 

Software engineering considerations are as relevant for programming 
in logic programming languages as in procedural languages. Prolog is 
no different from any other language in its need for a methodology to 
build and maintain large programs. A good programming style is im- 
portant, as is a good program development methodology. This chapter 
discusses programming style and layout and program development, and 
introduces a method called stepwise enhancement for systematic con- 
struction of Prolog programs. 

--- 

1 3.1 Programming Style and Layout 

One basic concern in composing the programs in this book has been to 
make them as declarative as possible to increase program clarity and 
readability. A program must be considered as a whole. Its readability is 
determined by its physical layout and by the choice of names appear- 
ing in it. Ths  section discusses the guidelines we use when composing 
programs. 

An important influence in making programs easy to read is the naming 
of the various objects in the program. The choice of all predicate names, 
variable names, constants, and structures appearing in the program af- 
fect readability. The aim is to emphasize the declarative reading of the 
program. 

We choose predicate names to be a word (or several words) that names 
relations between objects in the program rather than describing what the 
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program is doing. Coining a good declarative name for a procedure does 
not come easily. 

The activity of programming is procedural. It is often easier to name 
procedurally than declaratively (and programs with procedural names 
usually run faster :-). Once the program works, however, we often revise 
the predicate names to be declarative. Composing a program is a cyclic 
activity in whch names are constantly being reworked to reflect our 
improved understanding of our creation, and to enhance readability by 
us and others. 

Mnemonic variable names also have an effect on program readability. 
A name can be a meaningful word (or words) or a standard variable form 
such as Xs for lists. 

Variables that appear only once in a clause can be handled separately. 
They are in effect anonymous, and from an implementation viewpoint 
need not be named. Standard Prolog supports a special syntactic con- 
vention, a single underscore, for referring to anonymous variables. Using 
this convention, Program 3.12 for member would be written 

member (X, [X I -1 ) . 
member (X, [- 1 Ysl ) - member (X,Ys) 
The advantage of the convention is to highlight the significant variables 
for unification. The disadvantage is related; the reading of clauses be- 
comes procedural rather than declarative. 

We use different syntactic conventions for separating multiple words 
in variable names and predicate functors. For variables, composite words 
are run together, each new word starting with a capital letter. Multiple 
words in predicate names are linked with underscores. Syntactic conven- 
tions are a matter of taste, but it is preferable to have a consistent style. 

The layout of individual clauses also has an effect on how easily pro- 
grams can be understood. We have found the most helpful style to be 

f oo ( (Arguments)) + 

barl ( (Argumentsl)) , 
bar2 ( (Arguments2)) , 

bar, ((Arguments,) ) . 

The heads of all clauses are aligned, the goals in the body of a clause 
are indented and occupy a separate line each. A blank line is inserted 
between procedures, but there is no space between individual clauses of 
a procedure. 

Layout in a book and the typography used are not entirely consistent 
with actual programs. If all the goals in the body of a clause are short, 
then have them on one line. Occasionally we have tables of facts with 
more than one fact per line. 

A program can be self-documenting if sufficient care is taken with 
these two factors and the program is sufficiently simple. Given the nat- 
ural aversion of programmers to comments and documentation, this is 
very desirable. 

In practice, code is rarely self-documenting and comments are needed. 
One important part of the documentation is the relation scheme, which 
can be presented before the clauses defining that relation, augmented 
with further explanations if necessary. The explanations used in t h s  
book define the relation a procedure computes. It is not always easy to 
come up with a precise, declarative, natural language description of a 
relation computed by a logic program. However, the inability to do so 
usually indicates that the programmer does not fully understand the 
creation, even if the creation actually works. Hence we encourage the use 
of the declarative documentation conventions adopted in thls book. They 
are a good means of communicating to others what a program defines as 
well as a discipline of thought, enabling programmers to thnk about and 
reflect on their own creations. 

13.2 Reflections on Program Development 

Since programming in pure Prolog is as close to writing specifications 
as any practical programming language has gotten, one might hope that 
pure Prolog programs would be bug-free. Ths, of course, is not the case. 
Even when axiomatizing one's concepts and algorithms, a wide spectrum 
of bugs, quite similar to ones found in conventional languages, can be 
encountered. 

Stating it differently, for any formalism there are sufficiently com- 
plex problems for whch there are no self-evidently correct formulations 
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of solutions. The difference between low-level and hgh-level languages, 
then, is only the threshold after whch simple examination of the pro- 
gram is insufficient to determine its correctness. 

There are two schools of thought on what to do on such an occasion. 
The "verification" school suggests that such complex programs be ver- 
ified by proving that they behave correctly with respect to an abstract 
specification. It is not clear how to apply t h s  approach to logic programs, 
since the distance between the abstract specification and the program is 
much smaller then in other languages. If the Prolog axiomatization is not 
self-evident, there is very little hope that the specification, no matter in 
what language it is written, would be. 

One might suggest using full first-order logic as a specification formal- 
ism for Prolog. It is the authors' experience that very rarely is a specifi- 
cation in full first-order logic shorter, simpler, or more readable then the 
simplest Prolog program defining the relation. 

Given t h s  situation, there are weaker alternatives. One is to prove 
that one Prolog program, perhaps more efficient though more complex, 
is equivalent to a simpler Prolog program, whch, though less efficient, 
could serve as a specification for the first. Another is to prove that a pro- 
gram satisfies some constraint, such as a "loop invariant," whch, though 
not guaranteeing the program's correctness, increases our confidence in 
it. 

In some sense, Prolog programs are executable specifications. The al- 
ternative to staring at them, trying to convince ourselves that they are 
correct, is to execute them, and see if they behave in the way we want. 
Ths  is the standard testing and debugging activity, carried out in pro- 
gram development in any other programming language. All the classical 
methods, approaches, and common wisdom concerning program testing 
and debugging apply equally well to Prolog. 

What is the difference, then, between program development in conven- 
tional, even symbolic languages and Prolog? 

One answer is that although Prolog programming is "just" program- 
ming, there is some improvement in ease of expression and speed of de- 
bugging compared to other lower-level formalisms - we hope the reader 
has already had a glimpse of it. 

Another answer is that declarative programming clears your mind. Said 
less dramatically, programming one's ideas in general, and program- 
ming in a declarative and high-level language in particular, clarifies one's 

thoughts and concepts. For experienced Prolog programmers, Prolog is 
not just a formalism for coding a computer, but also a formalism in 
whch ideas can be expressed and evaluated - a tool for thinking. 

A th rd  answer is that the properties of the hgh-level formalism of 
logic may eventually lead to practical program development tools that 
are an order of magnitude more powerful then the tools used today. 
Examples of such tools are automatic program transformers, partial- 
evaluators, type inference programs, and algorithrmc debuggers. The lat- 
ter are addressed in Section 17.3, where program diagnosis algorithms 
and their implementation in Prolog are described. 

Unfortunately, practical Prolog programming environments incorpo- 
rating these novel ideas are not yet widely available. In the meantime, 
a simple tracer, such as explained in Section 17.2, is most of what one 
can expect. Nevertheless, large and sophisticated Prolog programs can 
be developed even using the current Prolog environments, perhaps with 
greater ease than in other available languages. 

The current tools and systems do not dictate or support a specific 
program development methodology. However, as with other symbolic 
programming languages, rapid prototyping is perhaps the most natural 
development strategy. In t h s  strategy, one has an evolving, usable pro- 
totype of the system in most stages of the development. Development 
proceeds by either rewriting the prototype program or extending it. An- 
other alternative, or complementary, approach to program development 
is "think top-down, implement bottom-up." Although the design of a sys- 
tem should be top-down and goal-driven, its implementation proceeds 
best if done bottom-up. In bottom-up programming each piece of code 
written can be debugged immediately. Global decisions, such as repre- 
sentation, can be tested in practice on small sections of the system, and 
cleaned up and made more robust before most of the programming has 
been done. Also, experience with one subsystem may lead to changes in 
the design of other subsystems. 

The size of the chunks of code that should be written and debugged as 
a whole varies and grows as the experience of the programmer grows. Ex- 
perienced Prolog programmers can write programs consisting of several 
pages of code, knowing that what is left after writing is done is mostly 
simple and mundane debugging. Less experienced programmers might 
find it hard to grasp the functionality and interaction of more then a few 
procedures at a time. 
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We would like to conclude t h s  section with a few moralistic state- 
ments. For every programming language, no matter how clean, elegant, 
and hgh-level, one can find programmers who will use it to write dirty, 
contorted, and unreadable programs. Prolog is no exception. However, 
we feel that for most problems that have an elegant solution, there is an 
elegant expression of that solution in Prolog. It is a goal of this book to 
convey both this belief and the tools to realize it in concrete cases, by 
showing that aesthetics and practicality are not necessarily opposed or 
conflicting goals. Put even more strongly, elegance is not optional. 

13.3 Systematizing Program Construction 

The pedagogic style of this book is to present well-constructed programs 
illustrating the important Prolog programming techniques. The examples 
are explained in sufficient detail so that readers can apply the techniques 
to construct similar programs to meet their own programming needs. 
Implicitly, we are saying that Prolog programming is a skill that can be 
learned by observing good examples and abstracting the principles. 

Learning by apprenticeshp, observing other programs, is not the only 
way. As experience with programming in Prolog accumulates, more sys- 
tematic methods of teaching Prolog programming are emerging. The 
emergence of systematic methods is analogous to the emergence of 
structured programming and stepwise refinement in the early 1970s af- 
ter sufficient experience had accumulated in writing programs in the 
computer languages of the 1950s and 1960s. 

In this section, w7e sketch a method to develop Prolog programs. The 
reader is invited to reconstruct for herself how t h s  method could be ap- 
plied to develop the programs in Parts 111 and IV of t h s  book. Underlying 
the method is a desire to provide more structure to Prolog programs so 
that software components can be reused and large applications can be 
routinely maintained and extended. 

Central to the method is identifying the essential flow of control of a 
program. A program embodying a control flow is called a skeleton. Extra 
goals and arguments can be attached to a skeleton. The extra goals and 
arguments are entwined around the central flow of control and perform 
additional computations. The program containing the extra arguments 

and goals is called an enhancement of the skeleton. Building an enhance- 
ment from a skeleton will be called applying a technique. 

For example, consider Program 8.6a for summing a list of numbers, 
reproduced here: 

sumlist ( [ X I  XS] ,Sum) - sumlist (Xs ,XsSm), Sum is X+XsSum. 
sumlist ( [ I ,0> . 

The control flow embodied in the sumlist program is traversing the 
list of numbers. The skeleton is obtained by dropping the second ar- 
gument completely, restricting to a predicate with one argument, and 
removing goals that only pertain to the second argument. Ths  gives the 
following program, which should be identifiable as Program 3.1 1 defining 
a list. 

list ( [XI Xsl ) -- list (Xs) . 
list([ I). 

The extra argument of the sumlist program calculates the sum of 
the numbers in the list. Thls form of calculation is very common and 
appeared in several of the examples in Chapter 8. 

Another enhancement of the list program is Program 8.1 1 calculating 
the length of a list. There is a clear similarity between the programs 
for length and sumlist. Both use a similar technique for calculating a 
number, in one case the sum of the numbers in the list, in the second the 
length of the list. 

length([X I Xs] ,N) - length(Xs,Nl), N is N1+1 

length( [ I ,0) . 

Multiple techniques can be applied to a skeleton. For example, we can 
apply both summing elements and counting elements in one pass to get 
the program sum-length: 

sum-length( [X I Xsl ,Sum,N) - 
sumlist(Xs,XsSum,Nl), Sum is X+XsSum, N is Nl+1 

sum-length( [ 1 , 0 , 0 )  . 

Intuitively, it is straightforward to create the sum-length program 
from the programs for sumlist and length. The arguments are taken 
directly and combined to give a new program. We call t h s  operation com- 
position. In Chapter 18, a program for composition is presented. 
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Another example of a techmque is adding a pair of arguments as an 
accumulator and a final result. The techmque is informally described in 
Section 7.5. Applylng the appropriate version of the techmque to the 
list skeleton can generate Program 8.6b for sumlist or the iterative 
version of length, whch is the solution to Exercise 8.3(vii). 

Identifying control flows of programs may seem contradictory to the 
ideal of declarative programming espoused in the previous section. How- 
ever, at some level programming is a procedural activity, and describ- 
ing well-written chunks of code is fine. It is our belief that recognizing 
patterns of programs makes it easier for people to develop good style. 
Declarativeness is preserved by ensuring wherever possible that each en- 
hancement produced be given a declarative reading. 

The programming method called stepwise e n h a n c e m e n t  consists of 
three steps: 

1. Identify the skeleton program constituting the control flow. 

2. Create enhancements using standard programming techniques. 

3. Compose the separate enhancements to give the final program. 

We illustrate stepwise enhancement for a simple example - calculat- 
ing the union and intersection of two lists of elements. For simplicity we 
assume that there are no duplicate elements in the two lists and that we 
do not care about the order of elements in the answer. 

A skeleton for this program follows. The appropriate control flow is to 
traverse the first list, checking whether each element is a member or not 
of the second list. There will be two cases: 

skel([XIXs] ,Ys) - member(X,Ys), skel(Xs,Ys). 

skel ( [XI Xs] ,Ys) - nonmember (X, Ys) , skel (Xs ,Ys) . 
skel( [ 1 ,Ys). 

To calculate the union, we need a thlrd argument, whch can be built 
top-down in the style discussed in Section 7.5. We consider each clause 
in turn. When an element in the first list is a member of the second list, 
it is not included in the union. When an element in the first list is not 
a member of the second list, it is included in the union. When the first 
list is empty, the union is the second list. The enhancement for union is 
given as Program 13.1. 

union(Xs,Ys,Us) - 
U s  is the union of the elements in Xs and Ys. 

union([XIXs] ,Ys,Us) + member(X,Ys), union(Xs,Ys,Us). 
union([XIXs],Ys,[XIUsl) - nonmember(X,Ys), union(Xs,Ys,~s). 
union([ 1 ,Ys,Ys) . 

Program 13.1 Finding the union of two lists 

intersect (Xs, Ys,Is) - 
Is is the intersection of the elements in X s  and Ys. 

intersect( CXIXsl ,Ys, [XI Is1 ) - member(X,Ys) , intersect ( X S , Y ~ , I S )  
intersect([XIXs],Ys,Is) - nonmember(X,Ys), intersect(Xs,~s,~s). 
intersect([ l,Ys,[ I). 

Program 13.2 Finding the intersection of two lists 

union-intersect (Xs, Ys, Us,Is) - 
U s  and Is are the union and intersection, respectively, of the 
elements in X s  and Ys. 

union-intersect ( [X IXsl ,Ys,Us, [XI Is1 ) - 
member(X,Ys), union~intersect(Xs,Ys,Us,Is). 

union-intersect ( [XI Xs] ,Ys, [X [Us] ,Is) - 
nonmember(X,Ys), union-intersect(Xs,Ys,Us,Is). 

union-intersect ( [ I ,Ys,Ys, [ I). 

Program 13.3 Finding the union and intersection of two lists 

The intersection, given as Program 13.2, is determined with a similar 
technique. We again consider each clause in turn. When an element in the 
first list is a member of the second list, it is included in the intersection. 
When an element in the first list is not a member of the second list, it 
is not included in the intersection. When the first list is empty, so is the 
intersection. 

Calculating both the union and the intersection can be determined in a 
single traversal of the first list by composing the two enhancements. This 
program is given as Program 13.3. 

Developing a program is typically straightforward once the skeleton 
has been decided. Knowing what skeleton to use is less straightforward 
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and is learned by experience. Experience is necessary for any design task. 
By splitting up the program development into three steps, however, the 
design process is simplified and given structure. 

A motivation behnd giving programs structure, as is done by stepwise 
enhancement, is to facilitate program maintenance. It is easy to extend 
a program by adding new techniques to a skeleton, and it is possible to 
improve programs by changing skeletons while maintaining techniques. 
Further, the structure makes it easy to explain a program. 

Skeletons and techtuques can be considered as constituting reusable 
software components. Ths  will be illustrated in Chapter 17, where the 
same skeleton meta-interpreter is useful both for program debugging 
and for expert system shells. 

Having raised software engineering issues such as maintainability and 
reusability, we conclude this chapter by examining two other issues that 
must be addressed if Prolog is to be routinely used for large software 
projects. The place of specifications should be clarified, and modules are 
necessary if code is to be developed in pieces. 

It is clear from the previous section that we do not advocate using 
first-order logic as a specification language. Still, it is necessary to have 
a specification, that is, a document explaining the behavior of a program 
sufficiently so that the program can be used without the code having to 
be read. We believe that a specification should be the primary form of 
documentation and be given for each procedure in a program. 

A suggested form for a specification is given in Figure 13.1. It consists 
of a procedure declaration, effectively giving the name and arity of the 
predicate; a series of type declarations about the arguments; a relation 
scheme; and other important information such as modes of use of the 
predicate and multiplicities of solutions in each mode of use. We discuss 
each component in turn. 

Types are emerging as important in Prolog programs. An untyped lan- 
guage facilitates rapid prototyping and interactive development, but for 
more systematic projects, imposing types is probably worthwhle. 

The relation scheme is a precise statement in English that explains the 
relation computed by the program. All the programs in this book have 
a relation scheme. It should be stressed that relation schemes must be 
precise statements. We believe that proving properties of programs will 
proceed in the way of mathematics, where proofs are given by precise 
statements in an informal language. 

procedure p(T1 ,Tr  , . . . ,T,) 

Types: TI: type 1 
T2: type 2 

T,: type n 

Relation scheme: 

Modes of use: 

Multiplicities of solution: 

Figure 13.1 Template for a specification 

Prolog programs ~nherit from logic programs the possibility of be- 
ing multi-use. In practice, multi-use is rare. A specification should state 
whch uses are guaranteed to be correct. That is the purpose of the 
modes of use component in Figure 13.1. Modes of use are specified by 
the instantiation state of arguments before and after calls to the predi- 
cate. 

For example, the most common mode of use of Program 3.15 for ap- 
pend(Xs , Ys , Zs) for concatenating two lists X s  and Y s  to produce a list 
Z s  is as follows. X s  and Y s  are instantiated at the time of call, whereas 
Z s  is not, and all three arguments are instantiated after the goal suc- 
ceeds. Calling append/3 with all three arguments instantiated is a dif- 
ferent mode of use. A common convention, taken from DEC-10 Prolog 
is to use + for an instantiated argument, - for an uninstantiated argu- 
ment, and ? for either. The modes for the preceding use of append are 
append ( +, +, - ) before the call and append (+, +, +) after the call. 

More precise statements can be made by combining modes with types. 
The mode of use of the current example becomes the following: Before 
the call the first two arguments are complete lists and the third a vari- 
able; after the call all three arguments are complete lists. 

Multiplicities are the number of solutions of the predicate, and should 
be specified for each mode of use of the program. It is useful to give 
both the minimum and maximum number of solutions of a predicate. 
The multiplicities can be used to reason about properties of the program. 

Modules are primarily needed to allow several people to work on a 
project. Several programmers should be able to develop separate compo- 
nents of a large system without worrying about undesirable interactions 
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such as conflict of predicate names. What is needed is a mechanism for 
specifying what is local to a module and whch predicates are imported 
and exported. 

Current Prolog systems provide primitive facilities for handling mod- 
ules. The current systems are either atom-based or predicate-based, de- 
pending on what is made local to the module. Directives are provided for 
specifying imports and exports. Experience is growing in using existing 
module facilities, which will be translated into standards for modules 
that will ultimately be incorporated into Standard Prolog. The current 
draft on modules in Standard Prolog is in too much flux to describe here. 
The user needing modules should consult the relevant Prolog manual. 

Exercises for Section 13.3 

(i) Enhance Program 13.3 to build the list of elements contained in the 
first list but not in the second list. 

(ii) Write a program to solve the following problem. Given a binary tree 
T with positive integers as values, build a tree that has the same 
structure as T but with every node replaced by the maximum value 
in the tree. It can be accomplished with one traversal of the tree. 
(Hint: Use Program 3.23 as a skeleton.) 

(iii) Write a program to calculate the mean and mode of an ordered list 
of numbers in one pass of the list. 

1 3.4 Background 

Commenting on Prolog programming style has become more prevalent in 
recent Prolog textbooks. There are useful discussions in both Ross (1989) 
and O'Keefe (1990). The latter book also introduces program schemas, 
which have parallels with skeletons and techniques. 

Stepwise enhancement has emerged from ongoing work at Case West- 
ern Reserve University, first in the COMPOSERS group and more recently 
in the ProSE group. Examples of decomposing Prolog programs into 
skeletons and techniques are given in Sterling and Kirschenbaum (1 993) 
and presented in tutorial form in Deville, Sterling, and Deransart (1991). 

Underlying theory is given in Power and Sterling (1990) and Kirschen- 
baum, Sterling, and Jain (1993). An application of structuring Prolog 
programs using skeletons and techmques to the inductive inference of 
Prolog programs can be found in Kirschenbaum and Sterling (1991). 

Automatic incorporation of t echques  into skeletons via partial evalu- 
ation has been described in Lakhotia (1989). 

The discussion on specifications for Prolog programs is strongly influ- 
enced by Deville (1990). 

Exercise 13.3(ii) was suggested by Gilles Kahn. The example is orig- 
inally due to Bird. Exercise 13.3(iii) emerged through interaction with 
Marc Kirschenbaum. Solutions to both exercises are given in Deville, Ster- 
ling, and Deransart (1991). 



111 Advanced Prolog Programming Techniques 

The expressive power and hlgh-level nature of logic programming can 
be exploited to write programs that are not easily expressed in conven- 
tional programming languages. Different problem-solving paradigms can 
be supported, and alternative data construction and access mechanisms 
can be used. 

The simple Prolog programs of the previous part are examples of the 
use of basic programming techmques, reinterpreted in the context of 
logic programming. T h s  part collects more advanced techmques that 
have evolved in the logic programming community and exploit the spe- 
cial features of logic programs. We show how they can be used to advan- 
tage. 

Leonardo Da Vinci. Study of a Woman's Hands folded over her Breast. Silver- 
point on pink prepared paper, heightened with white. About 1478. Windsor 
Castle, Royal Library. 



Nondeterministic Programming 

One feature of the logic programming computation model laclung in con- 
ventional programming models is nondeterminism. Nondeterminism is 
a technical concept used to define, in a concise way, abstract computa- 
tion models. However, in addition to being a powerful theoretical con- 
cept, nondeterminism is also useful for defining and implementing algo- 
rithms. Thls chapter shows how, by thinlung nondeterministically, one 
can construct concise and efficient programs. 

Intuitively, a nondeterministic machne can choose its next operation 
correctly when faced with several alternatives. True nondeterministic 
machines cannot be realized but can be simulated or approximated. In 
particular, the Prolog interpreter approximates the nondeterministic be- 
havior of the abstract interpreter of logic programs by sequential search 
and backtraclung, as explained in Chapter 6. However, the fact that non- 
determinism is only simulated without being "really present" can be ab- 
stracted away in many cases in favor of nondeterministic thlnking in 
much the same way as pointer manipulation details involved in unifica- 
tion can be abstracted away in favor of symbolic thmlung. 

Generate-and-test is a common technique in algorithm design and pro- 
gramming. Here is how generate-and-test works for problem solving. One 
process or routine generates candidate solutions to the problem, and an- 
other process or routine tests the candidates, trying to find one or all 
candidates that actually solve the problem. 
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It is easy to write logic programs that, under the execution model of 
Prolog, implement the generate-and-test techmque. Such programs typi- 
cally have a conjunction of two goals, in whch one acts as the generator 
and the other tests whether the solution is acceptable, as in the following 
clause: 

find (X) - generate (X) , test ()o 
T h s  Prolog program would actually behave like a conventional, procedu- 
ral, generate-and-test program. When called with f ind(X)?, generate (X) 
succeeds, returning some X, with whch test (X) is called. If the test goal 
fails, execution backtracks to generate (X), which generates the next 
element. Ths  continues iteratively until the tester successfully finds a 
solution with the distinguishng property or until the generator has ex- 
hausted all alternative solutions. 

The programmer, however, need not be concerned with the generate- 
and-test cycle and can view this techmque more abstractly, as an instance 
of nondeterministic programming. In this nondeterministic program the 
generator guesses correctly an element in the domain of possible solu- 
tions, and the tester simply verifies that the guess of the generator is 
correct. 

A good example of a program with multiple solutions and com- 
monly used as a generator is Program 3.12 for member. The query mem- 
ber (X , [a, b , cl ) ? will yleld the solutions X=a, X=b, and X=c successively 
as required. Thus member can be used to nondeterministically choose the 
correct element of a list in a generate-and-test program. 

Program 14.1 is a simple example of generate-and-test using mem- 
ber as a generator. The program identifies parts of speech of a sen- 
tence. We assume that a sentence is represented as a list of words 
and that there is a database of facts giving the parts of speech of 
particular words. Each part of speech is a unary predicate whose 
argument is a word, for example, noun(man) indicates that man is a 
noun. The relation verb(Sentence,Word) is true if Word is a verb in 
sentence Sentence. The analogous meanings are intended for noun/2 
and article/2. The query verb( [a,man, loves, a, woman1 ,V)? finds 
the verb V=loves in the sentence using generate-and-test. Words 
in the sentence are generated by member and tested to see if they are 
verbs. 

verb (Sentence, Verb) - 
Verb is a verb in the list of words Sentence. 

Vocabulary 

noun(man1. noun(woman) . 
ar t ic le (a)  . verb(1oves) . 

mernber(X,Xs) - see Program 3.12. 

Program 14.1 Finding parts of speech in a sentence 

Another simple example is testing whether two lists have an element 
in common. Consider the predicate intersect (Xs,Ys), whch is true if 
Xs and Ys have an element in common: 

intersect (Xs ,Ys) - member(X,Xs) , member(X,Ys). 
The first member goal in the body of the clause generates members 

of the first list, which are then tested to see whether they are in the 
second list by the second member goal. Thnlung nondeterrninistically, the 
first goal guesses an X in Xs, and the second verifies that the guess is a 
member of Ys. 

Note that when executed as a Prolog program, t h s  clause effectively 
implements two nested loops. The outer loop iterates over the elements 
of the first list, and the inner loop checks whether the chosen element is 
a member of the second list. Hence t h s  nondeterministic logic program 
acheves, under the execution model of Prolog, a behavior very similar to 
the standard solution one would compose for this problem in Fortran, 
Pascal, or Lisp. 

The definition of member in terms of append, 

member (X , Xs) - append (As, [X I Bs] 9 Xs) . 

is itself essentially a generate-and-test program. The two stages, how- 
ever, are amalgamated b y  the use of unification. The append goal gen- 
erates splits of the list, and immediately a test is made whether the first 
element of the second list is X. 

Typically, generate-and-test programs are easier to construct than pro- 
grams that compute the solution directly, but they are also less efficient. 
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A standard technique for optimizing generate-and-test programs is to 
"push" the tester inside the generator as deeply as possible. Ultimately, 
the tester is completely intertwined with the generator, and only correct 
solutions are generated. 

Let us consider optimizing generate-and-test programs by puslung the 
tester into the generator. Program 3.20 for permutation sort is another 
example of a generate-and-test program. The top level is as follows: 

sort (XS , YS) - permutation (Xs , Ys) , ordered(Ys) 
Abstractly, this program guesses nondeterministically the correct permu- 
tation via permutation (Xs , Ys), and ordered checks that the permuta- 
tion is actually ordered. 

Operationally, the behavior is as follows. A query involving sort is re- 
duced to a query involving permutation and ordered. A failure-driven 
loop ensues. A permutation of the list is generated by permutation and 
tested by ordered. If the permuted list is not ordered, the execution 
backtracks to the permutation goal, which generates another permuta- 
tion to be tested. Eventually an ordered permutation is generated and 
the computation terminates. 

Permutation sort is a highly inefficient sorting algorithm, requiring 
time super-exponential in the size of the list to be sorted. Puslung the 
tester into the generator, however, leads to a reasonable algorithm. The 
generator for permutation sort, permutation, selects an arbitrary ele- 
ment and recursively permutes the rest of the list. The tester, ordered, 
verifies that the first two elements of the permutation are in order, then 
recursively checks the rest. If we view the combined recursive permuta- 
tion and ordered goals as a recursive sorting process, we have the basis 
for insertion sort, Program 3.21. To sort a list, sort the tail of the list and 
insert the head of the list into its correct place in the order. The arbitrary 
selection of an element has been replaced by choosing the first element. 

Another example of the advantage of intertwining generating and test- 
ing can be seen with programs solving the N queens problem. 

The N queens problem requires the placement of N pieces on an N -  
by-N rectangular board so that no two pieces are on the same line: hori- 
zontal, vertical, or diagonal. The original formulation called for 8 queens 
to be placed on a chessboard, and the criterion of not being on the same 
line corresponds to two queens not attaclung each other under the rules 
of chess. Hence the problem's name. 

Figure 14.1 A solution to the 4 queens problem 

queens (N,Queens) - 
Queens is a placement that solves the N queens problem, 
represented as a permutation of the list of numbers [l, 2,. . . , N]. 

queens(N,Qs) - 
range(1 ,N,Ns) , ~ermutation(Ns ,Qs), saf e(Qs). 

safe(Qs) - 
The placement Q s  is safe. 

safe( [Q 1 Qs] ) - saf e(Qs), not attack(Q ,Qs). 
safe([ 1 ) .  

attack(X,Xs) - attack(X, 1 ,Xs). 
attack(X,N, [YIYs]) - X is Y+N ; X is Y-N. 
attack(X,N, [YIYs]) - N1 is N+1, attack(X,NI,Ys) 
permutation(Xs ,YS) - See Program 3.20. 

range(M,N,Ns) - See Program 8.12. 

Program 14.2 Naive generate-and-test program solving N queens 

The program has been well studied in the recreational mathematics lit- 
erature. There is no solution for N = 2 and N = 3, and a unique solution 
up to reflection for N = 4, shown in Figure 14.1. There are 88 solutions 
for N = 8, or 92, depending on strictness with symmetries. 

Program 14.2 is a simplistic program solving the N queens problem. 
The relation queen(N, Qs) is true if Qs is a solution to the N queens prob- 
lem. Solutions are specified as a permutation of the list of the numbers 1 
to N. The first element of the list is the row number to place the queen in 
the first column, the second element indicates the row number to place 
the queen in the second column, etc. Figure 14.1 indicates the solution 
[2,4,1,3] to the 4 queens problem. T h s  specification of solutions, and 
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the program generating them, has implicitly incorporated the observa- 
tion that any solution to the N queens problem will have a queen on each 
row and a queen on each column. 

The program behaves as follows. The predicate range creates a list 
Ns of the numbers from 1 to N. Then a generate-and-test cycle begins. 
The permutation predicate generates a permutation Qs of Ns, whch is 
tested to see whether it is a solution to the problem with the predi- 
cate saf e(Qs). This predicate is true if Qs is a correct placement of the 
queens. Since two queens are not placed on the same row or column, the 
predicate need only check whether two queens attack each other along a 
diagonal. Safe is defined recursively. A list of queens is safe if the queens 
represented by the tail of the list are safe and the queen represented by 
the head of the list does not attack any of the other queens. The def- 
inition of attack(Q,Qs) uses a neat encapsulation of the interaction of 
diagonals. A queen is on the same diagonal as a second queen N columns 
away if the second queen's row number is N units greater than, or N 
units less than, the first queen's row number. Ths  is expressed by the 
first clause of attack/3 in Program 14.2. The meaning of attack(Q, 9s) 
is that queen Q attacks some queen in qs. The diagonals are tested itera- 
tively until the end of the board is reached. 

Program 14.2 cannot recognize when solutions are symmetric. The 
program gives two solutions to the query queens (4, Qs) ?, namely 
Qs=[2,4,1,31 andQs=[3,1,4,21. 

Although it is a well-written logic program, Program 14.2 behaves inef- 
ficiently. Many permutations are generated that have no chance of being 
solutions. As with permutation sort, we improve the program by pushng 
the tester, in this case safe, into the generator. 

Instead of testing the complete permutation, that is, placing all the 
queens, each queen can be checked as it is being placed. Program 14.3 
computes solutions to the N queens problem by placing the queens one 
at a time. It also proceeds by generating and testing, in contrast to inser- 
tion sort, which became a deterministic algorithm by the transformation. 
The generator in the program is select and the tester is attack, or more 
precisely its negation. 

The positions of the previously placed queens are necessary to test 
whether a new queen is safe. Therefore the final solution is built upward 
using an accumulator. This is an application of the basic t e c h q u e  de- 
scribed in Section 7.5. A consequence of using an accumulator is that the 
queens are placed on the right-hand edge of the board. The two solu- 

Nondeterministic Programming 

queens (N,Queens) - 
Queens is a placement that solves the N queens problem, 
represented as a permutation of the list of numbers [I, 2 , .  . . , N ] .  

queens(N,Qs) + range(l,N,Ns), queens(Ns,C 1,Qs). 

queens(UnplacedQs,SafeQs,Qs) - 
select (Q ,UnplacedQs ,UnplacedQsl) , 
not attack(Q, Saf eQs) , 
queens(UnplacedQsl,[QISafeQs1,Qs). 

queens( [ I ,Qs,Qs) . 
select (X,XS,YS) - See Program 3.19. 

attack(X,Xs) - See Program 14.2. 

Program 14.3 Placing one queen at a time 

Figure 14.2 A map requiring four colors 

tions to the query queens (4,Qs)? are given in the opposite order to the 
solutions given by Program 14.2. 

The next problem is to color a planar map so that no two adjoining re- 
gions have the same color. A famous conjecture, an open question for a 
hundred years, was proved in 1976, showing that four colors are suffi- 
cient to color any planar map. Figure 14.2 gives a simple map requiring 
four colors to be colored correctly. Thls can be proved by enumeration of 
the possibilities. Hence four colors are both necessary and sufficient. 

Program 14.4, whlch solves the map-coloring problem, uses the 
generate-and-test programming t e c h q u e  extensively. The program im- 
plements the following nondeterministic iterative algorithm: 

For each region of the map, 
choose a color, 
choose (or verify) colors for the neighboring regions from the 

remaining colors. 
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color-map (Map,Colors) - 
Map is colored with CO/O~S so that no two neighbors have the same 
color. The map is represented as an adjacency-list of regions 
region(Name,Color,Neighbors) , where Name is the name of the 
region, Color is its color, and Neighbors are the colors of its 
neighbors. 

color-region (Region, Colors) - 
Region and its neighbors are colored using Colors so that the 
region's color is different from the color of any of its neighbors. 

select (X,Xs ,Ys) - See Program 3.19. 

members(Xs ,YS) - See Program 7.6. 

Program 14.4 Map coloring 

A data structure is needed to support the algorithm. The map is repre- 
sented as a list of regions. Each region has a name, a color, and a list of 
colors of the adjoining regions. The map in Figure 14.2, for example, is 
represented as 

The sharing of variables is used to ensure that the same region is not 
colored with two different colors by different iterations of the algorithm. 

The top-level relation is color-map(Map, Colors), where Map is repre- 
sented as before, and Colors is a list of colors used to color the map. 
Our colors are red, yellow, blue, and whlte. The heart of the algorithm is 
the definition of color-region(Region, Colors) : 

color-region(region(Name ,color ,Neighbors) ,Colors) - 
select (Color, Colors, Colorsl) , members ( ~ e i ~ h b o r s  ,Colorsl) . 

Test data 

test-color(Name ,Map) - 
map(Name,Map), 
colors (Name, Colors) , 
color-map(Map,Colors). 

UL;: : : z -  
map(west~europe,[region(portugal,P,~El), region(spain,E,[F,P]), C ,  , - ! -  

L -. 
region(f rance ,F, [E, I, S ,B, WG ,L] ) , region(belgium,B, [F ,H, L, WG] ) , l :  ;!J 2 :? 
region(holland,H, [B,WG] ) , region(west-germany ,WG, [F,A,S,H,B,L] ) , 4 Q 3 !;: 5 r- 7 IS 
region(luxembourg,L,[F,B,WG]), region(italy,I,[F,A,S]), w .-. !-- 

region(switzerland,S, [F,I,A,WGI ) , region(austria,A, [I,S,WG] )I). 2 6 12 5 :' .., 
5 < '. 
5 A. -. 

Program 14.5 Test data for map coloring 

Both the select and members goals can act as generators or testers, 
depending on whether their arguments are instantiated. 

Overall, the effect of the program is to instantiate a data structure, the 
map. The calls to select and members can be viewed as specifying local 
constraints. The predicates either generate by instantiating arguments in 
the structure or test whether instantiated values satisfy local constraints. 
Program 14.5 tests the map coloring solution. 

Instantiating a data structure designed especially for a problem is a 
particularly effective means of implementing generate-and-test solutions. 
Unification and failure to unify control the building of the final solution 
structure, avoiding creation of unnecessary intermediate data structures. 
Since unification is supported well by Prolog implementations, solutions 
are found quickly. Exercise 14.l(iv) assigns the task of designing a data 
structure that can be instantiated to solve the N queens problem. The 
resulting program solves the N queens problem much more quickly than 
Program 14.3. 

Our final example is solving a logic puzzle. The behavior of the pro- 
gram is similar to the map-coloring program. The logic puzzle consists 
of some facts about some small number of objects that have various at- 
tributes. The minimum number of facts is given about the objects and 
attributes, to yleld a unique way of assigning attributes to objects. 
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Here is an example that we use to describe the technique of solving 
logic puzzles. 

Three friends came first, second, and thlrd in a programming competi- 
tion. Each of the three has a different first name, likes a different sport, 
and has a different nationality. 

Michael likes basketball and did better than the American. Simon, the 
Israeli, did better than the tennis player. The cricket player came first. 

Who is the Australian? What sport does Richard play? 
Logic puzzles such as t h s  one are elegantly solved by instantiating 

the values of a suitable data structure and extracting the solution val- 
ues. Each clue is translated into a fact about the data structure. This can 
be done before the exact form of the data structure is determined using 
data abstraction. Let us analyze the first clue: "Michael likes basketball 
and did better than the American." Two distinct people are referred to. 
One is named Michael, whose sport is basketball, and the other is Amer- 
ican. Further, Michael did better than the American. If we assume the 
structure to be instantiated is Friends, then the clue is expressed as the 
conjunction of goals 

did-better (Manl ,Man2,Friends) , f irst-name(~an1 ,michael) , 
sport (Manl, basketball) , nationality(Man2, american) , 

Similarly, the second clue can be translated to the conditions 

did-better (Manl , Man2, Friends) , f irst-name (Man1 , Simon) , 
nationality(Man1, israeli) , sport (~an2,tennis), 

and the third clue to the conditions 

A framework for solving puzzles is given as Program 14.6. The rela- 
tion computed is solve-puzzle (Puzzle, Solution), where Solution is 
the solution to Puzzle. The puzzle is represented by the structure puz- 
zle (Clues, Queries, Solution), where the data structure being instan- 
tiated is incorporated into the clues and queries, and the values to be 
extracted are given by Solution. 

The code for solve-puzzle is trivial. All it does is successively solve 
each clue and query, whch are expressed as Prolog goals and are exe- 
cuted with the meta-variable facility. 

The clues and queries for our example puzzle are given in Program 
14.7. We describe the structure assumed by the clues to solve the puzzle. 

solve-puzzle (Puzzle,Solution) - 
Solution is a solution of Puzzle, 
where Puzzle is puzzle( Clues, Queries,Solution) . 

solve~puzzle(puzzle(Clues,~ueries,~olution~,Solution~ - 
solve (Clues) , 
solve(Queries). 

solve ( [Clue l Clues] ) - 
Clue, solve(C1ues). 

solve([ 1 ) .  

Program 14.6 A puz~le  solver 

Each person has three attributes and can be represented by the structure 
friend (Name, Country, Sport). There are three friends whose order in 
the programming competition is significant. This suggests an ordered 
sequence of three elements as the structure for the problem, i.e., the list 

The programs defining the conditions did-better, f irst-name, na- 
tionality, sport, and first are straightforward, and are given in 
Program 14.7. 

The combination of Programs 14.6 and 14.7 works as a giant generate- 
and-test. Each of the did-better and member goals access people, and 
the remaining goals access attributes of the people. Whether they are 
generators or testers depends on whether the arguments are instanti- 
ated or not. The answer to the complete puzzle, for the curious, is that 
Michael is the Australian, and Richard plays tennis. 

The puzzle given in Program 14.7 is simple. An interesting question is 
how well does the framework of Program 14.6 scale. A good example of a 
larger puzzle is given in Exercise 14.l(vi). Is the framework adequate for 
such a puzzle? 

The short answer is yes. Prolog is an excellent language for solving 
logic puzzles. However, care must be taken when formulating the clues 
and queries. For example, the predicate member is often essential to spec- 
ify individuals, as is done to formulate the query in Program 14.7. It may 
be tempting to become systematic and begin the puzzle solution by spec- 
ifying all individuals by member goals. This can lead to very inefficient 
programs because too many choice-points are set up. In general, implicit 
checking of a condition is usually more efficient. Another observation is 
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Test data 

test-puzzle(Name,Solution) - 
structure(Name,Structure), 
clues(Name,Structure,Clues), 
queries(Name,Structure,Queries,Solution), 
solve-puzzle (puzzle (Clues, Queries, Solution) ,solution) 

clues(test,Friends, 
[(did-better(ManlCluel,Man2Cluel,Friends), % Clue 1 
f irst-name(ManlClue1 ,michael) , sport (ManlCluel ,basketball), 
nationality(Man2Cluel,american)), 
(did-better(ManlClue2,Man2Clue2,Friends), % Clue 2 
first-name(ManlClue2,simon), nationality(~anl~lue2,israeli), 
sport(Man2Clue2,tennis)), 
(first (Friends ,Manclue31 , sport (ManClue3, cricket) ) % Clue 3 
1). 

queries(test, Friends, 
[ member(Ql,Friends), 

f irst-name (Ql ,Name), 
nationality(Q1 ,australian) , % Query 1 
member (Q2, Friends) , 
f irst-name(Q2,richard) , 
sport (Q2, Sport) % Query 2 

I, 
[['The Australian is ' , Name], ['Richard plays ' , Sport]] 

) .  

did-better(A,B, [A,B,C]). 
did-better(A,C, [A,B,CI). 
did-better(B,C, [A,B,CI). 

first-name(friend(~,~,C),A). 
nationality(friend(~,~,~),B). 
sport(friend(~,B,C),C). 

Program 14.7 A description of a puzzle 

that the order of the goals in the queries can significantly affect run- 
ning time. It is best to worry about this once the problem formulation 
is correct. Determining appropriate goal order is a skill easily learned by 
experience. 

Another tip concerns negative clues, such as "John is not the tailor." 
These clues are best regarded as specifying two separate individuals, 
John and the tailor, rather than as setting up a negative condition about 
one individual. The predicate select can be used instead of member to 
guarantee that individuals are different. 

Exercises for Section 14.1 

(i) Write a program to compute the integer square root of a natu- 
ral number N defined to be the number I such that 12 I N ,  but 
(I + 1)2  > N. Use the predicate between/3, Program 8.5, to generate 
successive natural numbers on backtraclung. 

(ii) Write a program to solve the stable marriage problem (Sedgewick, 
1983), stated as follows: 

Suppose there are N men and N women who want to get married. Each 
man has a list of all the women in his preferred order, and each woman 
has a list of all the men in her preferred order. The problem is to find a 
set of marriages that is stable. 
A pair o f  marriages is unstable i f  there are a man and woman who 
prefer each other to their spouses. For example, consider the pair of 
marriages where David is married to Paula, and Jeremy is married to 
Judy. I f  David prefers Judy to Paula, and Judy prefers David to Jeremy, 
the pair of marriages is unstable. This pair would also be unstable if 
Jeremy preferred Paula to Judy, and Paula preferred Jeremy to David. 
A set of marriages is stable if there is no pair of unstable marriages. 

Your program should have as input lists of preferences, and pro- 
duce as output a stable set of marriages. It is a theorem from graph 
theory that thls is always possible. Test the program on the follow- 
ing five men and five women with their associated preferences: 

avraham: chana tamar zvia ruth sarah 
binyamin: zvia chana ruth sarah tamar 
chaim: chana ruth tamar sarah zvia 
david: zvia ruth chana sarah tamar 
elazar: tamar ruth chana zvia sarah 
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zvia: elazar avraham david binyamin chaim 
chana: david elazar binyamin avraham chaim 
ruth: avraham david binyamin chaim elazar 
sarah: chaim binyamin david avraham elazar 
tamar: david binyamin chaim elazar avraham 

(iii) Use Program 14.4 to color the map of Western Europe. The coun- 
tries are given in Program 14.5. 

(iv) Design a data structure for solving the N queens problem by instan- 
tiation. Write a program that solves the problem by instantiating 
the structure. 

(v) Explain why the following program solves the N queens problem: 

queens(N,Qs) - 
gen-list (N,Qs) , place-queens (N,Qs ,Ups ,Downs). 

gen-list(0, [ I ) .  
gen-list(N, [QlL]) - N > 0, N1 is N-I, gen-list(N1,L) 

place-queens (0, Qs ,Ups ,Downs) . 
place-queens (I, Qs ,Ups, [D I Downs1 ) - 

I > 0, 11 is 1-1, 
place-queens (11, Qs, [U I Upsl ,Downs) , 
place-queen(I,Qs,Ups,Downs). 

place-queen(Q, [Q 1 Qsl , [Q I Upsl , [Q 1 Downs1 ) . 
place-queen (4, [QI 1 Qs1 , [U I Upsl , [D I Downs] - 

place-queen (Q, Qs ,Ups, Downs) . 

(vi) Write a program to solve the following logic puzzle. There are five 
houses, each of a different color and inhabited by a man of a differ- 
ent nationality, with a different pet, drink, and brand of cigarettes. 

(a) The Englishman lives in the red house. 

(b) The Spaniard owns the dog. 

( c )  Coffee is drunk in the green house. 

(d) The Ukrainian drinks tea. 

(e) The green house is immediately to the right (your right) of the 
ivory house. 

(f) The Winston smoker owns snails. 

(g) Kools are smoked in the yellow house. 

(h) Milk is drunk in the middle house. 

(i) The Norwegian lives in the first house on the left. 

0) The man who smokes Chesterfields lives in the house next to 
the man with the fox. 

(k) Kools are smoked in the house next to the house where the 
horse is kept. 

(1) The Lucky Strike smoker drinks orange juice. 

(m) The Japanese smokes Parliaments. 

(n) The Norwegian lives next to the blue house. 

Who owns the Zebra? Who drinks water? 

(vii) Write a program to test whether a graph is planar using the algo- 
rithm of Hopcroft and Tarjan (Deo, 1974; Even, 1979). 

14.2 Don't-Care and Don't-Know Nondeterminism 

Two forms of nondeterminism are distinguished in the logic program- 
ming literature. They differ in the nature of the choice that must be made 
among alternatives. For don't-care nondeterminism, the choice can be 
made arbitrarily. In terms of the logic programming computation model, 
any goal reduction will lead to a solution, and it does not matter whch 
particular solution is found. For don't-know nondeterminism, the choice 
matters but the correct one is not known at the time the choice is made. 

Most examples of don't-care nondeterminism are not relevant for the 
Prolog programmer. A prototypical example is the code for minimum. 
Program 3.7 is the standard, incorporating a limited amount of don't-care 
nondeterrninism, namely, when X and Y are the same: 
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In Section 7.4, we termed this redundancy and advised against its use. 
On the other hand, programs ehbi t ing  don't-know nondeterrninism 

are common. Consider the program for testing whether two binary trees 
are isomorphc (Program 3 . 2 5 ,  reproduced here). Each clause is indepen- 
dently correct, but given two isomorphic binary trees, we don't know 
which of the two recursive clauses should be used to prove the isomor- 
phism. Operationally, only when the computation terminates success- 
fully do we know the correct choice: 

isotree (void, void) . 
isotree(tree(X,Ll ,R1) ,tree(~,~2,R2)) - 

isotree(L1 ,L2) , isotree (R1 ,R2) . 
isotree(tree(X,Ll,Rl), tree(X,~2,~2)) - 

isotree(L1 ,R2), isotree (L2 ,R1). 

Composing Prolog programs exhibiting either form of nondeterrninism 
can be indistinguishable from composing deterministic programs. Each 
clause is written independently. Whether inputs match only one clause 
or several is irrelevant to the programmer. Indeed t h s  is seen from the 
multiple uses that can be made of Prolog programs. With arguments in- 
stantiated in one way, the program is deterministic; with another pattern 
of instantiation, the program is nondeterministic. For example, append/3 
is deterministic if called with its first two arguments instantiated, whle 
it is generally nondeterministic if called with the third argument instan- 
tiated and the first two arguments uninstantiated. 

The behavior of Prolog programs seemingly having don't-know nonde- 
terminism such as isotree is known. A given logic program and a query 
determine a search tree, as discussed in Chapter 5 ,  whch is searched 
depth-first by Prolog. Writing a program possessing don't-know nonde- 
terminism is really specifying a depth-first search algorithm for solving 
the problem. 

We consider this viewpoint in a little more detail with a particular 
example: finding whether two nodes in a graph are connected. Figure 
14.3 contains two graphs that will be used to test our ideas. The left- 
hand one is a tree, while the right-hand one is not, containing a cycle. 
Trees, or more generally, directed acyclic graphs (DAGs), behave better 
than graphs with cycles, as we will see in our example programs. 

Figure 14.3 Directed graphs 

connected (X, Y )  - 
Node X is connected to node Y, 
given an edge/2 relation describing a DAG. 

connected(X,X). 
connected(X,Y) - edge(X,N) , connected(N,Y) . 
Data 

edge(a,b). edge(a,c). edge(a,d). edge(a,e). edge(d,j). 
edge(c,f). edge(c,g). edge(f,h). edge(e,k). edge(f,i). 

edge(x,y). edge(y,z). edge(z,x). edge(y,u). edge(z,v). 

Program 14.8 Connectivity in a finite DAG 

Our first program is a small modification of a logic program of Section 
2 . 3 .  Program 14.8 defines the relation connected(X,Y), whch is true if 
two nodes in a graph, X and Y, are connected. Edges are directed; the fact 
edge(X,Y) states that a directed edge exists from X to Y. Declaratively 
the program is a concise, recursive specification of what it means for 
nodes in a graph to be connected. Interpreted operationally as a Prolog 
program, it is the implementation of an algorithm to find whether two 
nodes are connected using depth-first search. 

The solutions to the query connected(a,X)? using the data from the 
left-hand graph in Figure 14.3 gives as values for X, a, b, c, f, h, i, g, d, j, 
e, k. Their order constitutes a depth-first traversal of the tree. 

Program 14.9 is an extension of t h s  simple program that finds a path 
between two nodes. The predicate path(X,Y ,Path) is true if Path is 
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path(X,Y,Path) - 
Path is a path between two nodes X and Y 
in the DAG defined by the relation edge/2. 

path(X,X, [XI). 
path(X,Y, [XIPI) - edge(X,N), path(N,Y,P). 
Program 14.9 Finding a path by depth-first search 

connected (X,Y) - 
Node X is connected to node Y in the graph defined by edge/2. 

connected(X,Y) - connectedo(,Y,[X]). 
connected(X,X,Visited). 
connected(X,Y,Visited) - 

edge(X,N), not member(N,Visited), connected(N,Y,[NIVisitedl). 

Program 14.10 Connectivityinagraph 

a path from the node X to the node Y in a graph. Both endpoints are 
included in the path. The path is built downward, which fits well with the 
recursive specification of the connected relation. The ease of computing 
the path is a direct consequence of the depth-first traversal. Extending 
a breadth-first traversal to find the path is much more difficult. Sections 
16.2 and 20.1 show how it can be done. 

Depth-first search, dfs, correctly traverses any finite tree or DAG (di- 
rected acyclic graph). There is a problem, however, with traversing a 
graph with cycles. The computation can become lost in an infinite loop 
around one of the cycles. For example, the query connected(x ,Node)?, 
referring to the right-hand graph of Figure 14.3 gives solutions Node=y, 
Node=z, and Node=x repeatedly without reaching u or v. 

The problem is overcome by modifying connected. An extra argument 
is added that accumulates the nodes visited so far. A test is made to 
avoid visiting the same node twice. This is shown in Program 14.10. 

Program 14.10 successfully traverses a finite directed graph depth- 
first. The pure Prolog program needed for searching finite DAGs must be 
extended by negation in order to work correctly. Adding an accumulator 
of paths visited to avoid entering loops effectively breaks the cycles in 
the graph by preventing traversal of an edge that would complete a cycle. 

Figure 14.4 Initial and final states of a blocks world problem 

The program is not guaranteed to reach every node of an infinite graph. 
To do so, breadth-first search is necessary. Ths  is discussed further in 
Section 16.2. 

Ths  section is completed with a program for building simple plans 
in the blocks world. The program is written nondeterministically, essen- 
tially performing a depth-first search. It combines the two extensions 
mentioned before - keeping an accumulator of what has been traversed, 
and computing a path. 

The problem is to form a plan in the blocks world, that is, to specify 
a sequence of actions for restacking blocks to achieve a particular con- 
figuration. Figure 14.4 gives the initial state and the desired final state of 
a blocks world problem. There are three blocks, a, b, and c, and three 
places, p, q, and r. The actions allowed are moving a block from the top 
of a block to a place and moving a block from one block to another. For 
an action to succeed, the top of the moved block must be clear, and also 
the place or block to whch it is being moved must be clear. 

The top-level procedure of Program 14.11 solving the problem is 
transf orm(State1, State2, Plan). A plan of actions, Plan, is produced 
that transforms State1 into State2 when executed. 

States are represented by a list of relations of the form on(X,Y), 
where X is a block and Y is a block or place. They represent the 
facts that are true in the state. For example, the initial and final 
states in Figure 14.4 are, respectively, [on(a, b) , on(b,p) , on(c ,r)l and 
[on(a,b) ,on(b,c) ,on(c ,r)l. The state descriptions are ordered in the 
sense that the on relation for a precedes that of b, whch precedes the 
on relation for c. The state descriptions allow easy testing of whether 
a block or place X is clear in a given state by checlung that there is no 
relation of the form on (A, X). The predicates clear/2 and on/3 in Pro- 
gram 14.1 1 take advantage of this representation. 
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transform(Statel,State2,Plan) - 
Plan is a plan of actions to transform State1 into State2. 

transform(Statel,State2,Plan) - 
transform(Statel.State2, [Statel] ,Plan). 

transform(State,State,Visited, C I ) .  
transform(Statel,State2,Visited,[~ctionIActions]) - 

legal-action(Action,Statel), 
update(Action,Statel,State), 
not member (State ,Visited) , 
transform(State ,State2, [State IVisitedl ,Actions). 

legal~action(to~place(Block,Y,Place).State +- 

on(Block,Y,State), clear(Block,State), 
~lace(Place), clear(Place,State). 

legal~action(to~block(Blockl,Y,Block2),State - 
on(Block1 ,Y ,State), clear(Block1 ,State), block(~lock2), 
Block1 # Block2, clear(Block2 ,State). 

clear (X,State) - not member(on(A,X) ,State). 
on(X,Y,State) - member(on(X,Y) ,State). 
update(to-block(X,Y ,Z) ,State,Statel) - 

substitute(on(X,Y),on(X,Z),State,Statel). 
update(to-place(X,Y,Z),State,Statel) - 

substitute(on(X,Y) ,on(X,Z) ,State,Statel). 

substitute(X,Y ,Xs ,Ys) - See Exercise 3.3(1). 

Program 14.1 1 A depth-first planner 

The nondeterministic algorithm used by the planner is given by the 
recursive clause of transf orm/4 in the program: 

Whle the desired state is not reached, 
find a legal action, 
update the current state, 
check that it has not been visited before. 

There are two possible actions, moving to a block and moving to a place. 
For each, the conditions for whch it is legal must be specified, and a 
method given for updating the state as a result of performing the action. 

Program 14.11 successfully solves the simple problem given as Pro- 
gram 14.12. The first plan it produces is horrendous, however: 

[to-place(a,b,q) , to-block(a,q,c) ,to-place(b,p,q) ,to-place(a,c,p), 
to-block(a,p,b) , to-place(c ,r,p) ,to-place(a,b,r), to-block(a,r, c) , 
to-place(b,q,r) ,to-place(a, c ,q) ,to-block(a,q,b) ,to-place(~ ,p,q), 
to-place(a,b,p) ,to-block(a,p,c) ,to-place(b,r,p) ,to-place(a, c,r), 
to-block(b,p, a) ,to-place (c,q,p) ,to-block(b,a, c) ,to-place(a,r,q), 
to-block(b, c, a), to-place(c ,p,r) ,to-block(b,a, c) ,to-place (a,q,p), 
to-block(a,p,b)l . 

Block a is first moved to q, then to c. After that, block b is moved to q, 
block a is moved to p and b, and after 20 more random moves, the final 
configuration is reached. 

It is easy to incorporate a little more intelligence by first trying to 
acheve one of the goal states. The predicate legal-action can be re- 
placed by a predicate choose~action(Action, Statel, State2). A sim- 
ple definition suffices to produce intelligent behavior in our example 
problem: 

choose~action(Action, Statel, State2) - 
suggest(Action,State2), legal-action(Action,Statel). 

choose~action(Action,Statel,State2) - 
legal-action(Action, Statel) . 

suggest ( t ~ - ~ l a c e  (x,Y, Z) ,State) - 
member (on(X, Z) ,State), place(Z) . 

suggest (to-block(X,Y,Z) ,State) - 
member (on(X, Z) , State) , block(Z) . 

The first plan now produced is [to-place (a, b, q) , to-block(b ,p, c) , 
to-block(a, q, b)l . 

Testing and data 

initial-state(test , [on(a,b) ,on(b,p) .on(c,r)l) 
final-state(test, [on(a,b) ,on(b,c) ,on(c.r)l). 

block(a) . block(b). block(c) . 
place (p) . place (q) . place (r) . 

Program 14.12 Testing the depth-first planner 
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Exercises for Section 14.2 

(i) Apply Program 14.11 to solve another simple blocks world prob- 
lem. 

(ii) Modify Program 14.11 to solve the following planning problem. 
Consider a simplified computer consisting of a single accumula- 

tor and a large number of general purpose registers. There are four 
instructions: load, store, add and subtract. From the initial state 
where the accumulator is empty, register1 contains the value cl ,  
register2 contains c2, register3 contains c3 and register4 contains 
c4, achieve a final state where the accumulator contains 

(a) (cl - c2) + (c3 - c4) 

(b) (cl - c2) + (cl - c2) 

(c) c1, and register1 contains cl  + (c2 - c3), and register2 contains 
c2 - c3. 

-- 

14.3 Artificial Intelligence Classics: ANALOGY, ELIZA, and McSAM 

"The best way to learn a subject is to teach it" is a cliche commonly 
repeated to new teachers. An appropriate analogue for new programmers 
is that the best way to understand a program is to rewrite or extend it. 
In t h s  spirit, we present logical reconstructions of three A1 programs. 
Each is clear, understandable, and easily extended. The exercises at the 
end of the section encourage the reader to add new facts and rules to the 
programs. 

The three programs chosen are the ANALOGY program of Evans for 
solving geometric analogy questions from intelligence tests; the ELIZA 
program of Weizenbaum, whch simulates or rather parodies conversa- 
tion; and McSAM, a rnicroversion of SAM, a program for "understanding" 
stories from the Yale language group. Each logical reconstruction is ex- 
pressed very simply. The nondeterminism of Prolog allows the program- 
mer to ignore the issues of search. 

Consider the task of solving the geometric analogy problems typically 
used in intelligence tests. Several diagrams are presented in a prototypi- 

Nondeterministic Programming 

Figure 14.5 A geometric analogy problem 

cal problem. Diagrams A, B, and C are singled out from a list of possible 
answers and the following question is posed: "A is to B as C is to which 
one of the 'answer' diagrams?" Figure 14.5 gives a simple problem of t h s  
type. 

Here is an intuitive algorithm for solving the problem, where terms 
such as find, apply, and operation are left unspecified: 

Find an operation that relates A to B. 
Apply the operation to C to give a diagram X. 
Find X, or its nearest equivalent, among the answers. 

In the problem in Figure 14.5, the positions of the square and triangle 
are swapped (with appropriate scaling) between diagrams A and B. The 
"obvious" answer is to swap the square and the circle in diagram C. The 
resultant diagram appears as no. 2 in the possible answers. 

Program 14.13 is a simple program for solving analogy problems. The 
basic relation is analogy (Pair1 , Pair2, Answers), where each Pair is of 
the form X is-to Y. To parse the program, is-to must be declared as 
an infm operator. The two elements in Pair1 bear the same relation as 
the two elements in Pair2, and the second element in Pair2 appears in 
Answers. The definition of analogy implements the intuitive algorithm: 

analogy(A is-to B,C is-to X,Answers) -- match(A,B,Operation), 
match (C, X, Operation) , member (X, Answers) . 
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analogy (Pairl,PairZ,Answers) - 
An analogy holds between the pairs of figures Pair1 and Pair2. 
The second element of Pair2 is one of the possible Answers. 

analogy(A is-to B,C is-to X,Answers) - 
match(A,B, Operation) , 
match(C,X,Operation), 
member(X,Answers). 

match(inside(Figure1 ,Figure2), inside(Figure2 , ~ i ~ u r e l )  , invert). 
match (above (Figure1 , Figure2) ,above (Figure2 ,~igurel) , invert) . 

Program 14.13 A program solving geometric analogies 

A fundamental decision is how the figures in the problem should be 
represented. In Program 14.13, figures are represented as Prolog terms. 
Diagram A in Figure 14.5 is a square inside a triangle and is represented 
as the term inside (square, triangle). 

The relation between two diagrams is found by the predicate match 
(A, B , Operat ion). This relation is true if Operat ion matches A and B. 
The operation invert is used to solve our example problem. The behav- 
ior of invert is to swap its arguments. 

The predicate match is used in two distinct ways in thls program. The 
first time it produces an operation matchlng two given diagrams. The 
second time it produces a second diagram given an operation and a di- 
agram. These details are, however, irrelevant from the nondeterministic 
viewpoint. Finding the answer is implemented simply, checlung whether 
a given diagram appears in the list of answers. Note that the second 
match goal and the member goal can be swapped. The behavior then be- 
comes guessing an answer using member as a generator, and verifying 
that the guess has the same relation to diagram C as A does to B. Pro- 
gram 14.14 tests the analogy program. 

Exercise 14.3(i) poses three additional problems to be solved by anal- 
ogy, which can be expressed w i t h  the framework of Program 14.13. The 
representation of pictures by terms, and the description of operations 
becomes increasingly ad hoc. Indeed, much of the "intelligence" of the 
program is embedded in the representation. The original ANALOGY pro- 
gram did not assume as much knowledge. It took a line drawing and tried 
to recognize the objects. Triangles, squares, and so on, were not assumed 
to be the primitives. 

Testing and data 

test-analogy(Name,X) - 
f igures(Name ,A,B,C) , 
answers (Name ,Answers), 
analogy(A is-to B,C is-to X,Answers). 

figures (testl, inside (square, triangle), inside(triangle, square) , 
inside(circle,square)). 

answers (test 1, [inside (circle, triangle), inside (square, circle), 
inside(triangle,square)]). 

Program 14.14 Testing ANALOGY 

I am unhappy. 
> > How long have you been unhappy? 

Six months. Can you help me. 
>> \+hat makes you think I help you'> 

You remind me of my father and brother. 
2>  Please tell me more about father. 

I like teasing father. 
> > Does anyone else in your family llke teasing father? 

No, only me. 
>> Please go on. 

Figure 14.6 Sample conversation with ELIZA 

The next A1 classic considered is a simplified version of ELIZA. The pro- 
gram aims to simulate a conversation. A user types in a sentence, and 
ELIZA responds with an appropriate question or comment. ELIZA does 
not understand in any real sense, responding to its input by recognizing 
word patterns and replying by using a corresponding response pattern. 
To make the patterns of responses more credible, a psychiatrist setting 
is adopted. A sample interaction with ELIZA is given in Figure 14.6. Com- 
puter responses are preceded by > >. 

The heart of ELIZA is a procedure for matchlng the input sentence 
against a pattern. The resulting match is applied to another pattern to de- 
termine the program reply. The pair of patterns can be considered a stim- 
ulus/response pair, where the input is matched against the stimulus and 

PROYECTO
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the output generated from the response. A typical stimulus/response 
pair is 

I am (statement) How long have you been (statement)? 

Using t h s  pair, the response of the program to the input statement "I am 
unhappy" will be the question "How long have you been unhappy?" The 
(statement) can be viewed as a slot to be filled. 

Program 14.15 is a simple version of ELIZA. It implements the follow- 
ing algorithm: 

Read the input. 
Whle the input is not bye, 

choose a stimulus/response pair, 
match the input to the stimulus, 
generate the reply from the response and the above match, 
output the response, 
read the next input. 

The stimulus/response pairs are represented as facts of the form pat- 
tern (Stimulus , Response), where both Stimulus and Response are lists 
of words and slots. Slots in the patterns are represented by integers. The 
predicate match(Pattern,Table ,Words) is used for both the second and 
third steps of the algorithm. It expresses a relation between a pattern 
Pattern, a list of words Words, and a table Table, where the table records 
how the slots in the pattern are filled. A central part of the match proce- 
dure is played by a nondeterministic use of append to break up a list 
of words. The table is represented by an incomplete data structure, dis- 
cussed in more detail in Chapter 15. The missing procedure lookup/3 is 
given in Section 15.3. The reply is generated by reply (Words). whch is a 
modified version of Program 12.1 for writeln that leaves spaces between 
words. 

The final program presented in t h s  section is Micro SAM or McSAM. It 
is a simplified version of the SAM (Script Applier Mechanism) program 
developed in the natural language group at Yale University. The aim of 
McSAM is to "understand" stories. Given a story, it finds a relevant script 
and matches the individual events of the story against the patterns in the 
script. In the process, events in the script not explicitly mentioned in the 
story are filled in. 

eliza - 
Simulates a conversation via side effects. 

eliza - read-word-list(1nput) , eliza(Input), ! . 

eliza( [bye] ) - 
reply(['Goodbye. I hope I have helped you']) 

eliza(1nput) - 
pattern(Stimu1us ,Response), 
match(Stimulus,Dictionary,Input), 
match(Response,Dictionary,0utput), 
reply(Output), 
read-word-list (Inputl) , 
! ,  eliza(Input1). 

match(Pattern,Dictionary, Words) - 
Pattern matches the list of words Words, and matchmgs are 
recorded in the Dictionary. 

match( [N I Pattern] ,Dictionary ,Target) - 
integer(N), lookup(N,Dictionary,LeftTarget), 
append(LeftTarget,RightTarget,Target), 
match(Pattern,Dictionary,RightTarget). 

match( [Word l Pattern] ,Dictionary, [Word 1 Target] ) - 
atom(Word), match(Pattern,Dictionary,Target). 

match( [ 1 ,Dictionary, [ 1 ) . 

lookup(Key , Dictionary, Value) - See Program 15.8. 

pattern (Stimulus,Response) - 
Response is an applicable response pattern to the pattern Stimulus. 

pattern(~i,am,l],~'How',long,have,you,been,l,?]). 

pattern( [l,you,2,mel, ['What' ,makes,you,think, 'IJ   YOU,?]). 
pattern( [i,like, 11, ['Does' ,anyone,else,in, your,family,like, 1 , ? I ) .  
pattern([i,feel,ll, ['DoJ ,you,often,feel,that,way,?]). 
pattern( [I , ~ , 2 1  , ['please', tell ,me,more ,about ,X, .I ) - 

important (X) . 
pattern(C11, ['Please',go,on, . I ) .  
important (f ather) . important (mother) . important (son) . 
important(sister). important(br0ther). important(daughter). 

reply([HeadlTail]) - write(Head), write(' '1, reply(Tai1). 
reply([ 1 )  - nl. 
read-word-list (Xs) - See Program 12.2. 

Program 14.1 5 ELIZA 
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Input: John went to Leones, ate a  hamburger, and left. 

Output: John went to Leones. He was shown from the door to a  seat. 
A waiter brought John a  hamburger, which John ate by mouth. 
The waiter brought John a  check, and John left Leones for 
another place. 

Figure 14.7 A story filled in by McSAM 

Both the story and the script are represented in terms of Schank's 
theory of conceptual dependency. For example, consider the input story 
in Figure 14.7, whlch is used as an example in our version of McSAM. The 
English version 

"John went to Leones, ate a hamburger, and left" 

is represented in the program as a list of lists: 

[ [ p t r a n s ,  john ,  john ,  XI,  l eones ]  , 
[ i n g e s t ,  X2, hamburger,  X3]  , 
[ p t r a n s ,  A c t o r ,  A c t o r ,  X4, X51 1 

The first element in each list, p t r a n s  and i n g e s t ,  for example, is a term 
from conceptual dependency theory. The representation of the story as a 
list of lists is chosen as a tribute to the original Lisp version. 

Programming McSAM in Prolog is a triviality, as demonstrated by 
Program 14.1 6. The top-level relation is mcsam ( S t o r y ,  S c r i p t ) ,  which 
expands a S t o r y  into its "understood" equivalent according to a rele- 
vant S c r i p t .  The script is found by the predicate f i n d ( S t o r y ,  S c r i p t ,  
D e f a u l t s ) .  The story is searched for a nonvariable argument that trig- 
gers the name of a script. In our example of John visiting Leones, the 
atom l e o n e s  triggers the r e s t a u r a n t  script, indicated by the fact t r i g -  
g e r  ( l e o n e s ,  r e s t a u r a n t )  in Program 14.17. 

The matching of the story to the script is done by m a t c h ( S c r i p t ,  
S t o r y ) ,  which associates lines in the story with lines in the script. Re- 
maining slots in the script are filled in by name-defaults(Defau1ts). 
The "output" is 

[ p t r a n s ,  john ,  j o h n , p l a c e l  , l eones1  
[ p t r a n s ,  john ,  john ,  d o o r ,  s e a t ]  
[mtrans,john,waiter,hamburger] 

mcsam (Story,Script) - 
Script describes Story. 

match (Script,Story) - 
Story is a subsequence of Script. 

match(Script , [ 1 ) . 
match( [Line I Scr ipt]  , [Line I Story] ) +- match(Script ,Story) . 
rnatch([LineIScriptl,Story) - match(Script ,Story).  

filler (Slot,Story) - 
Slot is a word in Story. 

f i l l e r ( ~ l o t , S t o r y )  - 
member ( [Action 1 Argsl ,Story) , 
member (Slot  ,Args) , 
nonvar(S1ot). 

name-defaults (Defaults)  - 
Unifies default pairs in Defaults. 

name-defaults([: I ) .  
name-def aul ts  ( [ EN, N ]  I L 1 )  + name-def au l t s  (L) . 
name-def au l t s (  [ [ N l  ,N21 I L 1 )  - N1 f N2, name-def au l t s (L)  . 

Program 14.16 McSAM 

[ i n g e s t ,  j ohn, hamburger,  [mouth, j ohn] 1 
[ a t r a n s ,  john ,  check,  john ,  w a i t e r ]  
[ p t r a n s  , j o h n ,  j ohn, l e o n e s ,  p lace21 . 

Its translation to English is given in Figure 14.7. 
The work done on the original McSAM was all in the searching and 

pattern matching. This is accomplished in Prolog by nondeterministic 
programming and unification. 
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Testing and data 

test-mcsam(Name,UnderstoodStory) - 
s t o r y  (Name, Story)  , mcsam(~tory  , ~ n d e r s t o o d S t o r y )  . 

s t o r y ( t e s t ,  [ [p t rans ,  john,  john, XI, l eones] ,  
[ i n g e s t ,  X2, hamburger, X3] , 
[ p t r a n s ,  Actor ,  Actor ,  X4, X51 I ) .  

s c r i p t  ( r e s t a u r a n t ,  
[ [ p t r a n s ,  Actor ,  Actor ,  E a r l i e r P l a c e ,  Restaurant]  , 

[ p t r a n s ,  Actor ,  Actor ,  Door, S e a t ] ,  
[mtrans, Actor ,  Waiter ,  Food], 
[ i n g e s t ,  Actor ,  Food, [mouth, Actor] 1 , 
[ a t r a n s ,  Actor ,  Money, Actor ,  w a i t e r ] ,  
[ p t r a n s ,  Actor ,  Actor ,  Res tauran t ,  Gone] 1 , 

[ [Actor, customer] , [ E a r l i e r P l a c e ,  place11 , 
[Restaurant ,  r e s t a u r a n t ]  , [Door, door] , 
[Sea t ,  s e a t ]  , [Food, meal] , [Waiter,  wa i te r ]  , 
[Money, check] , [Gone, place21 1 1.  

Program 14.1 7 Testing McSAM 

Exercises for Section 14.3 

(i) Extend ANALOGY, Program 14.13, to solve the three problems in 
Figure 14.8. 

(ii) Extend ELIZA, Program 14.15, by adding new stimulus/response 
patterns. 

(iii) If the seventh statement in Figure 14.6 is changed to be "I like 
teasing my father," ELIZA responds with "Does any one else in your 
family like teasing my father." Modify Program 14.15 to "W t h s  
behavior, changing references such as I, my,  to you, your, etc. 

(iv) Rewrite McSAM to use structures. 

(v) Reconstruct another A1 classic. A good candidate is the general 
problem solver GPS. 

(i) Given: 0 

(ii) Given: A // @ 

Figure 14.8 Three analogy problems 
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14.4 Background 

Applylng Prolog to generate-and-test problems has been very common. 
Many researchers have discussed the behavior of Prolog in solving the 
N queens problem and map coloring. A good discussion of how Prolog 
handles the N queens problem can be found in Elcock (1983). The N 
queens program given in Exercise 14.l(v), the fastest of whch we are 
aware, is due to Thomas Fruewirth. A classification of generate-and-test 
programs in Prolog is given in Bansal and Sterling (1989). 

Several researchers have used Prolog's behavior on generate-and- 
test problems as a reason to investigate alternative control of logic 
programs. Suggestions for improvement include co-routining incorpo- 
rated in IC-Prolog (Clark and McCabe, 1979) and intelligent backtraclung 
(Bruynooghe and Pereira, 1984). Neitlier have been widely adopted into 
Prolog. 

Other examples of solving puzzles by instantiating structures are given 
in a book by Evan Tick (1991) comparing Prolog program performance 
with concurrent logic programming languages. 

The zebra puzzle, Exercise 14.l(iv) did the rounds on the Prolog Digest 
in the early 1980s. It was used as an unofficial benchmark to test both 
the speed of Prolog implementations and the ability of Prolog program- 
mers to write clear code. The description of clues given in Program 14.7 
was influenced by one of the solutions. The framework of Program 14.6 
was tested extensively by Steven Kaminslu in a course project at Case 
Western Reserve University. He took the first 20 puzzles of an avail- 
able puzzle book and solved them using the framework. Although very 
much a Prolog novice, he was able to use Prolog fairly easily to find so- 
lutions. His experience hghlighted some interesting points, namely, how 
to handle negative information and the undesirability of too many choice 
points with redundant calls to s e l ec t  and member. 

The definitive discussion of don't-care and don't-know nondetermin- 
ism in logic programming appears in Kowalski (1979a). 

Program 14.11 for planning is a variant of an example from Kowalski 
(1979a). The original planning program in Prolog was WARPLAN (Warren, 
1976), reproduced in Coelho et al. (1980). Exercise 14.2(ii) was adapted 
from descriptions of WARPLAN1s abilities in Coelho and Cotta (1988). 

ANALOGY constituted the Ph.D. thesis of Thomas Evans at MIT in the 
mid-1960s. A good description of the program appears in Semantic Infor- 
mation Processing (Minsky, 1968). Evans's program tackled many aspects 
of the problem that are made trivial by our choice of representation, for 
example, identifying that there are triangles, squares, and circles in the 
diagrams. Our version, Program 14.13, emerged from a discussion group 
of Leon Sterling with a group of episternics students at the University of 
Edinburgh. 

ELIZA was originally presented in Weizenbaum (1966). Its performance 
led people to believe that a limited form of the Turing test had been 
passed. Weizenbaum, its author, was horrified by people's reactions to 
the program and to A1 more generally, and he wrote an impassioned plea 
against talung the program too seriously (Weizenbaum, 1976). Our ver- 
sion, Program 14.15, is a slight variant of a teaching program attributed 
to Alan Bundy, hchard O'Keefe, and Henry Thompson, whch was used 
for A1 courses at the University of Edinburgh. 

McSAM is a version of the SAM program, which was tailored for 
teachmg A1 programming (Schank and hesbeck, 1981). Our version, 
Program 14.16, is due to Ernie Davis and Ehud Shapiro. More informa- 
tion about conceptual dependency can be found in Schank and Abelson 
(1977). 

A rational reconstruction of GPS, suggested in Exercise 14.3(v), was 
shown to us by George Ernst. 
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The programs presented so far have been discussed in terms of relations 
between complete data structures. Powerful programming techniques 
emerge from extending the discussion to incomplete data structures, as 
demonstrated in this chapter. 

The first section discusses difference-lists, an alternative data struc- 
ture to lists for representing a sequence of elements. The) can be used 
to simplify and increase the efficiency of list-processing programs. In 
some respects, difference-lists generalize the concept of accumulators. 
Data structures built from the difference of incomplete structures other 
than lists are discussed in the second section. The third section shows 
how tables and dictionaries, represented as incomplete structures, can 
be built incrementally during a computation. The final section discusses 
queues, an application of difference-lists. 

15.1 Difference-Lists 

Consider the sequence of elements 1,2,3. It can be represented as the 
difference between pairs of lists. It is the difference between the lists 
[1,2,3,4,5] and [4,5], the difference between the lists [1,2,3,8] and [8], and 
the difference between [1,2,3] and [ 1. Each of these cases is an instance 
of the difference between two incomplete lists [1,2,3 IXs] and Xs. 

We denote the difference between two lists as a structure As\Bs, which 
is called a difference-list. As is the head of the difference-list and Bs the 
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tail. In thls example [1,2,3 /Xs] \Xs is the most general difference-list repre- 
senting the sequence 1,2,3, where [1,2,3 IXs] is the head of the difference- 
list and Xs the tail. 

Logical expressions are unified, not evaluated. Consequently the bi- 
nary functor used to denote difference-lists can be arbitrary. Of course, 
the user must be consistent in using the same functor in any one pro- 
gram. Another common choice of functor besides \ is -. The functor for 
difference-lists can also be omitted entirely, the head and the tail of the 
difference-list becoming separate arguments in a predicate. While t h s  
last choice has advantages from a perspective of efficiency, we use the 
functor \ throughout for clarity. 

Lists and difference-lists are closely related. Both are used to repre- 
sent sequences of elements. Any list L can be trivially represented as a 
difference-list L\[ 1. The empty list is represented by any difference-list 
whose head and tail are identical, the most general form being As\As. 

Difference-lists are an established logic programming techmque. The 
use of difference-lists rather than lists can lead to more concise and 
efficient programs. The improvement occurs because of the combining 
property of difference-lists. Two incomplete difference-lists can be con- 
catenated to give a third difference-list in constant time. In contrast, lists 
are concatenated using the standard append program in time linear in 
the length of the first list. 

Consider Figure 15.1. The difference-list Xs\Zs is the result of append- 
ing the difference-list Ys\Zs to the difference-list Xs\Ys. This can be 
expressed as a single fact. Program 15.1 defines a predicate append- 
dl (As ,Bs ,Cs), which is true if the difference-list Cs is the result of 
appending the difference-list Bs to the difference-list As. We use the suf- 
fix -dl to denote a variant of a predicate that uses difference-lists. 

A necessary and sufficient condition characterizing when two differ- 
ence-lists As\Bs and Xs\Ys can be concatenated using Program 15.1 is 
that Bs be unifiable with Xs. In that case, the two difference-lists are com- 
patible. If the tail of a difference-list is uninstantiated, it is compatible 
with any difference-list. Furthermore, in such a case Program 15.1 would 
concatenate it in constant time. For example, the result of the query 
append-dl([a,b,clXsl\Xs, [1,21\[ 1 ,Ys)? is (Xs=[1,21 ,Ys=[a,b,c, 
1,21\C I). 

Difference-lists are the logic programming counterpart of Lisp's rplacd, 
which is also used to concatenate lists in constant time and save consing 

Figure 15.1 Concatenating difference-lists 

append-dl(As,Bs,Cs) - 
The difference-list Cs is the result of appending Bs to As, 
where As and Bs are compatible difference-lists. 

append-dl(Xs\Ys, Ys\Zs, Xs\Zs). 

Program 15.1 Concatenating difference-lists 

(allocating new list-cells). There is a difference between the two: the for- 
mer are free of side effects and can be discussed in terms of the abstract 
computation model, whereas rplacd is a destructive operation, whch 
can be described only by reference to the machine representation of S- 
expressions. 

A good example of a program that can be improved by using differ- 
ence-lists is Program 9.la for flattening a list. It uses double recursion to 
flatten separately the head and tail of a list of lists, then concatenates 
the results. We adapt that program to compute the relation flatten- 
dl (Xs ,Ys), where Ys is a difference-list representing the elements that 
appear in a list of lists Xs in correct order. The direct translation of 
Program 9.la to use difference-lists follows: 

f latten-dl( [X I Xsl , Ys\Zs) - 
f latten-dl (X, As\Bs) , f latten-dl (Xs, Cs\Ds) , 
append-dl(As\Bs,Cs\Ds,Ys\Zs). 

f latten-dl(X, CX I Xsl \Xs) - 
constant (X) , Xf [ 1 . 

f latten-dl ( C I , Xs\Xs) . 

PROYECTO

PROYECTO
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flatten (Xs, Ys) - 
Ys is a flattened list containing the elements in Xs. 

flatten(Xs,Ys) - flatten-dl(xs,~s\ [ I). 
f latten-dl( [XI Xsl ,Ys\Zs) - 

f latten-dl(X,Ys\Ysl) , flatten-dl(Xs ,Ysl\Zs) . 
f latten-dl(X, [XI Xsl \XS) - 

constant (X) , X# [ I . 
f latten-dl( [ 1 ,Xs\Xs) . 

Program 15.2 Flattening a list of lists using difference-lists 

The doubly recursive clause can be simplified by unfolding the append- 
dl goal with respect to its definition in Program 15.1. Unfolding is dis- 
cussed in more detail in Chapter 18 on program transformation. The 
result is 

f latten-dl( [X I XS] , As\Ds) - 
f latten-dl (X, As\Bs) , f latten-dl (Xs, Bs\Ds) . 

The program for flatten-dl can be used to implement flatten by ex- 
pressing the connection between the desired flattened list and the 
difference-list computed by f latten-dl as follows: 

Collecting the program and renaming variables yields Program 15.2. 
Declaratively Program 15.2 is straightforward. The explicit call to ap- 

pend is made unnecessary by flattening the original list of lists into a 
difference-list rather than a list. The resultant program is more efficient, 
because the size of its proof tree is linear in the number of elements in 
the list of lists rather than quadratic. 

The operational behavior of programs using difference-lists, such as 
Program 15.2, is harder to understand. The flattened list seems to be 
built by magic. 

Let us investigate the program in action. Figure 15.2 is a trace of the 
query flatten( [[a] , [b, [c]]] ,Xs)? with respect to Program 15.2. 

The trace shows that the output, Xs, is built top-down (in the terminol- 
ogy of Section 7.5). The tail of the difference-list acts like a pointer to the 
end of the incomplete structure. The pointer gets set by unification. By 
using these "pointers" no intermediate structures are built, in contrast 
to Program 9.la. 

flatten([[al, [b, [clll ,Xs) 
f latten-dl( [[a] , [b, [clll ,Xs\ [ 1 ) 

f latten-dl( [a] ,Xs\Xsl) 
f latten_dl(a,Xs\Xs2) Xs = [a1 Xs21 

constant (a) 

a #  [ I  
f latten-dl( [I ,Xs2\Xs1) Xs2 = Xsl 

f latten-dl( [ [b, Cclll ,Xsl\ [ 1 ) 
flatten-dl( [b, [ell ,Xsl\Xs3) 

f latten-dl (b ,Xsl\Xs4) Xsl = CblXs41 
constant (b) 
b f  [ I  

f latten-dl( [ [ell ,Xs4\Xs3) 
f latten-dl( [cl ,Xs4\Xs5) 

flatten-dl(c,Xs4\Xs6) Xs4 = [C lXs61 
constant (c) 

c #  [ I  
f latten-dl( [ 1 ,Xs6\Xs5) Xs6 = Xs5 

f latten-dl( [ 1 ,Xs5\Xs3) Xs5 = Xs3 
f latten-dl( [ 1 ,Xs3\ [ 1 ) Xs3 = I 

Output: Xs = [a,b,c] 

Figure 15.2 Tracing a computation using difference-lists 

The discrepancy between clear declarative understanding and difficult 
procedural understanding stems from the power of the logical variable. 
We can specify logical relations implicitly and leave their enforcement to 
Prolog. Here the concatenation of the difference-lists has been expressed 
implicitly, and it is mysterious when it happens in the program. 

Building structures with difference-lists is closely related to building 
structures with accumulators. Loosely, difference-lists build structures 
top-down, whle accumulators build structures bottom-up. Exercise 9.l(i) 
asked for a doubly recursive version of flatten that avoided the call to 
append by using accumulators. A solution is the following program: 

flatten( [XIXs] ,Zs,Ys) - 
flatten(Xs,Zs,Ysl) , flatten(X,Ysl,Ys) . 

f latten(X,Xs, [XI Xsl - 
constant (XI, X# [ I . 

flatten( [ I ,Xs,Xs) . 
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reverse(Xs,Ys) - 
Ys is the reversal of the list Xs. 

reverse (Xs ,Ys) - reverse-dl (XS ,YS\ [ 1 ) . 
reverse-dl( [X IXS] ,YS\ZS) - 

reverse-dl (XS ,Ys\ [XI Zs] ) . 
reverse-dl( [ I ,~s\Xs). 

Program 15.3 Reverse with difference-lists 

The similarity of this program to Program 15.2 is strilung. There are only 
two differences between the programs. The first difference is syntactic. 
The difference-list is represented as two arguments, but in reverse order, 
the tail preceding the head. The second difference is the goal order in 
the recursive clause of flatten. The net effect is that the flattened list is 
built bottom-up from its tail rather than top-down from its head. 

We give another example of the similarity between difference-lists 
and accumulators. Program 15.3 is a translation of naive reverse (Pro- 
gram 3.16a) where lists have been replaced by difference-lists, and the 
append operation has been unfolded away. 

When are difference-lists the appropriate data structure for Prolog pro- 
grams? Programs with explicit calls to append can usually gain in effi- 
ciency by using difference-lists rather than lists. A typical example is a 
doubly recursive program where the final result is obtained by append- 
ing the outputs of the two recursive calls. More generally, a program that 
independently builds different sections of a list to be later combined is a 
good candidate for using difference-lists. 

The logic program for quicksort, Program 3.22, is an example of a 
doubly recursive program where the final result, a sorted list, is obtained 
from concatenating two sorted sublists. It can be made more efficient by 
using difference-lists. All the append operations involved in combining 
partial results can be performed implicitly, as shown in Program 15.4. 

The call of quicksort-dl by quicksort is an initializing call, as for 
flatten in Program 15.2. The recursive clause is the quicksort algorithm 
interpreted for difference-lists where the final result is pieced together 
implicitly rather than explicitly. The base clause of quicksort-dl states 
that the result of sorting an empty list is the empty difference-list. Note 
the use of unification to place the partitioning element X after the smaller 

quicksort (List,SortedList) - 
SortedList is an ordered permutation of List. 

quicksort (Xs,Ys) - quicksort-dl(Xs,Ys\ [ 1 ) . 
quicksort-dl ( [X 1 X s  ,Ys\Zs) - 

partition(Xs ,X,Littles ,Bigs), 
quicksort~dl(~ittles,~s\[X~Ysll), 
quicksort~dl(Bigs,Ys1\Zs). 

quicksort-dl([ I,Xs\Xs). 

partition(Xs,X,Ls,Bs) - See Program 3.22 

Program 15.4 Quicksort using difference-lists 

elements Ys and before the bigger elements Ysl in the call quicksort- 
dl (Littles ,Ys\ [XJYsl] ) .  

Program 15.4 is derived from Program 3.22 in exactly the same way 
as Program 15.2 is derived from Program 9.la. Lists are replaced by 
difference-lists and the append-dl goal unfolded away. The initial call of 
quicksort-dl by quicksort expresses the relation between the desired 
sorted list and the computed sorted difference-list. 

An outstanding example of using difference-lists to advantage is a solu- 
tion to a simplified version of Dijkstra's Dutch flag problem. The problem 
reads: "Given a list of elements colored red, white, or blue, reorder the 
list so that all the red elements appear first, then all the white elements, 
followed by the blue elements. This reordering should preserve the orig- 
inal relative order of elements of the same color." For example, the list 
[red(l) ,white(2) ,blue(3) ,red(4) ,white(5)1 should be reordered to 
[red(l) ,red(4) ,white(2) ,white(5) ,blue(3)]. 

Program 15.5 is a simple-minded solution to the problem that collects 
the elements in three separate lists, then concatenates the lists. The basic 
relation is dutch(&, Ys), where Xs is the original list of colored elements 
and Ys is the reordered list separated into colors. 

The heart of the program is the procedure distribute, which con- 
structs three lists, one for each color. The lists are built top-down. The 
two calls to append can be removed by having distribute build three 
distinct difference-lists instead of three lists. Program 15.6 is an appro- 
priately modified version of the program. 

The implicit concatenation of the difference-lists is done in the ini- 
tializing call to distribute-dls by dutch. The complete list is finally 
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dutch(Xs,RedsWhitesBlues) - 
RedsWhitesBlues is a list of elements of Xs ordered 
by color: red, then whlte, then blue. 

dutch(Xs,RedsWhitesBlues) - 
distribute(Xs,Reds,Whites,Blues), 
append(Whites,Blues,WhitesBlues), 
append(Reds,WhitesBlues,RedsWhitesBlues). 

distribute(Xs,Reds, Whites,Blues) - 
Reds, Whites, and Blues are the lists of the red, white, 
and blue elements in Xs, respectively. 

distribute( [red(X) IXsl, [red(X) (Reds1 ,Whites,Blues) - 
distribute(Xs,Reds,W~tes,Blues). 

distribute( [white(X) lXs] ,Reds, [white(X) IWhitesl ,Blues) - 
distribute(Xs,Reds,Whites,Blues). 

distribute( [blue(X) I Xs] ,Reds ,Whites, [blue(X) 1Bluesl ) - 
distribute(Xs,Reds,Whites,Blues). 

distribute([ I,[ I,[ I,[ I). 

append(Xs,Ys,Zs) - See Program 3.15. 

Program 15.5 A solution to the Dutch flag problem 

"assembled" from its parts with the satisfaction of the base clause of 
distribute-dls. 

The Dutch flag example demonstrates a program that builds parts of 
the solution independently and pieces them together at the end. It is a 
more complex use of difference-lists than the earlier examples. 

Although it makes the program easier to read, the use of an explicit 
constructor such as \ for difference-lists incurs noticeable overhead 
in time and space. Using two separate arguments to represent the 
difference-list is more efficient. When important, t h s  efficiency can be 
gained by straightforward manual or automatic transformation. 

Exercises for Section 15.1 

(i) Rewrite Program 15.2 so that the final list of elements is in the 
reverse order to how they appear in the list of lists. 

(ii) Rewrite Programs 3.27 for   reorder (Tree, List), inorder (Tree, 
List) and postorder (Tree, L i s t ) ,  whlch collect the elements oc- 

dutch (Xs,RedsWhitesBlues) - 
RedsWhitesBlues is a list of elements of X s  ordered 
by color: red, then white, then blue. 

dutch(Xs,RedsWhitesBlues) - 
distribute-dls(Xs,RedsWhitesBlues\WhitesBlues, 

WhitesBlues\Blues,Blues\[ 1). 

distribute-dls (Xs,Reds, Whites,Blues) - 
Reds, Whites, and Blues are the difference-lists of the 
red, white, and blue elements in Xs, respectively. 

distribute-dls ( [red(X) I Xsl , 
[red(~)I~eds]\Redsl,Whites,Blues) - 

distribute-dls(Xs,Reds\Redsl,Whites,Blues). 
distribute-dls( [white(X) I Xsl , 

~eds,[white(X)IWhites]\Whitesl,Blues) - 
distribute-dls(Xs,Reds,Whites\Whitesl,Blues). 

distribute-dls ( [blue (XI I Xsl , 
Reds,Whites,[blue(X) IBluesl\Bluesl) - 

distribute-dls(Xs,Reds,Whites,Blues\Bluesl). 
distribute-dls([ 1 ,Reds\Reds,Whites\Whites,Blues\Blues) 

Program 15.6 Dutch flag with difference-lists 

curring in a binary tree, to use difference-lists and avoid an explicit 
call to append. 

(iii) Rewrite Program 12.3 for solving the Towers of Hanoi so that the 
list of moves is created as a difference-list rather than a list. 

1 5.2 Difference-Structures 

The concept underlying difference-lists is the use of the difference be- 
tween incomplete data structures to represent partial results of a compu- 
tation. This can be applied to recursive data types other than lists. Ths  
section looks at a specific example, sum expressions. 

Consider the task of normalizing sum expressions. Figure 15.3 con- 
tains two sums (a + b )  + (c + d )  and (a + ( b  + (c  + d ) ) ) .  Standard Prolog 
syntax brackets the term a + b + c as ((a + b )  + c ) .  We describe a pro- 
cedure converting a sum into a normalized one that is bracketed to the 
right. For example, the expression on the left in Figure 15.3 would be 
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Figure 15.3 Unnormalized and normalized sums 

normalize(Sum,NormalizedSum) - 
NormalizedSum is the result of normalizing the sum expression Sum. 

normalize-ds(A+B,Norm++Space) 
normalize-ds (A, Norm++NormB) , normalize-ds (B, ~ o r m ~ + + ~ p a c e )  

normalize-ds(A,(A+Space)++Space) - 
constant (A) . 

Program 15.7 Normalizing plus expressions 

converted to the one on the right. Such a procedure is useful for doing 
algebraic simplification, facilitating writing programs to test whether two 
expressions are equivalent. 

We introduce a difference-sum as a variant of a difference-list. A 
difference-sum is represented as a structure E l  ++ E 2 ,  where E l  and 
E 2  are incomplete normalized sums. It is assumed that ++ is defined as a 
binary infur operator. It is convenient to use 0 to indicate an empty sum. 

Program 15.7 is a program for normalizing sums. The relation scheme 
is normalize (Exp ,Norm), where Norm is an expression equivalent to Exp 
that is bracketed to the right and preserves the order of the constants 
appearing in Exp. 

T h s  program is similar in structure to Program 15.2 for flattening 
lists using difference-lists. There is an initialization stage, where the 
difference-structure is set up, typically calling a predicate with the same 
name but different arity or different argument pattern. The base case 
passes out the tail of the incomplete structure, and the goals in the body 

of the recursive clause pass the tail of the first incomplete structure to 
be the head of the second. 

The program builds the normalized sum top-down. By analogy with the 
programs using difference-lists, the program can be easily modified to 
build the structure bottom-up, whlch is Exercise (ii) at the end of t h s  
section. 

The declarative reading of these programs is straightforward. Opera- 
tionally the programs can be understood in terms of building a structure 
incrementally, where the "hole" for further results is referred to explic- 
itly. This is entirely analogous to difference-lists. 

Exercises for Section 15.2 

(i) Define the predicate normalized~sum(Expression), which is true 
if Expression is a normalized sum. 

(ii) Rewrite Program 15.7 so that 

(a) The normalized sum is built bottom-up; 

(b) The order of the elements is reversed. 

(iii) Enhance Program 15.7 so that numbers appearing in the addends 
are added together and returned as the first component of the nor- 
malized sum. For example, ( 3  + x )  + 2 + (y + 4)  should be normal- 
ized to 9 + ( x  + y ) .  

(iv) Write a program to normalize products using difference-products, 
defined analogously to difference-sums. 

1 5.3 Dictionaries 

A different use of incomplete data structures enables the implementa- 
tion of dictionaries. Consider the task of creating, using, and maintaining 
a set of values indexed under keys. There are two main operations we 
would like to perform: loolung up a value stored under a certain key, and 
entering a new key and its associated value. These operations must en- 
sure consistency - for example, the same key should not appear twice 
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lookup(Key,Dictionary, Value) - 
Dictionary contains Value indexed under Key. 
Dictionary is represented as an incomplete 
list of pairs of the form (Key, Value). 

lookup(Key,[(Key,Value) lDict1,Value). 
lookup(Key,[(Keyl,Valuel) lDict1,Value) . 

Key f Keyl, lookup(Key,Dict ,Value). 

Program 15.8 Dictionary lookup from a list of tuples 

with two different values. It is possible to perform both operations, look- 
ing up values of keys, and entering new keys, with a single simple proce- 
dure by exploiting incomplete data structures. 

Consider a linear sequence of key-value pairs. Let us see the advan- 
tages of using an incomplete data structure for its representation. Pro- 
gram 15.8 defines the relation lookup (Key, D ic t iona ry ,  Value) which is 
true if the entry under Key in the dictionary Dic t ionary  has value Value. 
The dictionary is represented as an incomplete list of pairs of the form 
(Key, Value). 

Let us consider an example where the dictionary is used to remember 
phone extensions keyed under the names of people. Suppose that Dic t  is 
initially instantiated to [ ( a rno ld ,  8881) , (ba r ry ,  4513) , (ca thy  ,5950) 
/Xsl . The query lookup ( a rno ld ,  Dict  , N) ? has as answer N=8881 and 
is used for finding Arnold's phone number. The query lookup(bar ry ,  
Dict  ,4513) ? succeeds, checking that Barry's phone number is 45 13. 

The entry of new keys and values is demonstrated by the query 
lookup(david,  Dict  ,1199) ?. Syntactically this appears to check David's 
phone number. Its effect is different. The query succeeds, instantiating 
Dic t  to [ (arnold,8881) , (barry,4513) , (ca thy ,  5950) , (david ,  1199) 
IXslI. Thus lookup has entered a new value. 

What happens if we check Cathy's number with the query lookup 
(ca thy  , Dict  ,5951)?, where the number is incorrect? Rather than en- 
tering a second entry for Cathy, the query fails because of the test Key f 
Keyl. 

The lookup procedure given in Program 15.8 completes Program 14.1 5, 
the simplified ELIZA. Note that when the program begins, the dictionary 
is empty, indicated by its being a variable. The dictionary is built up 

lookup (Key,Dictionary,Value) - 
Dictionary contains Value indexed under Key. 
Dictionary is represented as an ordered binary tree. 

lookup(Key ,dict (Key ,X ,Left ,Ftight) ,Value) - 
! , X = Value. 

lookup(Key ,dict (Keyl ,X ,Left ,Flight) ,Value - 
Key < Keyl, lookup(Key,Left,Value). 

lookup(Key,dict (Keyl,X,Left , ~ i g h t )  ,Value - 
Key > Keyl, lookup(Key,Right,Value). 

Program 15.9 Dictionary lookup in a binary tree 

during the matchng against the stimulus half of a stimulus-response 
pair. The constructed dictionary is used to produce the correct response. 
Note that entries are placed in the dictionary without their values being 
known: a strilung example of the power of logical variables. Once an 
integer is detected, it is put in the dictionary, and its value is determined 
later. 

Searchng linear lists is not very efficient for a large number of key- 
value pairs. Ordered binary trees allow more efficient retrieval of infor- 
mation than linear lists. The insight that an incomplete structure can be 
used to allow entry of new keys as well as to look up values carries over 
to binary trees. 

The binary trees of Section 3.4 are modified to be a four-place structure 
d i c t  (Key, Value, L e f  t ,Right ) ,  where L e f t  and Right are, respectively, 
the left and right subdictionaries, and Key and Value are as before. The 
functor d i c t  is used to suggest a dictionary. 

Looking up in the dictionary tree has a very elegant definition, simi- 
lar in spirit to Program 15.8. It performs recursion on binary trees rather 
than on lists, and relies on unification to instantiate variables to dictio- 
nary structures. Program 15.9 gives the procedure lookup (Key, Dic t  i o -  
na ry ,  Value),  whch as before both looks up the value corresponding to 
a given key and enters new values. 

At each stage, the key is compared with the key of the current node. 
If it is less, the left branch is recursively checked; if it is greater, the 
right branch is taken. If the key is non-numeric, the predicates < and > 
must be generalized. The cut is necessary in Program 15.9, in contrast to 
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freeze(A,B) - 
Freeze term A into B. 

freeze (A ,B )  - 
copy-term(A,B) , numbervars(B,O ,N) . 

melt- new (A,B) - 
Melt the frozen term A into B. 

melt ('$VARJ (N) ,X,Dictionary) - 
lookup(N,Dictionary,X). 

melt(X,X,~ictionary) - 
constant (X) . 

melt(X,Y,Dictionary) - 
compound(X), 
functor(X,F,N), 
functor(Y ,F,N) , 
melt(N,X,Y,Dictionary). 

melt(N,X,Y,Di~ti~nary) - 
N > 0, 
arg(N,X,ArgX), 
melt (ArgX ,ArgY ,Dictionary), 

arg(N,Y ,ArgY) , 
N1 is N-1, 
melt(Nl,X,Y,Dictionary). 

melt(O,X,Y,Di~tionary). 

numbervars (Term,N1 ,N2) - See Program 10.8. 

lookup(Key,Dictionary,Value) - See Program 15.9. 

Program 15.10 Melting a term 

Program 15.8, because of the nonlogical nature of comparison operators, 
whch will give errors if keys are not instantiated. 

Given a number of pairs of keys and values, the dictionary they deter- 
mine is not unique. The shape of the dictionary depends on the order in 
which queries are posed to the dictionary. 

The dictionary can be used to melt a term that has been frozen using 
Program 10.8 for numbervars. The code is given as Program 15.10. Each 
melted variable is entered into the dictionary, so that the correct shared 
variables will be assigned. 

15.4 Queues 

An interesting application of difference-lists is to implement queues. 
A queue is a first-in, first-out store of information. The head of the 
difference-list represents the beginning of the queue, the tail represents 
the end of the queue, and the members of the difference-list are the ele- 
ments in the queue. A queue is empty if the difference-list is empty, that 
is, if its head and tail are identical. 

Maintaining a queue is different from maintaining a dictionary. We 
consider the relation queue(S), where a queue processes a stream of 
commands, represented as a list S. There are two basic operations on a 
queue-enqueuing an element and dequeuing an element-represented, 
respectively, by the structures enqueue (XI and dequeue (X), where X is 
the element concerned. 

Program 15.11 implements the operations abstractly. The predicate 
queue(S) calls queue(S,Q), where Q is initialized to an empty queue. 
queue/',? is an interpreter for the stream of enqueue and dequeue com- 
mands, responding to each command and updating the state of the 
queue accordingly. Enqueuing an element exploits the incompleteness of 
the tail of the queue, instantiating it to a new element and a new tail, 
which is passed as the updated tail of the queue. Clearly, the calls to 
enqueue and dequeue can be unfolded, resulting in a more concise and 
efficient, but perhaps less readable, program. 

queue(S) - 
S is a sequence of enqueue and dequeue operations, 
represented as a list of terms enqueue(X1 and dequeue(X) 

queue(S) - queue(S ,Q\Q) . 
queue ( [enqueue (XI I Xsl , Q) - 

enqueue(X,Q,Ql), queue(Xs,Ql). 
queue ( [dequeue (XI I Xs] , Q) - 

dequeue(X,Q,Ql), queue(Xs,Ql). 
queue([ I ,Q). 
enqueue (X, Qh\ [X I Qtl , Qh\Qt) . 
dequeue(X, [X I Qhl \Qt ,Qh\Qt) . 

Program 15.11 A queue process 

PROYECTO
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flatten(Xs,Ys) - 
Ys is a flattened list containing the elements in X s  

flatten-q( [XI Xsl ,Ps\ [Xs l Qsl ,Ys) - 
flatten-q(X,Ps\Qs,Ys). 

flatten-q(~, [Q l PSI \Qs, [XIYsI ) - 
constant(X), X# I , flatten-q(Q,Ps\Qs,Ys). 

flatten-q([ 1 ,Q,Ys) - 
non-empty(Q), dequeue(X,Q,Ql), flatten-q(X,Ql,Ys). 

flatten-q([ I,[ I\[ I,[ I). 

non-empty([ I\[ 1 )  - ! ,  fail. 
non-empty(Q1. 

dequeue (X , [X 1 Qhl \Qt, Qh\qt) 

Program 15.12 Flattening a list using a queue 

The program terminates when the stream of commands is exhausted. 
It can be extended to insist that the queue be empty at the end of the 
commands by changing the base fact to 

A queue is empty if both its head and tail can be instantiated to the 
empty list, expressed by the fact empty( [ I \ [ I ) .  Logically, the clause 
empty(Xs\Xs) would also be sufficient; however, because of the lack 
of the occurs check in Prolog, discussed in Chapter 4, it may succeed 
erroneously on a nonempty queue, creating a cyclic data structure. 

We demonstrate the use of queues in Program 15.12 for flattening a 
list. Although the example is somewhat contrived, it shows how queues 
can be used. The program does not preserve the order of the elements in 
the original list. 

The basic relation is f latten-q(Ls , Q, Xs), where Ls is the list of lists 
to be flattened, Q is the queue of lists waiting to be flattened, and Xs is 
the list of elements in Ls. The initial call of f latten-q/3 by f latten/2 
initializes an empty queue. The basic operation is enqueuing the tail of 
the list and recursively flattening the head of the list: 

The explicit call to enqueue can be omitted and incorporated via unifica- 
tion as follows: 

If the element being flattened is a constant, it is added to the output 
structure being built top-down, and an element is dequeued (by unifying 
with the head of the difference-list) to be flattened in the recursive call: 

f latten-q(X, [Q 1 Qhl \Qt , [X I Ysl) - 
constant (X) , X# [ I , f latten-q(Q,Qh\Qt,ys). 

When the empty list is being flattened, either the top element is de- 
queued 

or the queue is empty, and the computation terminates: 

A previous version of Program 15.12 incorrectly expressed the case 
when the list was empty, and the top element was dequeued as 

Thls led to a nonterminating computation, since an empty queue Qs\Qs 
unified with [Q I Qh] \Qt and so the base case was never reached. 

Let us reconsider Program 1 5.1 1 operationally. Under the expected use 
of a queue, enqueue()() messages are sent with X determined and de- 
queue (X) with X undetermined. As long as more elements are enqueued 
than dequeued, the queue behaves as expected, with the difference be- 
tween the head of the queue and the tail of the queue being the elements 
in the queue. However, if the number of dequeue messages received ex- 
ceeds that of enqueue messages, an interesting thing happens - the 
content of the queue becomes negative. The head runs ahead of the tail, 
resulting in a queue containing a negative sequence of undetermined el- 
ements, one for each excessive dequeue message. 

It is interesting to observe that this behavior is consistent with the as- 
sociativity of appending of difference-lists. If a queue Qs\ [XI ,X2 ,X31Qsl 
that contains minus three undetermined elements has the queue [a, b ,  

c, d, e/Xs] \Xs that contains five elements appended to it, then the result 
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will be the queue Ed, elXs1 \ X s  with two elements, where the "negative" 
elements XI, X2, X3 are unified with a ,  b , c. 

1 5.5 Background 

Difference-lists have been in the logic programming folklore since its 
inception. The first description of them in the literature is given by Clark 
and Tarnlund (1977). 

The automatic transformation of simple programs without difference- 
lists to programs with difference-lists, for example, reverse  and f l a t -  
ten,  can be found in Bloch (1984). 

Section 15.1 implicitly contains an algorithm for converting from a 
program with explicit calls to append to an equivalent, more efficient 
program that uses difference-lists to concatenate the elements and which 
is much more efficient. Care is needed in application of the algorithm. 
There are excellent discussions of a correct algorithm and the dangers 
of using difference-lists without the occurs check in Srandergaard (1990) 
and Marriott and Srandergaard (1993). 

There is an interesting discussion of the Dutch flag problem in O'Keefe 
(1990). 

Automatic removal of a functor denoting difference-lists is described 
in Gallagher and Bruynooghe (1990). 

Maintaining dictionaries and queues can be given a theoretical basis as 
a perpetual process, as described by Warren (1982) and Lloyd (1987). 

Queues are particularly important in concurrent logic programming 
languages, since their input need not be a list of requests but a stream, 
whch is generated incrementally by the processes requesting the ser- 
vices of the queue. 

Second-Order Programming 

Chapters 14 and 15 demonstrate Prolog programming techniques based 
directly on logic programming. Ths  chapter, in contrast, shows pro- 
gramming techniques that are missing from the basic logic programming 
model but can nonetheless be incorporated into Prolog by relying on lan- 
guage features outside of first-order logic. These techniques are called 
second-order, since they talk about sets and their properties rather than 
about individuals. 

The first section introduces predicates that produce sets as solutions. 
Computing with predicates that produce sets is particularly powerful 
when combined with programming techniques presented in earlier chap- 
ters. The second section gives some applications. The third section looks 
at lambda expressions and predicate variables, whch allow functions 
and relations to be treated as "first-class" data objects. 

16.1 All-Solutions Predicates 

Solving a Prolog query with a program entails finding an instance of 
the query that is implied by the program. What is involved in finding 
all instances of a query that are implied by a program? Declaratively, 
such a query lies outside the logic programming model presented in 
Chapter 1. It is a second-order question, since it asks for the set of 
elements with a certain property. Operationally, it is also outside the 
pure Prolog computation model. In pure Prolog, all information about a 
certain branch of the computation is lost on backtraclung. This prevents 
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father(terach,abraham). father(haran,lot). 
father(terach,nachor). f ather(haran,milcah) . 
f ather(terach,haran) . f ather(haran, yiscah) . 
father(abraham,isaac). 
male(abraham). rnale(haran). fernale(yiscah) 
male(isaac1. male(nachor). female(mi1cah) 
male(1ot). 

Program 16.1 Sample data 

a simple way of using pure Prolog to find the set of all solutions to a 
query, or even to find how many solutions there are to a given query. 

Ths  section discusses predicates that return all instances of a query. 
We call such predicates all-solutions predicates. Experience has shown 
that all-solutions predicates are very useful for programming. 

A basic all-solutions predicate is f  i n d a l l  (Term, Goal, Bag). The pred- 
icate is true if and only if Bag unifies with the list of values to whch a 
variable X not occurring in Term or Goal would be bound by successive 
resatisfaction of c a l l ( G o a l ) ,  X=Term? after systematic replacement of 
all variables in X by new variables. 

Procedurally, f  i n d a l l  (Term, Goal, Bag) creates an empty list L, re- 
names Goal to a goal G, and executes G. If G succeeds, a copy of Term 
is appended to L, and G is reexecuted. For each successful reexecution, a 
copy of Term is appended to the list. Eventually, when G fails, Bag is uni- 
fied with L. The success or failure of f  i n d a l l  depends on the success or 
failure of the unification. 

We demonstrate the use of all-solutions predicates using part of the 
biblical database of Program 1.1, repeated here as Program 16.1. 

Consider the task of finding all the chldren of a particular father. It is 
natural to envisage a predicate chi ldren(X,Kids) ,  where Kids is a list 
of chldren of X. It is immediate to define using f  i n d a l l ,  namely, 

c h i l d r e n  (X, Kids) -- f  i n d a l l  a id, f  a t h e r  (x ,  a id) ,Kids) . 

The query c h i l d r e n ( t e r a c h ,  Xs)? with respect to Program 16.1 pro- 
duces the answer X s  = [abraham,nachor , haran]. 

The query f  i n d a l l  (F, f a t h e r  (F, K) , Fs) ? with respect to Program 
16.1 produces the answer F = [ t e r ach ,  haran ,  t e r a c h , h a r a n ,  t e r a c h ,  
haran ,  abrahaml . It would be useful to conceive of t h s  query as askmg 

forall (Goa1,Condition) 
For all solutions of Goal, Condition is true. 

for-all(Goa1,Condition) - 
findall(Condition,Goal,Cases), check(Cases) 

check( [Case 1 Cases] ) - Case, check(Cases1 
check( [ 1 ) . 

Program 16.2 Applying set predicates 

who is a father and to receive as solution [ t e r ach ,  haran ,  abrahaml . Ths  
answer can be obtained by removing duplicate solutions. 

Another interpretation can be made of the query f  i n d a l l  (F ,  f a t h e r  
(F,  K) , Fs)?.  Instead of having a single solution, all fathers, there could 
be a solution for each child K. Thus one solution would be K=abraham, 
Fs = [ terach] ; another would be K=lot , Fs = [haran] ; and so on. 

Standard Prolog provides two predicates that distinguish between 
these two interpretations. The predicate bagof (Term, Goal, Bag) is like 
f  i n d a l l  except that alternative solutions are found for the variables in 
Goal. The predicate se to f  (Term, Goal, Bag) is a refinement of bagof 
where the solutions in Bag are sorted corresponding to a standard order 
of terms and duplicates removed. If we want to emphasize that the solu- 
tion should be conceived of as a set, we refer to all-solutions predicates 
as set predicates. 

Another all-solutions predicate checks whether all solutions to a 
query satisfy a certain condition. Program 16.2 defines a predicate f o r -  
a l l  (Goal ,Condit ion) ,  which succeeds when Condition is true for all 
values of Goal. It uses the meta-variable facility. 

The query f  o r - a l l  ( f a t h e r  (X ,C) ,male (C) ) ? checks whch fathers 
have only male children. It produces two answers: X=terach and X=abra- 
ham. 

A simpler, more efficient, but less general version of f o r - a l l  can be 
written directly using a combination of nondeterminism and negation by 
failure. The definition is 

for-al l (Goa1,Condit ion)  - not  (Goal, not  Condi t ion) .  

It successfully answers a query such as f o r - a l l  (f a t h e r  ( t e r ach ,  X) , 
male (X) ) ?  but fails to give a solution to the query f o r - a l l  (f a t h e r  (X, 
C) ,male (C) )?.  
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find-all-dl (X,Goal,lnstances) - 
Instances is the multiset of 
instances of X for whlch Goal is true. The multiplicity 
of an element is the number of different ways Goal can be 
proved with it as an instance of X.  

f ind-all-dl  ( X  , Goal, Xs) - 
asserta('$instance'('$mark')), Goal, 
asserts( '$instance'  ( X ) ) ,  f a i l .  

find-all-dl(X,Goal,Xs\Ys) - 
retract ( '$ ins tance '  ( X ) )  , r e a p ( ~ , ~ s \ Y s ) ,  ! . 

Program 16.3 Implementing an all-solutions predicate using difference- 
lists, assert, and retract 

We conclude this section by showing how to implement a simple vari- 
ant of findall. The discussion serves a dual purpose. It illustrates 
the style of implementation for all-solutions predicates and gives a 
utility that will be used in the next section. The predicate find-all- 
dl(X,Goal, Instances) is true if Instances is the bag (multiset) of 
instances of X, represented as a difference-list, where Goal is true. 

The definition of f ind-all-dl is given as Program 16.3. The program 
can only be understood operationally. There are two stages to the pro- 
cedure, as specified by the two clauses for find-all-dl. The explicit 
failure in the first clause guarantees that the second will be executed. 
The first stage finds all solutions to Goal using a failure-driven loop, as- 
serting the associated X as it proceeds. The second stage retrieves the 
solutions. 

Asserting $mark is essential for nested all-solutions predicates to work 
correctly, lest one set should "steal" solutions produced by the other all- 
solutions predicate. 

Exercise for Section 16.1 

(i) Define the predicate intersect (XS , Ys , Zs) using an all-solutions 
predicate to compute the intersection Zs of two lists Xs and Ys. 

What should happen if the two lists do not intersect? Compare the 
code with the recursive definition of intersect. 

16.2 Applications of Set Predicates 

Set predicates are a significant addition to Prolog. Clean solutions are ob- 
tained to many problems by using set predicates, especially when other 
programming techniques, discussed in previous chapters, are incorpo- 
rated. Ths  section presents three example programs: traversing a graph 
breadth-first, using the Lee algorithm for finding routes in VLSI circuits, 
and producing a keyword in context (KWIC) index. 

Section 14.2 presents three programs, 14.8, 14.9, and 14.10, for 
traversing a graph depth-first. We discuss here the equivalent programs 
for traversing a graph breadth-first. 

The basic relation is connected(X,Y), which is true if X and Y are 
connected. Program 16.4 defines the relation. Breadth-first search is im- 
plemented by keeping a queue of nodes waiting to be expanded. The 
connected clause accordingly calls connected-bf s (Queue, Y), which is 
true if Y is in the connected component of the graph represented by the 
nodes in the Queue. 

Each call to connected-bfs removes the current node from the head 
of the queue, finds the edges connected to it, and adds them to the tail 
of the queue. The queue is represented as a difference-list, and the all- 
solutions predicate f ind-all-dl is used. The program fails when the; 
queue is empty. Because difference-lists are an incomplete data struc-: 

c ture, the test that the queue is empty must be made explicitly. Otherwise j 
the program would not terminate. f 

Consider the edge clauses in Program 16.4, representing the left-hand 
graph in Figure 14.3. Using them, the query connected(a,X)? gives the * 

values a, b, c, d, e, f, g, j, k, h, i for X on backtracking, which is a breadth- f 
first traversal of the graph. I 

Like Program 14.8, Program 16.4 correctly traverses a finite tree or a ; 
directed acyclic graph (DAG). If there are cycles in the graph, the program i 
will not terminate. Program 16.5 is an improvement over Program 16.4 in 1 
whch a list of the nodes visited in the graph is kept. Instead of adding f 
all the successor nodes at the end of the queue, each is checked to see if ' 

PROYECTO
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connected (X, Y) - 
Node X is connected to node Y in the DAG defined by 
edge/Z facts. 

connected(X,Y) - enqueue(~,~\~,Ql), connected-bf s(Q1 ,Y) . 
connected-bf s(Q,Y) - empty(Q), ! , fail. 
connected-bf s (Q,Y) - dequeue(X,~,~l), X=Y. 
connected-bfs(Q,Y) - 

dequeue(X,Q,Ql) , enqueue-edges(X,Ql ,Q2), connected-bf s(Q2,~). 

enqueue-edges (X,Xs\Ys ,Xs\Zs) - f ind-all-dl(~,edge(~,~) ,YS\ZS), ! . 
empty([ I\[ I). 

enqueue/3, dequeue/3 - See Program 15.11. 
f ind-all-dl(Term,Goal ,DList) - See Program 16.3. 

Data 

Program 16.4 Testing connectivity breadth-first in a DAG 

it has been visited before. Thls is performed by the predicate filter in 
Program 16.5. 

Program 16.5 in fact is more powerful than its depth-first equivalent, 
Program 14.10. Not only will it correctly traverse any finite graph but it 
will also correctly traverse infinite graphs in which every vertex has finite 
degree as well. It is useful to summarize what extensions to pure Prolog 
have been necessary to increase the performance in searching graphs. 
Pure Prolog correctly searches finite trees and DAGs. Adding negation 
allows correct searchng of finite graphs with cycles, whle set predicates 
are necessary for infinite graphs. This is shown in Figure 16.1. 

Calculating the path between two nodes is a little more awkward than 
for depth-first search. It is necessary to keep with each node in the queue 
a list of the nodes linking it to the original node. The t e c h q u e  is demon- 
strated in Program 20.6. 

The next example combines the power of nondeterministic program- 
ming with the use of second-order programming. It is a program for 
calculating a minimal cost route between two points in a circuit using 
the Lee algorithm. 

connected (X, Y )  - 
Node X is connected to node Y in the graph defined by 
edge/Z facts. 

connected(X,Y) - 
enqueue (X, Q\Q ,Ql), connected-bf s(Q1 ,Y, [XI ) . 

connected-bf s(Q,Y ,Visited) - empty(Q), ! , fail. 
connected-bfs(Q,Y ,Visited) - dequeue(X,Q,Ql), X=Y. 
connected-bf s(Q ,Y ,Visited) - 

dequeue (X, Q , Ql) , 
f indall (N, edge (X ,N) ,Edges), 
filter(~dges,Visited,Visitedl,Ql,Q2), 
connected-bfs(Q2,Y,Visitedl). 

filter( [N INS] ,Visited,Visitedl , Q , Q ~ )  - 
member(N,Visited), ! ,  filter(Ns,Visited,Visitedl,Q,Ql). 

filter([NINs],Visited,Visitedl,Q,Q2) - 
not member(N,Visited) , ! , enqueue(N,Q,Ql) , 
filter(Ns,[NI~isitedl,Visitedl,Ql,Q2). 

filter([ I,~isited,Visited,Q,Q). 

empty([ I\[ I). 
enqueue/3, dequeue/3 - See Program 15.1 1. 

Program 16.5 Testing connectivity breadth-first in a graph 

(1) Finite trees and DAGs 
Pure Prolog 

(2)  Finite graphs 
Pure Prolog + negation 

(3) Infinite graphs 
Pure Prolog + second order + negation 

Figure 16.1 Power of Prolog for various searching tasks 



Chapter 16 Second-Order Programming 

Figure 16.2 The problem of Lee routing for VLSI circuits 

The problem is formulated as follows. Given a grid that may have 
obstacles, find a shortest path between two specified points. Figure 16.2 
shows a grid with obstacles. The heavy solid line represents a shortest 
path between the two points A and B. The shaded rectangles represent 
the obstacles. 

We first formulate the problem in a suitable form for programming. 
The VLSI circuit is modeled by a grid of points, conveniently assumed to 
be the upper quadrant of the Cartesian plane. A route is a path between 
two points in the grid, along horizontal and vertical lines only, subject 
to the constraints of remaining in the grid and not passing through any 
obstacles. 

Points in the plane are represented by their Cartesian coordinates and 
denoted X-Y. In Figure 16.2, A is 1-1 and B is 5-5. This representation 
is chosen for readability and utilizes the definition of - as an infm binary 

operator. Paths are calculated by the program as a list of points from 
B to A, including both endpoints. In Figure 16.2 the route calculated is 
(5-5,5-4,s-3,s-2,4-2,3-2,2-2,l-2,l-11, and is marked by the heavy solid 
line. 

The top-level relation computed by the program is l ee - rou te  (A, B , 
Obstacles ,Pa th ) ,  where Path is a route (of minimal distance) from 
point A to point B in the circuit. Obstacles are the obstacles in the grid. 
The program has two stages. First, successive waves of neighboring grid 
points are generated, starting from the initial point, until the final point 
is reached. Second, the path is extracted from the accumulated waves. 
Let us examine the various components of Program 16.6, the overall 
program for Lee routing. 

Waves are defined inductively. The initial wave is the list [A]. Succes- 
sive waves are sets of points that neighbor a point in the previous wave 
and that do not already appear in previous waves. They are illustrated by 
the lighter solid lines in Figure 16.2. 

Wave generation is performed by waves (B, WavesSoFar , Obstac les ,  
Waves). The predicate waves/4 is true if Waves is a list of waves to 
the destination B avoiding the obstacles represented by Obstacles and 
WavesSoFar is an accumulator containing the waves generated so far in 
traveling from the source. The predicate terminates when the destina- 
tion is in the current wave. The recursive clause calls next_wave/4, whch 
finds all the appropriate grid points constituting the next wave using the 
all-solutions predicate f i n d a l l .  

Obstacles are assumed to be rectangular blocks. They are represented 
by the term obs tac le(L,R) ,  where L is the coordinates of the lower 
left-hand corner and R the coordinates of the upper right-hand corner. 
Exercise (i) at the end of t h s  section requires modifying the program to 
handle other obstacles. 

The predicate path(A, B, Waves, Path)  finds the path Path back from B 
to A through the Waves generated in the process. Path is built downward, 
whch means the order of the points is from B to A. Ths  order can be 
changed by using an accumulator in path. 

Program 16.6 produces no output while computing the Lee route. In 
practice, the user may like to see the computation in progress. Ths  can 
be easily done by adding appropriate w r i t e  statements to the procedures 
next-wave and path.  
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lee-route(Source,Destination, Obstacles,Path) - 
Path is a minimal length path from Source to 
Destination that does not cross Obstacles. 

lee-route(A,B,Obstacles,Path) - 
waves (B, [ [A] , [ 1 I ,Obstacles, Waves) , 
path(A,B,Waves,Path). 

waves (Destination, WavesSoFar, Obstacles, Waves) - 
Waves is a list of waves including WavesSoFar 
(except, perhaps, its last wave) that leads to Destination 
without crossing Obstacles. 

waves(B,[WavelWaves],Obstacles,Waves) - member(B,Wave), ! .  
waves(B,[Wave,LastWavelLastWavesl ,~bstacles,Waves) - 

next-wave (Wave ,LastWave, Obstacles ,NextWave) , 
waves (B, [NextWave ,Wave ,LastWave 1 ~astwaves] ,Obstacles ,Waves) 

next-wave( Wave,LastWave, Obstacles,NextWave) - 
NextWave is the set of admissible points from Wave, 
that is, excluding points from LastWave, 
LVave and points under Obstacles. 

next~wave(Wave,LastWave,0bstacles,NextWa~~~ - 
findall(X,admissible(X,Wave,LastWave,~bstacles),~ext~a~e). 

admissible(X,Wave,LastWave,Obstacles) - 
adjacent(X,Wave,Obstacles), 
not member (X, LastWave) , 
not member(X,Wave). 

adjacent(X,Wave,Obstacles) - 
member(Xl,Wave), 
neighbor(X1,X), 
not obstructed(X,Obstacles). 

neighbor(X1-Y,X2-Y) - next_to(Xl,X2). 
neighbor(X-Y1,X-Y2) - next_to(Yl,Y2). 
next-to(X,Xl) - XI is X+1. 
next-to(X,Xl) - X > 0 ,  XI is X-1. 

obstructed(Point,0bstacles) - 
member(Obstacle,Obstacles), obstructs(~oint,0bstacle). 

obstructs(X-Y,obstacle(X-Y1,X2-Y2)) - Y1 I Y ,  Y 5 Y2. 
obstructs(X-Y,obstacle(Xl-Y1,X-Y2)) - Y1 5 Y ,  Y 2 Y2. 
obstructs(X-Y,obstacle(Xl-Y,X2-Y2)) - XI I X, X 2 X2. 
obstructs(X-Y,obstacle(Xl-Y1,X2-Y)) - X1 I X, X 2 X2. 
Program 16.6 Lee routing 

path(Source,Destination, Waves,Path) - 
Path is a path from Source to Destination going through Waves. 

path(A,A,Waves, [A]) - ! . 
path(A,B, [Wave l Waves] , [B I Path] ) - 

member (B1, Wave) , 
neighbor (B ,B1), 
! ,  path(A,Bl,Waves,Path). 

Testing and data 

Program 16.6 (Continued) 

Our final example in t h s  section concerns the keyword in context 
(KWIC) problem. Again, a simple Prolog program, combining nondeter- 
ministic and second-order programming, suffices to solve a complex 
task. 

Finding keywords in context involves searchng text for all occurrences 
of a set of keywords, extracting the contexts in whch they appear. We 
consider here the following variant of the general problem: "Given a list 
of titles, produce a sorted list of all occurrences of a set of keywords in 
the titles, together with their context." 

Sample input to a program is given in Figure 16.3 together with the 
expected output. The context is described as a rotation of the title with 
the end of the title indicated by -. In the example, the keywords are 
algorithmic, debugging, logic, problem, program, programming, prolog, 
and solving, all the nontrivial words. 

The relation we want to compute is kwic(Tit1es ,KwicTitles) where 
Titles is the list of titles whose keywords are to be extracted, and Kwic- 
Titles is the sorted list of keywords in their contexts. Both the input 
and output titles are assumed to be given as lists of words. A more gen- 
eral program, as a preliminary step, would convert freer-form input into 
lists of words and produce prettier output. 

The program is presented in stages. The basis is a nondeterministic 
specification of a rotation of a list of words. It has an elegant definition 
in terms of append: 
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Input: programming in prolog 
logic for problem solving 
logic programming 
algorithmic program debugging 

Output: algorithmic program debugging -, 
debuggMg - algorithmic program, 
logic for problem solving -, 
logic programming -, 
problem solving - logic for, 
program debugging - algorithmic, 
programming in prolog -, 
programming - logic, 
prolog - programming in, 
solving - logic for problem 

Figure 16.3 Input and output for keyword in context (KWIC) problem 

Declaratively, Y s  is a rotation of X s  if X s  is composed of A s  followed by 
B s ,  and Y s  is Bs followed by As. 

The next stage of development involves identifying single words as 
potential keywords. This is done by isolating the word in the first call 
to append. Note that the new rule is an instance of the previous one: 

Thls definition also improves the previous attempt by removing the du- 
plicate solution when one of the split lists is empty and the other is the 
entire list. 

The next improvement involves examining a potential keyword more 
closely. Suppose each keyword Word is identified by a fact of the form 
keyword(Word). The solutions to the r o t a t e  procedure can be filtered 
so that only words identified as keywords are accepted. The appropriate 
version is 

r o t a t e - a n d - f  i l t e r  (XS ,Ys) - append&,  [Key lBs] ,Xs)  9 

keyword(Key) , append(  [Key 1 Bsl , A s  ,Ys) . 

kwic ( Titles,KWTitles) - 
KWTitles is a KWIC index of the list of titles Titles. 

kwic(Titles,KWTitles) 
setof(Ys,Xs~(rnember(Xs,Titles), 
rotate-and-f ilter(Xs ,Ys)) ,~WTitles) . 

rotate-and-filter (Xs,Ys) - 
Ys is a rotation of the list Xs such that 
the first word of Ys is significant and - 
is inserted after the last word of Xs. 

rotate-and-filter(Xs,Ys) - 
append(As, [Key lBsl ,Xs), 
not insignificant(Key1, 
append( [ ~ e y  IBsl , ['-' IAsl ,Ys). 

Vocabulary of insignificant words 

Testing and data 

titles(lp,[[logic,for,problem,solving], 
[logic, programming] , 
[algorithmic,program,debuggingl, 
[programming, in,prologl I ) . 

Program 16.7 Producing a keyword in context (KWIC) index 

Operationally r o t a t e - a n d - f  i l t e r  considers all keys, filtering out the 
unwanted alternatives. The goal order is important here to maximize 
program efficiency. 

In Program 16.7, the final version, a complementary view to recogniz- 
ing keywords is taken. Any word Word is a keyword unless otherwise 
specified by a fact of the form i n s i g n i f i c a n t  (Word). Further the proce- 
dure is augmented to insert the end-of-title mark -, providing the con- 
text information. This is done by adding the extra symbol in the second 
append call. Incorporating t h s  discussion yields the clause for r o t a t e -  

and-f i l t e r  in Program 16.7. 
Finally, a set predicate is used to get all the solutions. Quantification 

is necessary over all the possible titles. Advantage is derived from the 
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behavior of setof in sorting the answers. The complete program is given 
as Program 16.7, and is an elegant example of the expressive power of 
Prolog. The test predicate is test_kwic/2. 

Exercises for Section 16.2 

(i) Modify Program 16.6 to handle other obstacles than rectangles. 

(ii) Adapt Program 16.7 for KWIC so that it extracts keywords from 
lines of text. 

(iii) Modify rotation of a list so that it uses difference-lists. 

(iv) Write a program to find a minimal spanning tree for a graph. 

(v) Write a program to find the maximum flow in a network design 
using the Ford-Fulkerson algorithm. 

16.3 Other Second-Order Predicates 

First-order logic allows quantification over individuals. Second-order 
logic further allows quantification over predicates. Incorporating this 
extension into logic programming entails using rules with goals whose 
predicate names are variables. Predicate names become "first-class" data 
objects to be manipulated and modified. 

A simple example of a second-order relation is the determination of 
whether all members of a list have a certain property. For simplicity 
the property is assumed to be described as a unary predicate. Let us 
define has-property(Xs,P), which is true if each element of Xs has 
some property P. Extending Prolog syntax to allow variable predicate 
names enables us to define has-property as in Figure 16.4. Because has- 
property allows variable properties, it is a second-order predicate. An 
example of its use is testing whether a list of people Xs is all male with a 
query has-property (Xs ,male) ?. 

Another second-order predicate is map-list (Xs , P  ,Ys). Ys is the map 
of the list xs under the predicate P. That is, for each element X of Xs 
there is a corresponding element Y of Ys such that P(X,Y) is true. The 

has-property ( [XI Xsl , P )  - P(X), has-property (Xs ,P) . 
has-property ( [ 1 , P) . 

Figure 16.4 Second-order predicates 

order of the elements in Xs is preserved in Ys. We can use map-list 
to rewrite some of the programs of earlier chapters. For example, Pro- 
gram 7.8 mapping English to French words can be expressed as map- 
list (Words, dict , Mots). Like has-property, map-list is easily defined 
using a variable predicate name. The definition is given in Figure 16.4. 

Operationally, allowing variable predicate names implies dynamic con- 
struction of goals while answering a query. The relation to be computed 
is not fixed statically when the query is posed but is determined dynam- 
ically during the computation. 

Some Prologs allow the programmer to use variables for predicate 
names, and allow the syntax of Figure 16.4. It is unnecessary to com- 
plicate the syntax however. The tools already exist for implementing 
second-order predicates. One basic relation is necessary, which we call 
apply; it constructs the goal with a variable functor. The predicate apply 
is defined by a set of clauses, one for each functor name and arity. For 
example, for functor f oo of arity n, the clause is 

apply (f oo, XI, . . . , Xn) - f oo (XI, . . . , Xn) 
The two predicates in Figure 16.4 are transformed into Standard Prolog 
in Program 16.8. Sample definitions of apply clauses are given for the 
examples mentioned in the text. 

The predicate apply performs structure inspection. The whole collec- 
tion of apply clauses can be generalized by using the structure inspec- 
tion primitive, univ. The general predicate apply (P,Xs) applies predi- 
cate P to a list of arguments Xs: 

apply (F,Xs) -- Goal =. . [F I XS] , Goal. 

We can generalize the function to be applied from a predicate name, i.e., 
an atom, to a term parameterized by variables. An example is substitut- 
ing for a value in a list. The relation substitute/4 from Program 9.3 
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has-property(Xs,P) - 
Each element in the list Xs has property P 

has-property( [X I Xsl ,PI ' 
apply(P,X), has-property(Xs,P). 

has-property ( [ 1 ,PI . 

apply (male, lo - male (XI. 

maplist (Xs,P,Ys) - 
Each element in the list Xs stands in relation 
P to its corresponding element in the list Ys. 

map-list ( [XI XS] , P ,  [Y I Ys] ) - 
apply(P,X,Y), map-list(Xs,P,Ys) 

map-l is t([  I , P ,  1 ) .  

apply(dict,X,Y) - dic t (X,Y) .  

Program 16.8 Second-order predicates in Prolog 

can be viewed as an instance of map-list if parameterization is allowed. 
Namely, map-list (Xs, substitute(Old,New) ,Ys) has the same effect in 
substituting the element New for the element Old in Xs to get Ys - exactly 
the relation computed by Program 9.3. In order to handle this correctly, 
the definition of apply must be extended a little: 

apply(P,Xs) - 
P =. . L1, append(LI,Xs,~2), Goal =. . L2, Goal 

IJsing apply as part of map-list leads to inefficient programs. For ex- 
ample, using substitute directly rather than through map-list results 
in far fewer intermediate structures being created, and eases the task 
of compilation. Hence these second-order predicates are better used in 
conjunction with a program transformation system that can translate 
second-order calls to first-order calls at compile-time. 

The predicate apply can also be used to implement lambda expres- 
sions. A lambda expression is one of the form lambda(Xl,. . .,X,).Expres- 
sion. If the set of lambda expressions to be used is known in advance, 
they can be named. For example, the above expression would be replaced 
by some unique identifier, f oo say, and defined by an apply clause: 

apply (f 00, XI, . . . , Xn) - Expression. 

Although possible both theoretically and pragmatically, the use of 
lambda expressions and second-order constructs such as has-property 
and map-list is not as widespread in Prolog as in functional program- 
ming languages like Lisp. We conjecture that t h s  is a combination of 
cultural bias and the availability of a host of alternative programming 
techmques. It is possible that the ongoing work on extending the logic 
programming model with hgher-order constructs and integrating it with 
functional programming will change the picture. 

In the meantime, all-solutions predicates seem to be the main and most 
useful higher-order construct in Prolog. 

16.4 Background 

Exercise for Section 16.3 

(i) Write a program performing beta reduction for lambda expressions. 

The discussion of f indall uses the description contained in the Stan- 
dard Prolog document (Scowen, 1991). An excellent discussion of the 
all-solutions predicates bagof and setof in Edinburgh Prolog are given 
in Warren (1982a). Discussions of "rolling your own" set predicates can 
be found in both O'Keefe (1990) and Ross (1989). 

Set predicates are a powerful extension to Prolog. They can be used (in- 
efficiently) to implement negation as failure and meta-logical type pred- 
icates (Kahn, 1984). If a goal G has no solutions, whch is determined by 
a predicate such as f indall, then not G is true. The predicate var (XI 
is implemented by testing whether the goal X=1; X=2 has tw7o solutions. 
Further discussion of such behavior of set predicates and a survey of dif- 
ferent implementations of set predicates can be found in Naish (1985a). 

Further description of the Lee algorithm and the general routing prob- 
lem for VLSI circuits can be found in textbooks on VLSI, for example, 
Breuer and Carter (1983). A neat graphic version of Program 16.6 has 
been written by Dave Broderick. 
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Recent logic programming research has focused somewhat more on 
higher-order logic programming. Approaches of note are Lambda-Prolog 
(Miller and Nadathur, 1986) and HiLog (Chen et al., 1989). 

KWIC was posed as a benchmark for high-level programming languages 
by Perlis, and was used to compare several languages. We find the Prolog 
implementation of it perhaps the most elegant of all. 

Our description of lambda expressions is modeled after Warren 
(1982a). Predicates such as apply and map-list were part of the utili- 
ties package at'the University of Edinburgh. They were fashionable for 
a while but fell out of favor because they were not compiled efficiently, 
and no source-to-source transformation tools were available. 

Interpreters 

Meta-programs treat other programs as data. They analyze, transform, 
and interpret other programs. The writing of meta-programs, or meta- 
programming, is particularly easy in Prolog because of the equivalence 
of programs and data: both are Prolog terms. We have already presented 
some examples of meta-programs, namely, the editor of Program 12.5 
and the shell process of Program 12.6. This chapter co\,ers interpreters, 
an important and useful class of meta-programs, and Chapter 18 dis- 
cusses program transformation. 

- - - 

17.1 Interpreters for Finite State Machines 

The sharp distinction between programs and data present in most com- 
puter languages is lacking in Prolog. The equivalence of programs and 
data greatly facilitates the writing of interpreters. We demonstrate the 
facility in this section by considering the basic computation models of 
computer science. Interpreters for the various classes of automata are 
very easily written in Prolog. 

It is interesting to observe that the interpreters presented in this sec- 
tion are a good application of nondeterministic programming. The pro- 
grams that are presented illustrate typical examples of don't-know non- 
determinism. The same interpreter can execute both deterministic and 
nondeterministic automata because of the nondeterminism of Prolog. 

Definition 
A (nondeterministic) finite automaton, abbreviated NDFA, is a 5-tuple 
(Q,C,b,I,F), where Q is a set of states, C is a set of symbols, 6 is a 
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accept (Xs) - 
The string represented by the list Xs is accepted by 
the NDFA defined by initial/l, delta/3, and final/l. 

accept(Xs) - initial(Q1, accept(~s,Q). 
accept( [XIXsl ,Q) - delta(Q,X,Ql), accept(Xs,Ql). 
accept ( [ I , Q) - final (9) . 
Program 17.1 An interpreter for a nondeterministic finite automaton 
(NDFA) 

mapping from Q x C to Q, I is an initial state, and F is a set of final 
states. If the mapping is a function, then an NDFA is deterministic. 

A finite automaton can be specified as a Prolog program by three col- 
lections of facts. The predicate i n i t i a l ( Q )  is true if Q is the initial state. 
The predicate f i n a l  (Q) is true if Q is a final state. The most interesting is 
del ta(Q,X,Ql) ,  which is true if the NDFA changes from state Q to state 
Q 1  on receipt of symbol X. Note that both the set of states and the set 
of symbols can be defined implicitly as the constants that appear in the 
i n i t i a l ,  f i n a l ,  and d e l t a  predicates. 

An NDFA accepts a string of symbols from the alphabet C*, if when 
started in its initial state, and following the transitions specified by 6, the 
NDFA ends up in one of the final states. An interpreter for an NDFA must 
determine whether it accepts given strings of symbols. Program 17.1 is 
an interpreter. The predicate accept (Xs) is true if the NDFA defined 
by the collection of i n i t i a l ,  f i n a l ,  and d e l t a  facts accepts the string 
represented as the list of symbols X s .  

Figure 17.1 shows a deterministic automaton that accepts the language 
(ab)*. There are two states, qO and ql .  If in state q0 an a is received, the 
automaton moves to state q l .  The automaton moves back from ql to q0 
if a b is received. The initial state is qO, and q0 is also the single final 
state. 

To use the interpreter, a specific automaton must be given. Program 
17.2 is the realization in Prolog of the automaton in Figure 17.1. The 
combination of Programs 17.1 and 17.2 correctly accepts strings of al- 
ternating a's and b's. 

If an arc from q0 to itself labeled a is added to the automaton in Fig- 
ure 17.1, we get a new automaton that recognizes the language (a(a*)b)*. 

Figure 17.1 A simple automaton 

initial(q0). 

final (q0) . 

Program 17.2 An NDFA that accepts the language (ab)  * 

Ths  automaton is nondeterministic because on receipt of an a in state q0 
it is not determined which path will be followed. Nondeterminism does 
not affect the interpreter in Program 17.1. All that is needed to produce 
the new automaton is to add the fact del ta(q0,  a ,  q0) and the combined 
program will behave correctly. 

Another simple computation model is a pushdown automaton that ac- 
cepts the class of context-free languages. Pushdown automata extend 
NDFAs by providing a single stack for memory in addition to the in- 
ternal state of the automaton. Formally, a (nondeterministic) pushdown 
automaton, abbreviated NPDA, is a 7-tuple (Q,C,G,G,I,Z,F) where Q, 1, I, 
F are as before, G is the set of symbols that can be pushed onto the stack, 
Z is the start symbol on the stack, and 6 is changed to take the stack into 
account. 

Specifically, 6 is a mapping from Q x C x G* to Q x G*. The mapping 
controls the change of state of the NPDA and the pushing and popping 
of elements onto and off the stack by the NPDA. In one operation, the 
NPDA can pop (push) one symbol off (onto) the stack. 

Analogously to an NDFA, an NPDA accepts a string of symbols from the 
alphabet X*, if when started in its initial state and with the starting syrn- 
bol on the stack, and following the transitions specified by 6, the NPDA 
ends up in one of the final states with the stack empty. An interpreter 
for an NPDA is given as Program 17.3. The predicate accept (Xs) is true 
if the NDFA defined by the collection of i n i t i a l ,  f i n a l ,  and d e l t a  facts 
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accept(Xs) - 
The string represented by the list X s  is accepted by 
the NPDA defined by initial/l, delta/5, and final/l. 

accept (Xs) - initial (9) , accept (Xs, Q ,  [ I ) . 

Program 17.3 An interpreter for a nondeterministic pushdown automaton 
(NPDA) 

delta(qO,X,S,qO, [XIS]) 
delta(qO,X,S,ql, [XIS]) 
delta(qO,X,S,ql,S). 
delta(ql,X, [XIS] ,ql,S) 

Program 17.4 An NPDA for palindromes over a finite alphabet 

accepts the string represented as the list of symbols X s .  The interpreter 
is very similar to the interpreter of an NDFA given as Program 17.1. The 
only change is the explicit manipulation of the stack by the d e l t a  predi- 
cate. 

A particular example of an NPDA is given as Program 17.4. Ths  au- 
tomaton accepts palindromes over a finite alphabet. A palindrome is a 
nonempty string that reads the same backwards as forwards. Example 
palindromes are noon, madam, and glenelg. Again, the automaton is 
specified by i n i t i a l ,  f i n a l ,  and d e l t a  facts, and the sets of symbols 
being defined implicitly. The automaton has two states: q0, the initial 
state when symbols are pushed onto the stack, and q l ,  a final state when 
symbols are popped off the stack and compared with the symbols in the 
input stream. When to stop pushing and start popping is decided nonde- 
terministically. There are two d e l t a  facts that change the state from q0 
to q l  to allow for palindromes of both odd and even lengths. 

Programs 17.1 and 17.2 can be combined into a single program for 
recognizing the language (ab)*. Similarly, Programs 17.3 and 17.4 can be 
combined into a single program for recognizing palindromes. A program 
that can achieve this combination is given in Chapter 18. 

It is straightforward to build an interpreter for a Turing machine writ- 
ten in a similar style to the interpreters in Programs 17.1 and 17.3. This 
is posed as Exercise (iii) at the end of this section. Building an interpreter 
for Turing machines shows that Prolog has the power of all other known 
computation models. 

Exercises for Section 17.1 

(i) Define an NDFA that accepts the language ab*c. 

(ii) Define an NPDA that accepts the language anbn. 

(iii) Write an interpreter for a Turing machine. 

17.2 Meta-Interpreters 

We turn now to a class of especially useful interpreters. A meta-inter- 
preter for a language is an interpreter for the language written in the 
language itself. Being able to write a meta-interpreter easily is a very pow- 
erful feature of a programming language. It gives access to the computa- 
tion process of the language and enables the building of an integrated 
programming environment. The examples in the rest of this chapter 
demonstrate the potential of meta-interpreters and the ease with which 
they can be written. In t h s  section, we also examine issues in writing 
meta-interpreters. 

Throughout the remainder of this chapter, the predicate solve is used 
for a meta-interpreter. A suitable relation scheme is as follows. The re- 
lation solve(Goa1) is true if Goal is true with respect to the program 
being interpreted. 

The simplest meta-interpreter that can be written in Prolog exploits the 
meta-variable facility. It is defined by a single clause: 

T h s  trivial interpreter is only useful as part of a larger program. For 
example, a version of the trivial interpreter forms the basis for the in- 
teractive shell given as Program 12.6 and the logging facility given as 
Program 12.7. In general, as we suggest here and see in more detail in 
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solve( Goal) - 
Goal is true given the pure Prolog program defined by clause/2. 

solve (true) . 
solve((A,B)) - solve(A), solve(B). 
solve(A) - clause(A,B), solve(B). 

Program 17.5 A meta-interpreter for pure Prolog 

Sections 17.3 and 17.4, meta-interpreters are useful and important be- 
cause of the easily constructed enhancements. 

The best known and most widely used meta-interpreter models the 
computation model of logic programs as goal reduction. The three 
clauses of Program 17.5 interpret pure Prolog programs. Thls meta- 
interpreter, called vanilla, together with its enhancements, is the basis of 
the rest of this section and Section 17.3. 

The interpreter in Program 17.5 can be given a declarative reading. The 
solve fact states that the empty goal, represented by the constant true, 
is true. The first solve rule states that a conjunction (A,B) is true if A 
is true and B is true. The second solve rule states that a goal A is true if 
there is a clause A - B in the interpreted program such that B is true. 

We also give a procedural reading of the three clauses in Program 
17.5. The solve fact states that the empty goal, represented in Prolog by 
the atom true, is solved. The next clause concerns conjunctive goals. It 
reads: "To solve a conjunction (A,B), solve A and solve B." The general 
case of goal reduction is covered by the final clause. To solve a goal, 
choose a clause from the program whose head unifies with the goal, and 
recursively solve the body of the clause. 

The procedural reading of Prolog clauses is necessary to demonstrate 
that the meta-interpreter of Program 17.5 indeed reflects Prolog's choices 
of implementing the abstract computation model of logic programming. 
The two choices are the selection of the leftmost goal as the goal to 
reduce, and sequential search and backtraclung for the nondeterministic 
choice of the clause to use to reduce the goal. The goal order of the body 
of the solve clause handling conjunctions guarantees that the leftmost 
goal in the conjunction is solved first. Sequential search and backtracking 
comes from Prolog's behavior in satisfying the clause goal. 

The hard work of the interpreter is borne by the thlrd clause of Pro- 
gram 17.5. The call to clause performs the unification with the heads 

solve (member (X , [a, b, c] ) ) 
clause (member (X, [a, b, cl ) , B) 
solve(true) 

true Output: X=a 

solve(true) 

clause(true,T) f 
clause (member (X, [a, b, cl ,B) 
solve (member (X, [b, c] 1) 

clause (member (X, [b, cI ) ,B1) 
solve(true) 
true Output: x=b 

solve (true) 
clause(true ,T) f 

clause(member(X, [b, c] ) ,Bl) 
solve (member (X, [c] ) ) 

clause (member (X, [c] ,B2) 
solve (true) 
true Output: X=c 

solve (true) 
clause(true,T) f 

clause (member (X, [cl  ,B2) ) 
solve (member (X , [ 1 ) ) 

clause (member (X, [ 1 ) ,B3) f 
no (more) solutions 

Figure 17.2 Tracing the meta-interpreter 

of the clauses appearing in the program. It is also responsible for giv- 
ing different solutions on backtraclung. Backtracking also occurs in the 
conjunctive rule reverting from B to A. 

Tracing the meta-interpreter of Program 17.5 solving a goal is instruc- 
tive. The trace of answering the query solve (member (X, [a, b, cl ) ) with 
respect to Program 3.12 for member is given in Figure 17.2. 

The vanilla meta-interpreter inherits Prolog's representation of clauses 
using the system predicate clause. Alternative representations of 
clauses are certainly possible, and indeed have been used by alter- 
native Prologs. Lists are one possible representation. The clause A - 
B I ,  B2,. . . , Bn can be represented by the clause rule(A, CBI,. . . ,Bn] ). In 
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solve( Goal) - 
Goal is true given the pure Prolog program defined by clause/2. 

solve(Goa1) - solve (Goal, [ 1 ) . 
solve([ I,[ I). 
solve ( [ ] , [GI Goals] ) - solve (G ,Goals) . 
solve([AIB],Goals) - append(B,Goals,Goalsl), solve(A,Goalsl). 
solve(A,Goals) - rule(A,B), solve(B,Goals). 

Program 17.6 A meta-interpreter for pure Prolog in continuation style 

this representation, the empty list represents the empty goal and list 
construction represents conjunction. This representation is used in Pro- 
gram 17.6. 

A different representation imposes a different form on the meta- 
interpreter, as illustrated in Program 17.6. Unlike Program 17.5, this 
version of the vanilla meta-interpreter makes explicit the remaining goals 
in the resol\,ent. Enhancements can be written to exploit the fact that the 
resolvent is accessible during the computation, for example, allowing a 
more sophisticated computation rule. The behavior of Program 17.6 can 
be considered as being in continuation style promoted by languages such 
as Scheme. 

Differences in meta-interpreters can be characterized in terms of their 
granularity, that is the chunks of the computation that are made acces- 
sible to the programmer. The granularity of the trivial one-clause meta- 
interpreter is too coarse. Consequently there is little scope for applying 
the meta-interpreter. It is possible, though not as easy, to write a meta- 
interpreter that models unification and backtraclung. The granularity of 
such a meta-interpreter is very fine. Working at this fine level is usually 
not worthwhile. The efficiency loss is too great to warrant the extra ap- 
plications. The meta-interpreter in Program 17.5, at the clause reduction 
level, has the granularity most suited for the widest range of applica- 
tions. 

The vanilla meta-interpreter must be extended to handle language fea- 
tures outside pure Prolog. Builtin predicates are not defined by clauses 
in the program and need different treatment. The easiest way to incor- 
porate builtin predicates is to use the meta-variable facility to call them 
directly. A table of builtin predicates is necessary. In this chapter, we 
assume a table of facts of the form builtin(Predicate) for each builtin 

builtin(A is B). builtin(A > B). 
builtin(read(X1) . builtin(write(X)) . 
builtin(integer(X1). builtin(functor(T,F,N)). 
builtin(clause(A,B)). builtin(builtin(X)). 

Figure 17.3 Fragment of a table of builtin predicates 

predicate. Figure 17.3 gives part of that table. A table of builtin predi- 
cates is provided in some Prologs by another name but is not present in 
Standard Prolog. 

The clause solve (A )  - builtin(A), A. can be added to the meta- 
interpreter in Program 17.5 to correctly handle builtin predicates. The 
resulting program handles four disjoint cases, one per clause, for solving 
goals: the empty goal, conjunctive goals, builtin goals, and user-defined 
goals. For compatibility with a number of Prolog systems, the meta- 
interpreters in the rest of this section contain cuts to indicate that the 
clauses are mutually exclusive. 

The extra solve clause makes the behavior of the builtin predicates in- 
visible to the meta-interpreter. User-defined predicates that one wants to 
make invisible can be handled similarly with a single clause. Conversely, 
there are occasions when builtin predicates for negation and second- 
order programming should be made visible. 

The vanilla meta-interpreter needs to be extended to handle cuts cor- 
rectly. A naive incorporation of cuts treats them as a builtin predicate, 
effectively adding a clause solve ( ! - ! . T h s  clause does not acheve 
the correct behavior of cut. The cut in the clause commits to the current 
solve clause rather than pruning the search tree. 

To achieve correct behavior of cut in a meta-interpreter, one needs to 
understand scope, that is to which clause the cut commits. The scope of 
cut, as described in Chapter 11, is the clause in whch the cut is a goal 
in the body. The scope of cut when it is contained withn a meta-logical 
builtin predicate such as conjunction and disjunction is less distinct and 
varies in different Prologs. If a cut is part of a disjunction, should ex- 
ecution of the cut commit to the current disjunct or to the clause in 
which the disjunction is embedded? Handling cut correctly in a meta- 
interpreter is tricky and usually relies on technical details of the scope of 
cut in a particular implementation of Prolog. Incorporating cuts withn 
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solve- trace ( Goal) - 
Goal is true given the Prolog program defined by clause/2. 
The program traces the proof by side effects. 

solve-trace(true,Depth) - ! .  
solve-trace((A,B) ,Depth) - 

! , solve-trace(A,Depth) , solve-trace(~,~epth) . 
solve-trace(A,Depth) - 

builtin(A), ! ,  A, display(A,Depth), nl. 
solve-trace (A,Depth) - 

clause(A,B) , display(A,Depth) , nl, Depth1 is Depth + 1 ,  

solve-trace(B,Depthl). 

display(A,Depth) - 
Spacing is 3*Depth, put-spaces(Spacing), write(A). 

put-spaces (N) - 
between(l,N,I), put-char(' '1 ,  fail 

put-spaces(N) . 

Program 17.7 A tracer for Prolog 

meta-interpreters has been widely studied, and references to solutions 
are given in Section 17.5. 

We apply meta-interpreters to develop a simple tracer. Program 17.7 
handles success branches of computations and does not display failure 
nodes in the search tree. It is capable of generating the traces presented 
in Chapter 6. 

The basic predicate is solve-trace (Goal, Depth), where Goal is 
solved at some depth. The starting depth is assumed to be 0. The first 
solve_trace/2 clause in Program 17.7 states that the empty goal is 
solved at any depth. The second clause indicates that each goal in a con- 
junct is solved at the same depth. The th rd  clause handles builtins. The 
final solve_trace/2 clause matches the goal with the head of a program 
clause, displays the goal, increments the depth, and solves the body of 
the program clause at the new depth. 

The predicate display(Goa1 ,Depth) is an interface for printing the 
traced goal. The second argument, Depth, controls the amount of inden- 
tation of the first argument, Goal. Level of indentation correlates with 
depth in the proof tree. 

solve( Goa1,Tree) - 
Tree is a proof tree for Goal given the program defined 
by clause/2. 

solve(true, true) - ! . 
solve((A,B),(ProofA,ProofB)) - 

! ,  solve(A,ProofA), solve(B,ProofB). 
solve(A,(A-builtin)) - builtin(A), ! ,  A. 
solve(A,(A-Proof)) - clsuse(A,B), solve(B,Proof). 

Program 17.8 A meta-interpreter for building a proof tree 

There is subtlety in the goal order of the clause 

solve-trace (A, Depth) - 
( A ,  B) , display (A, Depth) , nl, Depth1 is + 9 

solve-trace (B ,Depthl) . 

The display goal is between calls to clause and solve-trace, ensuring 
that the goal is displayed each time Prolog backtracks to choose another 
clause. If the clause and display goals are swapped, only the initial call 
of the goal is displayed. 

Using Program 17.7 for the query solve-trace (append(Xs ,Ys, [a,b, 
C] ) ) ? with Program 3.15 for append generates a trace like the one pre- 
sented in Section 6.1. The output messages and semicolons for alterna- 
tive solutions are provided by the underlying Prolog. There is only one 
difference from the trace in Figure 6.2. The unifications are already per- 
formed. Separating out unifications requires explicit representation of 
unification and is considerably harder. 

A simple application of meta-interpreters constructs a proof tree while 
solving a goal. The proof tree is built top-down. A proof tree is essen- 
tial for the applications of debugging and explanation in the next two 
sections. 

The basic relation is solve (Goal ,Tree), where Tree is a proof tree 
for the goal Goal. Proof trees are represented by the structure Goal - 
Proof. Program 17.8 implements solve/2 and is a straightforward en- 
hancement of the vanilla meta-interpreter. We leave as an exercise for 
the reader giving a declarative reading of the program. 

Here is an example of using Program 17.8 with Program 1.2. The query 
solve (son(1ot , haran) ,Proof) ? has the solution 
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solve( Goa1,Certainty) - 
Certainty is our confidence that Goal is true. 

solve(true, 1) - ! . 
solve((A,B) ,C) - 

! ,  solve(A,Cl), solve(B,C2), minimum(Cl,C2,C). 
solve(A,l) - builtin(A), ! ,  A. 
solve(A,C) - clause-cf (A,B,CI), solve(B,C2), C is C1 * C2. 
minimum(X,Y,z) - See Program 11.3. 

Program 17.9 A meta-interpreter for reasoning with uncertainty 

Proof = ( son ( lo t , ha ran )  - 
( ( f a t h e r  ( h a r a n , l o t )  - t r u e ) ,  
(male ( l o t )  - t r u e )  ) )  . 

The query so lve  (son (X , haran) ,Proof)  ? has the solution X=lot and the 
same value for Proof. 

Our next enhancement of the vanilla meta-interpreter incorporates a 
mechanism for uncertainty reasoning. Associated with each clause is a 
certainty factor, which is a positive real number less than or equal to 1. 
A logic program with certainties is a set of ordered pairs (Clause,Factor), 
where Clause is a clause and Factor is a certainty factor. 

The simple meta-interpreter in Program 17.9 implements the un- 
certainty reasoning mechanism. The program is a straightforward en- 
hancement of the vanilla meta-interpreter. The top-level relation is 
so lve  (Goal, Ce r t a in ty ) ,  whlch is true when Goal is satisfied with cer- 
tainty Cer ta in ty .  

The meta-interpreter computes the combination of certainty factors in 
a conjunction as the minimum of the certainty factors of the conjuncts. 
Other combining strategies could be accommodated just as easily. Pro- 
gram 17.9 assumes that clauses with certainty factors are represented 
using a predicate clause-cf ( A ,  B ,  CF) . 

Program 17.9 can be enhanced to prune computations that do not 
meet a desired certainty threshold. An extra argument constituting the 
value of the cutoff threshold needs to be added. The enhanced program 
is given as Program 17.10. The new relation is so lve  (Goal, C e r t a i n t y ,  
Threshold). 

The threshold is used in the fourth clause in Program 17.10. The cer- 
tainty of any goal must exceed the current threshold. If the threshold is 

solve( Goal,Certainty, Threshold) - 
Certainty is our confidence, greater than Threshold, that Goal is true. 

solve(true,l,T) - ! .  
solve((A,B),C,T) - 

! ,  solve(A,CI,T), solve(B,C2,T), minimrn(CI,C2,C). 
solve(A,I,T) - builtin(A), ! , A. 
solve(A,C,T) - 

clause-cf (A,B,Cl), C1 > T ,  TI is T / C 1 ,  
solve(B,C2,Tl), C is C1 * C2. 

minirnum(X , Y ,  Z) - See Program 11.3. 

Program 17.10 Reasoning with uncertainty with threshold cutoff 

exceeded, the computation continues. The new threshold is the quotient 
of the previous threshold by the certainty of the clause. 

Exercises for Section 17.2 

(i) Write a meta-interpreter to count the number of times a procedure 
is called in a successful computation. 

(ii) Write a meta-interpreter to find the maximum depth reached in a 
computation. 

(iii) Extend Program 17.6 to give a tracer and build a proof tree. 

(iv) Extend Program 17.7 for so lve_ t r ace /2  to print out failed goals. 

(v) Modify Program 17.8 to use a different representation for a proof 
tree. 

- -  - - - - -  - 

1 7.3 Enhanced Meta-Interpreters for Debugging 

Debugging is an essential aspect of programming, even in Prolog. The 
promise of high-level programming languages is not so much in the 
prospect for writing bug-free programs but in the power of the com- 
puterized tools for supporting the process of program development. For 
reasons of bootstrapping and elegance, these tools are best implemented 
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in the language itself. Such tools are programs for manipulating, analyz- 
ing, and simulating other programs, or in other words, meta-programs. 

Ths  section shows meta-programs for supporting the debugging 
process of pure Prolog programs. The reason for restricting ourselves 
to the pure part is clear: the difficulties in handling the impure parts of 
the language. 

To debug a program, we must assume that the programmer has some 
intended behavior of the program in mind, and an intended domain of 
application on which the program should exhibit t h s  behavior. Given 
those, debugging consists of finding discrepancies between the pro- 
gram's actual behavior and the behavior the programmer intended. 
Recall the definitions of an intended meaning and a domain from Sec- 
tion 5.2. An intended meaning M of a pure Prolog program is the set 
of ground goals on which the program should succeed. The intended 
domain D of a program is a domain on which the program should ter- 
minate. We require the intended meaning of a program to be a subset of 
the intended domain. 

We say that A, is a solution to a goal A if the program returns on a goal 
A its instance A , .  We say that a solution A is true in an intended meaning 
M if every instance of A is in M. Otherwise it is false in M. 

A pure Prolog program can exhibit only three types of bugs, given an 
intended meaning and an intended domain. When invoked on a goal A in 
the intended domain, the program may do one of three thmgs: 

1. Fail to terminate 
2. Return some false solution A 8  
3. Fail to return some true solution A 8  

We describe algorithms for supporting the detection and identification of 
each of these three types of bugs. 

In general, it is not possible to detect if a Prolog program is nonter- 
minating; the question is undecidable. Second best is to assign some a 
priori bound on the running time or depth of recursion of the program, 
and abort the computation if the bound is exceeded. It is desirable to 
save part of the computation to support the analysis of the reasons for 
nontermination. The enhanced meta-interpreter shown in Program 17.1 1 
achieves ths .  It is invoked with a call solve (A, D ,  Overf low), where A is 
an initial goal, and D an upper bound on the depth of recursion. The call 

solve(A,D,Overflow) - 
A has a proof tree of depth less than D and 
Overflow equals no-overflow, or A has a 
branch in the computation tree longer than D, and 
Overflow contains a list of its first D elements. 

solve(true,D,no~overflow) - ! .  
solve(A,0,overflow([ 1) )  + ! .  
solve ( (A, B) , D, Overf low) - 

D > O ,  ! ,  

solve(A,D,OverflowA), 
solve~conjunction(0verflowA,B,D,Overflow). 

solve(A,D,no-overflow) - 
D > 0, 
builtin(A), ! ,  A. 

solve(A,D,Overflow) - 
D > 0, 
clause(A,B), 
Dl is D-1, 
solve(B,Dl,OverflowB), 
return~overflow(0verflowB,A,0verflow). 

solve~conjunction(overflow(S),B,D,overflow~S~~. 
solve~conjunction(no~overflow,B,D,Overflow~ - 

solve(B,D,Overflow). 

return~overflow(no~overflow,A,no~overflow~. 
return~overflow(overflow(S),A,overflow([AISl~~. 

Program 17.1 1 A meta-interpreter detecting a stack overflow 

succeeds if a solution is found without exceeding the predefined depth 
of recursion, with Overflow instantiated to no-overf low. The call also 
succeeds if the depth of recursion is exceeded, but in t h s  case Over- 
flow contains the stack of goals, i.e., the branch of the computation tree, 
whch exceeded the depth-bound D. 

Note that as soon as a stack overflow is detected, the computation 
returns, without completing the proof. Ths  is acheved by solve- 
conjunction and return-overf low. 

For example, consider Program 17.12 for insertion sort. When called 
with the goal solve (isort ( [2,21 ,Xs) ,6, Overflow), the solution re- 
turned is 

PROYECTO
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isort (Xs, Ys) - 
Ys is an ordered permutation of Xs. Nontermination program. 

isort ([XIXs] ,Ys) - isort(Xs,Zs) , insert(~,Zs,Ys). 
isort([ I,[ 1). 

insert (X , [Y I Ysl , [X ,Y I Ysl ) - 
X < Y. 

insert(X, [YIYS], [YlZsl) 
X 2 Y, insert(Y,[XIYsl,Zs) 

insert(X,C I, [XI). 

Program 17.12 A nonterminating insertion sort 

Xs = [2,2,2,2,2,21, 
Overflow = overflow ( [ 

isort([2,21, [2,2,2,2,2,21), 
insert (2, [21 , [2,2,2,2,2,21) , 
insert (2,121 , [2,2,2,2,21) , 
insert(2, Dl, [2,2,2,21), 
insert (2, [21 , [2,2,21) , 
insert(2,[21, [2,21 > I  1 

The overflowed stack can be further analyzed, upon return, to diagnose 
the reason for nontermination. This can be caused, for example, by a 
loop, i.e., by a sequence of goals G1,G2,. . .,G,, on the stack, where GI and 
G, are called with the same input, or by a sequence of goals that calls 
each goal with increasingly larger inputs. The first situation occurs in the 
preceding example. It is clearly a bug that should be fixed in the program. 
The second situation is not necessarily a bug, and knowing whether the 
program should be fixed or whether a larger machine should be bought 
in order to execute it requires further program-dependent information. 

The second type of bug is returning a false solution. A program can 
return a false solution only if it has a false clause. A clause C is false 
with respect to an intended meaning M if it has an instance whose body 
is true in M and whose head is false in M. Such an instance is called a 
counterexample to C.  

Consider, for example, Program 17.13 for insertion sort. On the goal 
isort ( [3,2, I] ,Xs) it returns the solution isort ( [3,2,11 , [3,2,11) 
which is clearly false. 

isort(Xs,Ys) - 
Buggy insertion sort. 

isort([XIXs],Ys) - isort(Xs,Zs), insert(X,Zs,Ys). 
isort(C 1,C I). 

insert(X, CY IYsl , [X,Y IYsl) - 
X 2 Y. 

insert (X, [Y I Ysl , CY I Zsl - 
X > Y, insert(X,Ys,Zs). 

insert(X,C ],[XI). 

Program 17.13 An incorrect and incomplete insertion sort 

The false clause in the program is 

and a counterexample to it is 

Given a ground proof tree corresponding to a false solution, one can 
find a false instance of a clause as follows: Traverse the proof tree in 
postorder. Check whether each node in the proof tree is true. If a false 
node is found, the clause whose head is the false node and whose body 
is the conjunction of its sons is a counterexample to a clause in the 
program. That clause is false and should be removed or modified. 

The correctness of t h s  algorithm follows from a simple inductive 
proof. The algorithm is embedded in an enhanced meta-interpreter, 
shown as Program 17.14. 

The algorithm and its implementation assume an oracle that can an- 
swer queries concerning the intended meaning of the program. The or- 
acle is some entity external to the diagnosis algorithm. It can be the. 
programmer, who can respond to queries concerning the intended mean- 
ing of the program, or another program that has been shown to have 
the same meaning as the intended meaning of the program under de- 
bugging. The second situation may occur in developing a new version of 
a program whle using the older version as an oracle. It can also occur 
when developing an efficient program (e.g., quicksort), given an ineffi- 
cient executable specification of it (i.e., permutation sort), and using the 
specification as an oracle. 
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false-solution (A, Clause) - 
If A is a provable false instance, then Clause is 
a false clause in the program. Bottom-up algorithm. 

false~solution(A,Clause) - 
solve(A,Proof), 
false~clause(Proof,Clause). 

solve (Goal ,Proof) - See Program 17.8. 

f alse-clause(true ,ok). 
f alse-clause( (A,B) ,Clause) - 

f alse-clause (A,ClauseA) , 
check~conjunction(C1auseA,B,Clause). 

f alse-clause( (A-B) ,Clause) - 
false-clause(B,ClauseB), 
check~clause(ClauseB,A,B,Clause). 

check~clause(ok,A,B,Clause) - 
query-goal (A,Answer) , 
check~answer(Answer,A,B,Clause). 

check-clause((A1-B~),A,B,(A~-B~)). 

check-answer(true,A,B,ok). 
check-answer(false.A,B,(A-B1)) - 

extract-body (B,B1). 

extract-body(true,true). 
extract-body ( (A-B) ,A) . 
extract-body(((A-B) ,Bs), (A,As)) + 

extract-body (Bs ,AS) . 

query-goal(A,true) - 
builtin(A). 

query-goal(Goal,Answer) - 
not builtin(Goal1, 
writeln(['Is the goal ',Goal,' true?']), 
read(Answer). 

Program 17.14 Bottom-up diagnosis of a false solution 

Interpreters 

When invoked with the goal f alse-solution(isort ( [3,2,11 ,X) ,C) 
the algorithm e h b i t s  the following interactive behavior: 

false~solution(isort(~3,2,1] ,X) ,c)? 
Is the goal isort ( [ I , [ I ) true? 
true. 

Is the goal insert (I, [ I , [I] ) true? 
true. 

Is the goal isort ( [I1 , [I] ) true? 
true. 

Is the goal insert (2, [I1 , [2, I]) true? 
false. 

x = C3,2,11, 
C = insert(2, [I], [2,1]) - 2 2 1. 

This returns a counterexample to the false clause. 
The proof tree returned by solve/2 is not guaranteed to be ground, 

in contrast to the assumption of the algorithm. However, a ground proof 
tree can be generated by either instantiating variables left in the proof 
tree to arbitrary constants before activating the algorithm, or by request- 
ing the oracle to instantiate the queried goal when it contains variables. 
Different instances might imply different answers. Since the goal of this 
algorithm is to find a counterexample as soon as possible, the oracle 
should instantiate the goal to a false instance if it can. 

One of the main concerns with diagnosis algorithms is improving their 
query complexity, i.e., reducing the number of queries they require to 
diagnose the bug. Given that the human programmer may have to answer 
the queries, this desire is understandable. The query complexity of the 
preceding diagnosis algorithm is linear in the size of the proof tree. 
There is a better strategy, whose query complexity is linear in the depth 
of the proof tree, not its size. In contrast to the previous algorithm, 
which is bottom-up, the second algorithm traverses the proof tree top- 
down. At each node it tries to find a false son. The algorithm recurses 
with any false son found. If there is no false son, then the current node 
constitutes a counterexample, as the goal at the node is false, and all its 
sons are true. 

The implementation of the algorithm is shown in Program 17.15. Note 
the use of cut to implement implicit negation in the first clause of false- 
goal/2 and the use of query_goal/2 as a test predicate. 



Chapter 17 

false-solution (A,Clause) - 
If A is a provable false instance, then Clause 
is a false clause in the program. Top-down algorithm. 

false-solution(A,Clause) - 
solve (A,Proof), 
false~goal(Proof,Clause). 

solve (Goal ,Proof) - See Program 17.8. 

false-goal( (A-B) ,Clause) - 
false~conjunction(B,Clause), ! .  

fal~e_~oal((A-B),(A-B1)) - 
extract-body(B,B1). 

false-conjunction(( (A-B) ,Bs) ,Clause) - 
q ~ e r ~ - ~ o a l  (A, f alse) , ! , 
false-goal((A-B),Clause). 

false-conjunction( (A-B) ,Clause) - 
query-goal(A,false), ! ,  
f alse-goal( (A-B) ,Clause). 

false-conjunction((A,As),Clause) - 
false-conjunction(As,Clause). 

extract-body (Tree ,Body) - See Program 17.14. 

query-goal (A,Answer) - See Program 17.14. 

Program 17.15 Top-down diagnosis of a false solution 

Compare the behavior of the bottom-up algorithm with the following 
trace of the interactive behavior of Program 17.1 5: 

f alse-solution(isort ( [3,2, I] ,x) ,c)? 
Is the goal isort ( [2,11 , [2,11) true? 
false. 

Is the goal isort ( [I] , [I1 ) true? 
true. 
Is the goal insert (2, [I1 , [2,11) true? 
false. 

X = C3,2,11, 
C = insert(2, [I], [2,1]) -- 2 2 1. 

There is a diagnosis algorithm for false solutions with an even better 
query complexity, called divide-and-query. The algorithm progresses by 
splitting the proof tree into two approximately equal parts and querylng 
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the node at the splitting point. If the node is false, the algorithm is 
applied recursively to the subtree rooted by this node. If the node is 
true, its subtree is removed from the tree and replaced by true, and a 
new middle point is computed. The algorithm can be shown to require 
a number of queries logarithmic in the size of the proof tree. In case of 
close-to-linear proof trees, this constitutes an exponential improvement 
over both the top-down and the bottom-up diagnosis algorithms. 

The third possible type of bug is a missing solution. Diagnosing a 
missing solution is more difficult than fixing the previous bugs. We say 
that a clause covers a goal A with respect to an intended meaning M if it 
has an instance whose head is an instance of A and whose body is in M. 

For example, consider the goal insert (2, [I, 31 , Xs). It is covered by 
the clause 

of Program 17.13 with respect to the intended meaning M of the pro- 
gram, since in the following instance of the clause 

the head is an instance of A and the body is in M. 
It can be shown that if a program P has a missing solution with respect 

to an intended meaning M, then there is a goal A in M that is not covered 
by any clause in P. The proof of this claim is beyond the scope of the 
book. It is embedded in the diagnosis algorithm that follows. 

Diagnosing a missing solution imposes a heavier burden on the oracle. 
Not only does it have to know whether a goal has a solution but it must 
also provide a solution, if it exists. Using such an oracle, an uncovered 
goal can be found as follows. 

The algorithm is given a missing solution, i.e., a goal in the intended 
meaning M of the program P, for which P fails. The algorithm starts with 
the initial missing solution. For every clause that unifies with it, it checks, 
using the oracle, if the body of the clause has an instance in M. If there 
is no such clause, the goal is uncovered, and the algorithm terminates. 
Otherwise the algorithm finds a goal in the body that fails. At least one 
of them should fail, or else the program would have solved the body, and 
hence the goal, in contrast to our assumption. The algorithm is applied 
recursively to thls goal. 
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missing-solution (A,Goal) - 
If A is a nonprovable true ground goal, then Goal is a 
true ground goal that is uncovered by the program. 

missing-solution((A,B) ,Goal) + ! , 
(not A, missing-solution(A,Goal) ; 

A, missing-solution(B,Goal)). 

missing-solution(A,Goal) - 
clause(A,B) , 
query-clause ( (A-B) ) , ! , 
missing-solution(B,Goal). 

missing-solution(A,A) - 
not system(A). 

query-clause(C1ause) - 
writeln(CCEnter a true ground instance of ',Clause, 

'if there is such, or "no" otherwise']), 
read(Answer) , 
! ,  check-answer(Answer,Clause). 

check-answer(no,Clause) - ! ,  fail. 
check-answer(Clause,Clause) - ! .  
check-answer(Answer,Clause) - 

write ( ' Illegal answer' ) , 
! , query-clause(C1ause). 

Program 17.16 Diagnosing missing solution 

An implementation of this algorithm is shown in Program 17.16. The 
program attempts to trace the failing path of the computation and to find 
a true goal whch is uncovered. Following is a session with the program: 

Enter a true ground instance of 
(isort([2,1,31, [1,2,31) - 

isort([1,3] ,XS) ,insert(2,Xs, C1,2,31)) 

if there is such, or "no" otherwise 

(isort([2,1,31, C1,2,3I) - 
isort([l,3], [1,3l) ,insert(2, [1,3] [1,293])) 

Enter a true ground instance of 
(isort([1,31,[1,3]) - isort([3],Ys),insert(l,~s,[1,3])) 
if there is such, or 'no' otherwise 

Enter a true ground instance of 
(insert(l,[31, [1,31) - 1 2 3) 
if there is such, or 'no' otherwise 

no. 

C = insert(1, [31, C1,31). 

The reader can verify that the goal insert (I, [31 , [I, 31 ) is not covered 
by Program 17.1 3. 

The three algorithms shown can be incorporated in a high-quality in- 
teractive program development environment for Prolog. 

17.4 An Explanation Shell for Rule-Based Systems 

The final section of this chapter presents an application of interpreters 
to rule-based systems. An explanation shell is built that is capable of ex- 
plaining why goals succeed and fail and that allows interaction with the 
user during a computation. The shell is developed with the methodology 
of stepwise enhancement introduced in Section 13.3. 

The skeleton interpreter in this section is written in the same style as 
the vanilla meta-interpreter and has the same granularity. It differs in 
two important respects. First, it interprets a rule language rather than 
Prolog clauses. Second, the interpreter has two levels to allow explana- 
tion of failed goals. 

Before describing the interpreter, we give an example of a toy rule- 
based system written in the rule language. Program 17.17 contains some 
rules for placing a dish on the correct rack in an oven for baking. Facts 
have the form fact (Goal). For example, the first fact in Program 17.17 
states that dish1 is of type bread. 

Rules have the form rule (Head,Body ,Name), where Head is a goal, 
Body is (possibly) a conjunction of goals, and Name is the name of the 
rule. Individual goals in the body are placed inside a unary postfix func- 
tor is-true, for reasons to be explained shortly. Conjunctions in the 
body are denoted by the binary infur operator &, whch differs from Pro- 
log syntax. Operator declarations for & and is-true are given in Program 
17.17. To paraphrase a sample rule, rule place1 in Program 17.17 states: 
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Rule base for a simple expert system for placing dishes in an oven. 
The predicates used in the rules are 
place-in-oven(Dish,Kack) - 

Dish should be placed in the oven at level Rack for baking. 
pastry(Dish) - Dish is a pastry. 
main-meal (Dish) - Dish is a main meal. 
slow-cooker (Dish) - Dish is a slow cooker. 
type(Dish,Type) - Dish is best described as Type. 
size(Dish,Size) - The size of Dish is Size. 
The rules have the form rule (Head, Body, Name) . 

rule (place-in-oven(~ish, top) , 
pastry (Dish) is-true & size(Dish,small) is-true    lac el). 

rule (place-in-oven(Dish ,middle), 
pastry (Dish) is-true & size(~ish,big) is-true ,place2) . 

rule(place~in~oven(Dish,middle),main~meal(~ish is_true,~lace3). 
rule (place-in-oven(Dish ,bottom), slow-cooker i s  is-true ,~lace4) . 

r ~ l e ( ~ a s t r ~  (Dish) ,type(Dish,cake) is-true ,pastr~l). 
rule (pastry (Dish) ,type (Dish, bread) is-true ,pastry2) . 

rule(main-meal(Dish),type(Dish,meat) is-true,main-meal). 
rule(s1ow-cooker (Dish) ,type (Dish,milk-pudding is-true, slow-cooker) . 

Program 17.1 7 Oven placement rule-based system 

"A dish should be placed on the top rack of the oven if it is a pastry and 
its size is small." 

Why use a separate rule language when the syntax is so close to Prolog? 
The first rule, placel, could be written as follows. 

place-in-oven(Dish, top) - pastry(Dish) size(Dish9 

There are two main reasons for the rule language. The first is pedagog- 
ical. The rule interpreter is neater, avoiding complicated details associ- 
ated with Prolog's impurities such as the behavior of builtin predicates 
when called by clause. Avoiding Prolog's impurities also makes it easier 
to partially evaluate the interpreter, as described in Chapter 18. 

monitor (Goal) - 
Succeeds if a result of yes is returned from solving Goal 
at the solve level, or when the end of the computation is reached. 

monitor(Goa1) - solve(Goal,Result), filter(Resu1t). 
monitor(Goa1). 

filter(yes). 
% filter(no) - fail. 
solve ( Goa1,Result) - 

Given a set of rules of the form rule(A,B,Name), Goal has 
Result yes if it follows from the rules and no if it does not. 

solve(A, yes) - fact (A). 
solve(A,Result) - rule(A,B,Name), solve-body(B,Result). 
solve(A,no). 

solve-body(A&B,Result) - 
solve(A,ResultA), solve~and(ResultA,B,Result). 

solve-body(A is-true,Result) - solve(A,Result). 

Program 17.18 A skeleton two-level rule interpreter 

The second reason is to show by example that the best way to develop 
a rule-based application in Prolog is to design a rule language on top of 
Prolog. Although the rule language is largely syntactic sugar, experience 
has shown that users of a rule-based system are happier worlung in a 
customized rule language than in Prolog. Rule languages are straightfor- 
ward to proi7ide on top of Prolog. 

We now start our presentation of the explanation shell. According to 
the method of stepwise enhancement, the skeleton constituting the basic 
control flow of the final program is presented first. Program 17.18 con- 
tains the skeleton of the rule interpreter. The principal requirement that 
shaped the skeleton is the desire to handle both successful and failed 
computations in one interpreter. 

The rule interpreter presented in Program 17.18 has two levels. The top 
level, or monitor level, consists of the predicates monitor and filter. 
The bottom level, or solve level, consists of the predicates solve, solve- 
body, and solve-and. Two levels are needed to correctly handle failed 
computations. 
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Let us consider the bottom level first. The three predicates consti- 
tute an interpreter at the same level of granularity as the vanilla meta- 
interpreter. There is one major difference. There is a result variable that 
says whether a goal succeeds or fails. A goal that succeeds, with the re- 
sult variable indicating failure, instead of failing gives rise to a different 
control flow, compensated for by the top level. 

The predicate solve(Goal,Result) solves a single goal. There are 
three cases. The result is yes if the goal is a fact in the rule base. The 
result is no if no fact or head of a rule matches the goal. If there is a 
rule that matches the goal, the result will be returned by the predicate 
solve-body (Goal ,Result). The order of the thlrd clause is significant 
because we only want to report no for an individual goal if there is no 
suitable fact or rule. Effectively, solve succeeds for each branch of the 
search tree, the result being yes for successful branches and no for failed 
branches. 
solve_body/2 has t~7o clauses handling conjunctive goals and goals of 

the form A  is-true. The functor is-true is a wrapper that allow7s uni- 
fication to distinguish between the two cases. A Prolog implementation 
with indexing would produce efficient code. The clause handling con- 
junctions calls a predicate solve_and/3, which uses the result of solving 
the first conjunct to decide whether to continue. The code for solve- 
and results in behavior similar to the behavior of solve-conjunction in 
Program 1 7.1 1. 

The monitor level is essentially a generate-and-test program. The solve 
level generates a branch of the search tree, and the test procedure f il- 
ter accepts successful branches of the search tree, indicated by the re- 
sult being yes. Failed branches, i.e., ones with result no, are rejected. Note 
that the second clause for filter could simply be omitted. We leave it in 
the program, albeit commented out, to make clear the later enhancement 
step for adding a proof tree. 

The first enhancement of the rule interpreter makes it interactive. The 
interactive interpreter is given as Program 17.19. The user is given the 
opportunity to supply information at runtime for designated predicates. 
The designated predicates are given as a table of askable facts. For 
example, a fact askable (type (Dish, Type) ) . appearing in the table 
would indicate that the user could ask the type of the dish. 

Interaction with the user is achieved by adding a new clause to the 
solve level: 

solve( Goa1,Result) - 
Given a set of rules of the form rule(A,B,Name), Goal has 
Result yes if it follows from the rules and no if it does not. 
The user is prompted for missing information. 

solve(A,yes) - fact(A). 
solve (A,Result) - rule ( A  ,B, Name), solve-body(B ,Result). 
solve(A,Result) - askable(A1, solve-askable(A,Result). 
solve(A,no). 

solve-body(A&B,Result) - 
solve-body(A,ResultA), solve-and(ResultA,B,Result). 

solve-body(A is-true,Result) - solve(A,Result). 
solve-and(no,A,no). 
solve-and(yes,B,Result) - solve(B,Result). 
solve-askable(A,Result) - 

not known(A), ask(A,Response), respond(Response,A,Result). 

The following predicates facilitate interaction with the user. 

ask(A,Response) - display-query(A), read(Response). 

respond(yes,A,yes) - assert(known-to-be-true(A)). 
respond(no,A,no) - assert(known-to-be-false(A)). 

Program 17.19 An interactive rule interpreter 

solve ( A ,  Result) - askable ( A ) ,  solve-askable ( A ,  Result) . 

An alternative method of making the rule interpreter interactive is to 
define a new class of goals in the body. An additional solve-body clause 
could be added, for example, 

We prefer adding a solve clause and having a table of askable facts 
to embedding in the rules the information about whether a predicate 
is askable. The rules become more uniform. Furthermore, the askable 
information is explicit meta-knowledge, whlch can be manipulated as 
needed. 

To complete the interactive component of the rule interpreter, code 
for solve-askable needs to be specified. The essential components are 

PROYECTO
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displaying a query and accepting a response. Experience with users of 
rule-based systems shows that it is essential not to ask the same ques- 
tion twice. Users get very irritated telling the computer information they 
feel it should know. Thus answers to queries are recorded using assert. 
Program 17.19 contains appropriate code. Only the solve level is given. 
The monitor level would be identical to Program 17.18. 

Program 17.19 queries the user. The interaction can be extended to 
allow the user also to query the program. The user may want to know 
why a particular question is being asked. A facility for giving a why ex- 
planation is common in rule-based systems, the answer being the rule 
containing the queried goal in its body. In order to give this why explana- 
tion, we need to extend the rule interpreter to carry the rules that have 
been used so far. 

Program 17.20 is an enhancement of Program 17.18 that carries the list 
of rules that have been used in solving the query. All the predicates carry 
the rules as an extra argument. The rule list is initialized to be empty 
in the first monitor clause. The rule list is updated in the second solve 
clause when a new rule is invoked. 

We now describe how the list of rules can be used to provide a why 
explanation. A new respond clause needs to be added to Program 17.19. 
The appropriate behavior is to display the rule, then prompt the user 
again for the ansber to the query. 

respond(why , A, [Rule I Rules] ) - display-rule (Rule) , 
ask(A, Answer) , respond(Answer , A ,Rules) . 

Repeated responses of why can be handled by giving the rule that 
invoked the current rule. The correct behavior is achieved by having 
the recursive respond goal use the rest of the rules. Finally, when there 
are no more rules to display, an appropriate response must be given. A 
suitable respond clause is 

respond(why ,A, [ 1 ) - 
writeln( ['NO more explanation possible'] ) ask(AsAnswer) 9 

respond(Answer, A, [ 1 ) . 

Now let us consider generating explanations of goals that have suc- 
ceeded or failed. The explanations will be based on the proof tree for 
successful goals and the search tree for failed goals. Note that a search 

monitor ( Goal) - 
Succeeds if a result of yes is returned from solving Goal 
at the solve level, or when the end of the computation is reached. 

monitor(Goa1) - solve(Goal,Result,[ 11, filter(Resu1t). 
monitor(Goa1). 

filter(yes). 
% f ilter(no) - fail. 
solve( Goal,Result,Rules) - 

Given a set of rules of the form rule(A,B,Name), Goal has 
Result yes if it follows from the rules and no if it does not. 
Rules is the current list of rules that have been used. 

solve(A,yes,Rules) - fact(A). 
solve(A,Result,Rules) - 

rule (A,B ,Name) , RulesB = [Name 1 Rules] , 
solve-body(B,Result,RulesB). 

solve(A,no,Rules). 

Program 17.20 A two-level rule interpreter carrying rules 

tree is a sequence of branches. Each branch is either a proof tree or a fail- 
ure branch that is like a proof tree. Program 17.18 can be enhanced to in- 
corporate both cases. The enhanced program is given as Program 17.2 1. 
The solve level returns a branch of the search tree, and the monitor level 
keeps track of the failure branches since the last proof tree. The rela- 
tion between the predicate solve/3 in Program 17.21 and solve/2 in 
Program 17.18 is analogous to the relation between Programs 17.8 and 
17.5. 

Four predicates are added to the monitor level to record and remove 
branches of the search tree. The fact 'search tree' (Proof) records 
the current sequence of branches of the search tree since the last suc- 
cess. The predicate set-search-tree, called by the top-level monitor 
goal, initializes the sequence of branches to the empty list. Similarly, 
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monitor (Goa1,Proof) - 
Succeeds if a result of yes is returned from solving Goal at the 
solve level, in which case Proof is a proof tree representing the 
successful computation, or when the end of the computation is reached, 
in which case Proof is a list of failure branches since the last success. 

monitor(Goa1,Proof) - 
set-search-tree, solve (Goal ,Result ,proof) , 
filter(Result,Proof). 

monitor(~oa1,Proof) - 
collect-proof (P) , reverse(P, [ 1 ,PI), 
Proof = failed(Goa1,Pl). 

filter(yes,~roof) - reset-search-tree. 
filter(no,Proof) - store-proof(Proof), fail. 

solve( Goal,Result,Proof) - 
Given a set of rules of the form rule(A,B,Name), Goal has 
Result yes if it follows from the rules and no if it does not. 
Proof is a proof tree if the result is yes and a failure branch 
of the search tree if the result is no. 

solve (A, yes ,Tree) - fact (A) , Tree = fact (A) . 
solve(A,Result,Tree) - 

rule (A,B ,Name) , solve-body (B ,Result ,proof) , 
Tree = A because B with Proof. 

solve(A,no ,Tree) - 
not fact (A), not rule(A,B,Name) , Tree = no- match(^) . 

solve~body(A&B,Result,Proof) - 
solve-body(A,ResultA,ProofA), 
solve-and(ResultA,B,Result,ProofB), 
Proof = ProofA & ProofB. 

solve-body(A is-true,Result,Proof) - solve(~,~esult,Proof). 

Program 17.21 A two-level rule interpreter with proof trees 

The following predicates use side effects to record and remove 
branches of the search tree. 

collect-proof(Proof) - retract('search tree'(Proof)). 
store-proof(Proof) - 

retract('search treeJ(Tree)), 
assert('search treeJ([ProoflTreel)). 

set-search-tree - assert('search treeJ([ I ) ) .  
reset-search-tree - 

retract('search tree'(Proof)), 
assert('search tree'([ I)). 

reverse(Xs,Ys) - See Program 3.16. 

Program 17.2 1 (Continued) 

reset-search-tree initializes the search tree but first removes the cur- 
rent set of branches. It is invoked by filter when a successful compu- 
tation is detected. The predicate store-proof updates the search tree, 
while collect-proof removes the search tree. The failure branches are 
reordered in the second clause for monitor/2. 

Having generated an explanation, we now consider how to print it. 
The proof tree is a recursive data structure that must be traversed to 
be explained. Traversing a recursive data structure is a straightforward 
exercise. Appropriate code is given in Program 17.22, and a trace of a 
computation given in Figure 17.4. 

The explanation shell is obtained by combining the enhancements of 
Programs 17.19, 17.20, and 17.21. The final program is given as Pro- 
gram 17.23. Understanding the program is greatly facilitated by viewing 
it as a sum of the three components. 

Exercises for Section 17.4 

(i) Add the ability to explain askable goals to the proof explainer in 
Program 17.22. 

(ii) Add the ability to execute Prolog builtin predicates to the explana- 
tion shell. 

(iii) Write a two-level meta-interpreter to find the maximum depth 
reached in any computation of a goal. 
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explain (Goal) - 
Explains how the goal Goal was proved. 

explain(Goa1) - monitor(Goal,Proof), interpret(Proof). 

monitor (Goal ,Proof) - See Program 17.21. 

interpret(ProofA&ProofB) - 
interpret(ProofA), interpret(Pro0fB). 

interpret(failed(A,Branches)) + 

nl, writeln([A,' has failed with the following failure 
branches : 'I ) , 

interpret(Branches). 
interpret ( [Fail I Fails] ) - 

interpret(Fail), nl, write('NEW BRANCH'), nl, 
interpret(Fai1s). 

interpret ( [ I). 
interpret (f act (A)) - 

nl, writeln([A,' is a fact in the database.']). 
interpret(A because B with Proof) - 

nl, writeln([A,' is proved using the rule']), 
display-rule(rule(A,B)), interpret(Proof). 

interpret(n0-match(A)) - 
nl, writeln([A,' has no matching fact or rule in the rule base.']). 

interpret(unsearched) - 
nl, writeln(['The rest of the conjunct is unsearched.']). 

display-rule(ru1e (A,B) ) - 
write('1F ' ) ,  write-conjunction(B) , writeln( ['THEN ' ,A I). 

write-conjunction(A&B) - 
write-conjunction(A), write(' AND ' ) ,  

write-conjunction(B). 
write_conjunction(A is-true) - write(A). 
writeln(Xs) - See Program 12.1 

Program 17.22 Explaining a proof 

place-in-oven(dish1 ,middle) is proved using the rule 
IF pastry (dishl) AND size(dish1 ,big) 
THEN place-in-oven(dish1,middle) 

pastry (dishl) is proved using the rule 
IF type(dish1,bread) 
THEN pastry (dishl) 

type(dish1,bread) is a fact in the database 

size (dishl ,big) is a fact in the database. 
X =middle ; 

place-in-oven(dish1 ,XI has failed with the following failure branches: 

place-in-oven(dish1 ,middle) is proved using the rule 
IF main-meal(dish1) 
THEN place-in-oven(dish1,middle) 

main-meal(dish1) is proved using the rule 
IF type(dish1,meat) 
THEN main-meal (dish11 

type(dish1 ,meat) has no matching fact or rule in the rule base 

NEM' BRANCH 

place-in-oven(dish1 ,low) is pro\,ed using the rulc 
IF slow-cooker(dish1) 
THEN place-in-oven(dish1 ,low) 

slow-cooker(dlsh1) is pro\.ed using the rule 
IF type(dish1,milk-pudding) 
THEN slow-cooker (dishl) 

type(dish1 ,milk-pudding) has no matching fact or rule in the rule base 

Figure 17.4 Explaining a computation 
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monitor (Goa1,Proof - 
Succeeds if a result of yes is returned from solving Goal at the 
solve level, in which case Proof is a proof tree representing the 
successful computation, or when the end of the computation is reached, 
in which case Proof is a list of failure branches since the last success. 

monitor(Goa1,Proof) - 
set-search-tree, solve(Goa1 ,Result, [ 1 ,Proof) , 
filter(Result,Proof). 

monitor(Goa1,Proof) - 
collect-proof (PI , reverse (P, [ I ,PI), 
Proof = failed(Goa1,Pl). 

filter(yes,Proof) - reset-search-tree. 
filter(no,Proof) - store-proof(Proof), fail. 

solve( Goal,Result,Rules,Proof - 
Given a set of rules of the form rule(A,B,Name), Goal has 
Result yes if it follows from the rules and no if it does not. 
Rules is the current list of rules that have been used. 
Proof is a proof tree if the result is yes and a failure branch 
of the search tree if the result is no. 

: -  op(40,xfy,because). 
: -  op(30,xfy,with). 

solve(A, yes ,Rules ,Tree) - fact (A), Tree = fact (A). 
solve(A,Result,Rules,Tree) - 

rule(A,B,Name), RulesB = [NamelRules], 
solve-body(B,Result,RulesB,Proof), 
Tree = A because B with Proof. 

solve(A,Result,Rules,Tree) - 
askable (A) , solve-askable (A ,Result, Rules) , Tree = user (A) . 

solve(A,no,Rules,Tree) - 
not fact (A) , not rule(A,~,Name) , Tree = no-match(A) . 

solve~body(A&B,Result,Rules,Proof) - 
solve~body(A,ResultA,Rules,ProofA), 
solve~and(ResultA,B,Result,Rules,ProofB), 
Proof = ProofA & ProofB. 

solve-body(A is-true,Result,Rules,Proof) - 
solve(A,Result,Rules,Proof). 

solve~and(no,A,no,Rules,unsearched). 

solve-and(yes,B,Result,Rules,Tree) - 
solve(B,Result,Rules,Tree). 

Program 17.23 An explanation shell 

Interpreters 

The following predicates use side effects to record and remove 
branches of the search tree. 

collect-proof(Proof) - retract('search treeJ(Proof)). 
store-proof (Proof - 

retract ('search tree' (Tree)), 
assert('search tree'(CProoflTree1)). 

set-search-tree - assert('search tree'([ I)). 
reset-search-tree - 

retract('search tree'(Proof)), assert('search tree'([ I)) 
reverse (Xs ,Ys) - See Program 3.16. 

The following predicates facilitate interaction with the user. 

respond(yes,A,yes) - assert(known-to-be-true(A)). 
respond(no,A,no) - assert(known-to-be-false(A1). 
respond(why ,A, [Rule 1 Rules] ) - 

display-rule(Rule), ask(A,Answer), respond(Answer,A,Rules). 
respond(why ,A, C I ) - 

writeln(CLNo more explanation possibleJ]), ask(A,Answer), 
respond(Answer,A,[ I ) .  

display-rule(rule(A,B)) - 
write('1F '1, write-conjunction(B) , nl, writeln( ['THEN ' ,A]). 

write-conjunction(A&B) - 
write-conjunction(A), write(' AND ' ) ,  write-conjunction(B). 

write-conjunction(A is-true) - write(A). 
writeln(Xs) - See Program 12.1. 

Program 17.23 (Continued) 
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1 7.5 Background 

Our notation for automata follows Hopcroft and Ullman (1979). 
There is considerable confusion in the literature about the term meta- 

interpreter-whether it differs from the term meta-level interpreter, 
for example. The lack of clarity extends further to the topic of meta- 
programming. A good discussion of meta-programming can be found in 
Yalqinalp (1991). 

One dimension of the discussion is whether the interpreter is capable 
of interpreting itself. An interpreter with that capability is also called 
meta-circular or self-applicable. An important early discussion of meta- 
circular interpreters can be found in Steele and Sussman (1978). That 
paper claims that the ability of a language to specify itself is a funda- 
mental criterion for language design. 

The vanilla meta-interpreter is rooted in Prolog folklore. A version 
was in the suite of programs attached to the first Prolog interpreter 
developed by Colmerauer and colleagues, and was given in the early 
collection of Prolog programs (Coelho et al., 1980). Subsequently, meta- 
interpreters, and more generally meta-programs, have been written to 
affect the control flow of Prolog programs. References are Gallaire and 
Lasserre (1982), Pereira (1982), and Dincbas and Le Pape (1984). Using 
enhanced meta-interpreters for handling uncertainties is described by 
Shapiro (1983~).  

There have been several papers on handling cuts in meta-interpreters. 
A variant of the vanilla meta-interpreter handling cuts correctly is de- 
scribed in Coelho et al. (1980) and attributed to Luis Pereira. One easy 
method to treat cuts is via ancestor cut, whlch is only present in a few 
Prologs like Waterloo Prolog on the IBM and Wisdom Prolog, described 
in the first edition of this book. There is a good discussion of meta- 
interpreters in general, and cuts in particular, in O'Keefe (1990). 

Shapiro suggested that enhanced meta-interpreters should be the basis 
of a programming environment. The argument, along with the debugging 
algorithms of Section 17.3, can be found in Shapiro (1983a). Shapiro's 
debugging work has been extended by Dershowitz and Lee (1987) and 
Drabent et al. (1989). 

Prolog is a natural language for building rule-based systems. The basic 
statements are rules, and the Prolog interpreter can be viewed as a back- 

ward chaining inference engine. Early advocates of Prolog for expert sys- 
tems were Clark and McCabe (1982), who discussed how explanation fa- 
cilities and uncertainty can be added to simple expert systems expressed 
as Prolog clauses by adding extra arguments to the predicates. Incorpo- 
rating interaction with the user in Prolog was proposed by Sergot (1983). 
An explanation facility incorporating Sergot's query-the-user was part 
of the APES expert system shell, described in Hammond (1984). 

Using meta-interpreters as a basis for explanation facilities was pro- 
posed by Sterling (1984). Incorporating failure in a meta-interpreter has 
been discussed by several researchers, including Hammond (1984), Ster- 
ling and Lalee (1986), and Bruffaerts and Henin (1989). The first descrip- 
tion of an integrated meta-interpreter for both success and failure is in 
Yalqinalp and Sterling (1989). The rule interpreter given in Section 17.4 
is an adaptation of the last paper. The layered approach can be used 
to explain cuts clearly, as in Sterling and Yalqinalp (1989), and also for 
uncertainty reasoning, as in Yal~inalp and Sterling (1991) and more com- 
pletely in Yalqinalp (1991 ). 



Program Transformation 

As stated in the introduction to Chapter 17, meta-programming, or the 
writing of programs that treat other programs as data, is particularly 
easy in Prolog. This chapter gives examples of programs that transform 
and manipulate Prolog programs. The first section looks at fold/unfold, 
the operation that underlies most applications of program transfor- 
mation for Prolog programs. The transformations given in Chapter 1 5  
for using difference-lists to avoid explicit concatenation of lists can be 
understood as unfold operations, for example. The second section de- 
scribes a simple system for controlled unfolding and folding, which is 
especially good for removing layers of interpretation. The final section 
gives two examples of source-to-source transformation by code wallung. 

18.1 Unfold/Fold Transformations 

Logic programming arose from research on resolution theorem proving. 
The basic step in the logic programming computation model, goal re- 
duction, corresponds to a single resolution between a query and a pro- 
gram clause. Unfold/fold operations correspond to resolution between 
two Horn clauses. Loosely, unfolding corresponds to replacing a goal in 
the body of a clause by its definition, while folding corresponds to recog- 
nizing that goal(s) in the body of a clause are an instance of a definition. 
These two operations, being so similar, are often discussed together. 

We demonstrate unfolding and folding with a running example in the 
first part of thls chapter. The example is specializing the interpreter for 
nondeterministic pushdown automata (Program 17.3) for the particular 
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pushdown automaton for recognizing palindromes (Program 17.4). In 
general, specializing interpreters is a good application for unfold/fold 
operations. 

Definition 
Unfolding a goal Bi in a clause A - B1,. . .,B, with respect to a clause B - C,,. . .,C, where B and Bi unify with mgu 8 ,  produces a clause (A - 
Bl,. . ,,Bi-l,Cl,. . .,Cm,Bi+1,. . .,Bn)8. 

As an example of unfolding, we specialize the clause accept (Xs) - 
initial (4) , accept (Xs, 4, [ ] ) to a particular initial state by unfold- 
ing the initial(Q) goal with respect to a particular initial fact. Specif- 
ically, unfolding with respect to the fact initial (push) produces the 
clause accept (Xs) - accept (Xs ,push, [ 1 ) .  (Note that in our running 
example we use the states push and pop for qO and ql, respectively, from 
the NPDA of Program 17.4.) 

The effect of the unfolding is to instantiate the initial state for the 
NPDA to push. In general, the effect of unfolding is to propagate variable 
bindings to the right, as in this example, and also to the left, to goals in 
the body of the clause and possibly also to the head. 

There may be several clauses whose heads unify with a given goal in 
the body of a clause. We extend the definition of unfolding accordingly. 

Definition 
Unfolding a goal B, in a clause A - BI, .  . .,Bn with respect to a procedure 
defining B, is to unfold the goal with respect to each clause in the proce- 
dure whose head unifies with Bi. w 

Unfolding the delta/5 goal in the clause accept( [XIXsl ,Q,S) - 
delta(Q ,X,S, Q1 ,S1) , accept (Xs ,Q1, S1) with respect to the following 
procedure for delta adapted from Program 17.4 

delta(push,X,S,push, [XIS]). delta(push,X,S,pop, [XIS]). 

delta(push,X,S,pop,S). delta(pop,X, [XIS] ,pop,S). 

produces four clauses, one for each fact. 

accept ( [XI Xsl ,push, S) - accept (Xs ,push, [XI S] ) . 
accept ( [XI Xsl ,push,S) - accept (Xs ,pop, 1x1 S1) . 
accept ( [X I Xsl ,push, S) - accept (Xs, pop, S) . 
accept ( [XI Xsl ,pop, CX I S1) - accept(~s ,pop,S). 

palindrome(Xs) - 
The string represented by the list Xs is a palindrome. 

palindrorne(CXlXsl,push,S) - palindrome(Xs,push,CXlS1). 
palindrome ( [X I Xsl ,push, S) - palindrome (Xs , pop, [XI Sl ) . 
palindrome ( [XI Xs] ,push, S) - palindrome (Xs ,pop ,S) . 
palindrome(CXIXsl,pop,[XISl) - palindrorne(Xs,pop,S). 
palindrome ( [ 1 ,pop, C 1 ) . 

Program 18.1 A program accepting palindromes 

This example shows variable bindings being propagated both to the 
right, and to the head of the clause left of the goal being unfolded. 

Folding is the reverse of unfolding. The occurrence of a body of a 
clause is replaced by its head. It is easiest to show with an example. 
Folding the goal accept (Xs ,push, [ I ) in the clause accept (Xs) - ac- 
cept (Xs ,push, C I ) with respect to the clause palindrome (Xs ,State, 
Stack) - accept (Xs ,State ,Stack) produces the clause accept (Xs) - palindrome (Xs ,push, [ 1 ) .  

Note that if we now unfold the goal palindrome (Xs ,push, C I ) in ac- 
cept (Xs) - palindrome (Xs ,push, [ I )  with respect to the clause just 
used for folding, palindrome (Xs ,State, Stack) - accept (Xs ,State, 
Stack), we arrive back at the original clause, accept (Xs) - accept (Xs, 
push, [ I 1. Ideally, fold/unfold are inverse operations. 

Our example of folding used an iterative clause, i.e., one with a single 
goal in the body. Folding can be performed on a conjunction of goals, 
but there are technical difficulties arising from the scope of variables. 
Here we restrict ourselves to iterative clauses. The reader interested in 
the more general case should study the references given at the end of 
the chapter. 

Specialization of the interpreter of Program 17.3 is completed by un- 
folding the final (Q) goal in the t h rd  clause of Program 17.3, folding all 
occurrences of accept/3, and folding with respect to the clause palin- 
drome (Xs) - accept (Xs). Program 18.1 is then obtained. 

Propagating bindings leftward in Prolog will not preserve correctness 
in general. For example, consider unfolding the goal r (X) with respect to 
the fact r (3) in the clause p(X) - var (X) , r (x) . The resulting clause, 
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p (3) - var (3), clearly always fails, in contrast with the original clause. 
Unfolding for Prolog can be performed correctly by not propagating 
bindings leftward, and replacing the unfolded goal by the unifier. For t h s  
example, the result would be p(X) - var (XI , X=3. This will not be an 
issue in the examples we consider. 

Exercise for Section 18.1 

(i) Specialize the interpreter of Program 17.1 to the NDFA of Pro- 
gram 17.2, or any other NDFA, by unfold/fold operations. 

18.2 Partial Reduction 

In this section we develop a simple system for controlled unfold/fold 
operations according to prescribed user declarations. Systems for con- 
trolled unfolding are known in the logic programming literature as par- 
tial evaluators. This name reveals the influence of functional program- 
ming, where the basic computation model is evaluation. We prefer to 
refer to the system in terms of the computation model of logic program- 
ming, goal reduction. We thus, nonstandardly, say our system is doing 
partial reduction, and call it a partial reducer. 

Considerable research on applying partial reduction has shown that 
partial reduction is especially useful for removing levels of interpreta- 
tion. The sequence of unfold/fold operations given in Section 18.1 typify 
what is possible. The general NPDA interpreter was specialized to a spe- 
cific NPDA, removing interpreter overhead. The resulting program, Pro- 
gram 18.1, only recognizes palindromes but does so far more efficiently 
than the combination of Programs 17.3 and 17.4. 

Let us see how to build a system that can apply the unfold and fold 
operations that were needed to produce the palindrome program. The 
main idea is to recursively perform unfold/fold until no more "progress" 
can be achieved. A relation that replaces a goal by its equivalent under 
these operations is needed. The resulting equivalent goal is known as a 
residue. Let us call our basic relation preduce (Goal, Residue), with in- 
tended meaning that Residue is a residue arising from partially reducing 
Goal by applying unfold and fold operations. 

preduce ( Goa1,Residue) - 
Partially reduce Goal to leave the residue Residue. 

preduce(true,true) - ! .  

preduce ((A ,B) , (PA,PB) ) - ! , preduce(A,PA) , preduce (B ,PB) . 
preduce(A,B) + should-fold(A,B), ! .  

preduce(A,Residue) - 
should-unfold(A), ! ,  clause(A,B), preduce(B,Residue). 

preduce(A,A). 

Program 18.2 A meta-interpreter for determining a residue 

Program 18.2 contains code for preduce. There are three possibilities 
for handling a single goal. It can be folded, unfolded, or left alone. The 
question immediately arises how to decide between the three possibil- 
ities. The easiest for a system is to rely on the user. Program 18.2 as- 
sumes that the user gives should-f old (Goal, FoldedGoal) declarations 
that say which goals should be folded and to what they should be folded, 
and also should-unf old(Goa1) declarations that say which goals should 
be unfolded. Unification against the program clauses determines to what 
they should be unfolded. Goals not covered by either declaration are left 
alone. The remaining clauses in Program 18.2 handle the empty goal, 
true, and conjunctive goals, which are treated recursively in the obvious 
way. 

Observe that Program 18.2 is essentially a meta-interpreter at the gran- 
ularity level of vanilla (Program 17.5). The meta-interpreter is enhanced 
to return the residue. Handling builtins is assigned to the exercises. 

The query preduce( (initial ( a ) ,  accept (Xs, Q, [ 1 ) ) , Residue)? 
assuming appropriate should-f old and should-unf old declarations (to 
be given shortly) has as solution Residue = (true, palindrome (Xs , 
push, [ I ) 1. It would be preferable to remove the superfluous call to 
true. This can be done by modifying the clause handling conjunctive 
goals to be more careful in computing the conjunctive resolvent. A suit- 
able modification is 

preduce( (A,B) ,Res) +- 

! , preduce (A, PA) , preduce (B , PB) , combine (PA ,PB ,Res) . 

The code for combine, removing superfluous empty goals, is given in 
Program 18.3. 

PROYECTO
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process (Program, RedProgram) - 
Partially reduce each of the clauses in Program to produce 
RedProgram. 

process(Prog,NewProg) - 
f indall (PC1 , (member (C1 , Prog) , preduce (C1, PC11 ) , Newprog) . 

test ( ~ a m e  ,Program) - 
program(Name ,Clauses) , process (Clauses ,program) 

preduce ( Goa1,Residue) - 
Partially reduce Goal to leave the residue Residue. 

preduce( (A - B) , (PA - PB) ) - 
! ,  preduce(B,PB), preduce(A,~~). 

preduce(true,true) - ! .  
preduce ((A,B) ,Res) - 

! , preduce (A,PA) , preduce (B,PB) , combine (PA,PB , ~ e s )  . 
preduce(A,B) - sh~uld-fold(A,B), ! .  

preduce(A,Residue) - 
should-unf old(A) , ! , clause(A ,B) ,   reduce (B, ~esidue) 

preduce(A,A). 

Program 18.3 '4 simple partial reduction system 

To extend Program 18.2 into a partial reducer, clauses must be han- 
dled as well as goals. We saw a need in the previous section to partially 
reduce the head and body of a clause. The only question is in which or- 
der. Typically, we will want to fold the head and unfold the body. Since 
unfolding propagates bindings, unfolding first will allow more specific 
folding. Thus our proposed rule for handling clauses is 

preduce ( (A - B) , (PA - PB)) - 
! , preduce ( B ,  PB) , preduce (A, PA) 

This goal order is advantageous for the example of the rule interpreter 
to be presented later in this section. 

To partially reduce a program, we need to partially reduce each of its 
clauses. For each clause, there may be several possibilities because of 
nondeterminism. For example, the recursive accept/3 clause led to four 
rules because of the four possible ways of unfolding the delta goal. The 

program(npda, [(accept (Xsl) - initial(Q11, accept (Xsl ,Ql, [ 1 ) , 
(accept ( [X2 1 Xs21 ,Q2 ,S2) - delta(Q2,X2,S2,Q12,S12), 
accept(Xs2,Ql2,S12)), (accept( [ 1 ,Q3, [ 1 )  - true)]). 

should-unfold(initial(Q)). 
should-unf old(f inal (Q) ) . 
should-unfold(delta(A,B,C,D,E)). 

should-fold(accept (Q,Xs ,Ql) ,palindrome(Q,Xs ,Ql) 1. 
should-f~ld(acce~t(~s),palindrome(~s)). 

Program 18.4 Specializing an NPDA 

cleanest way to get the whole collection of program clauses is to use the 
all-solutions predicate f indall. That gives 

process (Prog,NewProg) - 
f indall (PC1 , (member (C1 , Prog) , preduce (C1 ,PC11 ) , NewProg) 

Putting all the preceding actions together gives a simple system for 
partial reduction. The code is presented as Program 18.3. The program 
also contains a testing clause. 

We now concentrate on how to specify should-fold and should- 
unfold declarations. Consider the NPDA example for recognizing palin- 
dromes. The initial, final, and delta goals should all be unfolded. A 
declaration is needed for each. The accept/l and accept/3 goals should 
be folded into palindrome goals with the same argument. The declara- 
tion for accept/l is should-fold(accept (Xs) ,palindrome(Xs)). All 
the necessary declarations are given in Program 18.4. Program 18.4 also 
contains the test program as data. Note the need to make all the vari- 
ables in the program distinct. Applying Program 18.3 to Program 18.4 by 
posing the query test (npda, P)? produces Program 18.1, with the only 
difference being an explicit empty body for the last palindrome fact. 

We now give a more complicated example of applying partial reduction 
to remove a level of overhead. We consider a simpler variant of the rule 
interpreter given in Section 17.4. The variant is at the bottom level of 
the layered interpreter. The interpreter, whose relation is solve (A, N) , 
counts the number of reductions used in solving the goal A. The code 
for solve and related predicate solve-body is given in Program 18.5. 
The rules that we will consider constitute Program 17.17 for determining 
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Rule interpreter for counting reductions 

Sample rule base 

rule(oven(Dish,top),pastry(Dish) is-true 
& size(Dish,small) is-true,placel). 

rule(oven(Dish,middle),pastry(Dish) is-true 
& size(Dish,big) is_true,place2). 

rule(oven(Dish,middle),main-meal(Dish) is_true,place3). 
rule(oven(Dish,bottom),slow~cooker(Dish) is_true,place4). 

rule(pastry(Dish) ,type(Dish, cake) is-true ,~astryl). 
r~le(~astry (Dish), type(Dish, bread) is_true,~astry2) . 
rule (main-meal (Dish), type(Dish,meat) is-true ,main-meal) 
rule(slow~cooker(Dish),type(~ish,milk~pudding~ 

is-true,slow-cooker). 

should-f old(solve(oven(D,P) ,N) ,oven(D,P,N)) . 
should-f old(solve(pastry(D) ,N) ,pastry @,Ill). 
should~fold(solve(main~meal(~),~),main~meal~D,N~~. 
should~fold(solve(slow~cooker(~),~),slow~cooker~D,N~~. 
should-f old(solve(type(D,P) ,N) ,type(D,P,N)). 
should-fold(solve(size(D,P) ,N) , size(D,P,N) 1. 

program(ru1e-interpreter, [(solve(~l, 1) - fact (Al)), 
(solve(A2,N) - rule(A2,B,Name), solve-body(B,NB), N is NB+1)1) 

Program 18.5 Specializing a rule interpreter 

where a dish should be placed in the oven. The rules are repeated in 
Program 18.5 for convenience. 

The effect of partial reduction in t h s  case will be to "compile" the 
rules into Prolog clauses where the arithmetic calculations are done. The 
resulting Prolog clauses can in turn be compiled, in contrast to the com- 
bination of interpreter plus rules. Rule place1 will be transformed to 

oven(Dish,top,N) - 
pastry (Dish,NI), size(Dish, small ,N2), 
N3 is Nl+N2, N is N3+1. 

The idea is to unfold the calls to rule so that each rule can be handled, 
and also to unfold the component of the interpreter that handles syn- 
tactic structure, specifically solve-body. What gets folded are the indi- 
vidual calls to solve, such as solve(oven(D, P) , N ) ,  whlch gets replaced 
by a predicate oven (D, P ,  N) . The necessary declarations are given in Pro- 
gram 18.5. Program 18.3 applied to Program 18.5 produces the desired 
effect. 

Specifying what goals should be folded and unfolded is in general 
straightforward in cases similar to what we have shown. Nevertheless, 
malung such declarations is a burden on the programmer. In many cases, 
the declarations can be derived automatically. Discussing how is beyond 
the scope of the chapter. 

How useful partial reduction is for general Prolog programs is an open 
issue. As indicated, care must be taken when handling Prolog's impuri- 
ties not to change the meaning of the program. Further, interaction with 
Prolog implementations can actually mean that programs that have been 
partially reduced can perform worse than the original program. It will be 
interesting to see how much partial reduction will be applied for Prolog 
compilation. 

Exercises for Section 18.2 

(i) Extend Program 18.3 to handle builtins. 

(ii) Apply Program 18.3 to the two-level rule interpreter with rules 
given as Program 17.20. 
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18.3 Code Walking 

The examples of meta-programming given so far in Chapters 17 and 18 
are dynamic in the sense that they "execute" Prolog programs by per- 
forming reductions. Prolog is also a useful language for writing static 
meta-programs that perform syntactic transformations of Prolog pro- 
grams. In t h s  section, we give two nontrivial examples in whch pro- 
grams are explicitly manipulated syntactically. 

The first example of explicit program manipulation is program com- 
position. In Section 13.3, stepwise enhancement for systematic construc- 
tion of Prolog programs was introduced. The t h rd  and final step in the 
method is composition of separate enhancements of a common skele- 
ton. We now present a program to acheve composition that is capable of 
composing Programs 13.1 and 13.2 to produce Program 13.3. 

The running example we use to illustrate the program is a variant of 
the example in Chapter 13. The skeleton is the same, namely, 

skel( [X 1 Xs] ,Ys) - member(X,Ys) , skel(Xs ,Ys). 
skel ( [X (Xs] ,Ys) - nonmember (X,Ys) , skel(Xs ,Ys) . 
skel([ 1 ,Ys). 

The union program, Program 13.1, is also the same, namely, 

union( [X I Xs] ,Ys ,Us) -- member (X,Ys) , union(~s,~s,~s) . 
union([XIXs] ,Ys, [XIUS]) - nonmember(X,~s), union(~s,~s,~s). 
union([ 1 ,Ys,Ys). 

The second program to be composed is different and represents when 
added goals are present. The relation to be used is common (Xs , Ys , N) , 
whch counts the number of common elements N in two lists Xs and Ys. 
The code is 

common( [XI Xs] ,Ys ,N) - 
member(X,Ys), common(Xs,Ys,M), N is M+1. 

common( [XI Xs] ,Ys ,N) - nonmember (X,Ys) , common(Xs ,Ys ,N) . 
common([ I ,Ys,O). 

The program for composition makes some key assumptions that can 
be justified by theory underlying stepwise enhancement. Describing the 
theory is beyond the scope of t h s  book. The most important assump- 
tion is that there is a one-to-one correspondence between the clauses of 

the two programs being composed, and one-to-one correspondences be- 
tween the clauses of each of the programs and the common skeleton. 

Programs are represented as lists of clauses. The first clause in the first 
program corresponds to the first clause in the second program and to 
the first clause in the skeleton. Our assumption implies that the lists of 
clauses of programs being composed have the same length. The three 
programs have been written with corresponding clauses in the same or- 
der. (That the lists 'of clauses do have the same length is not checked 
explicitly.) 

In order to perform composition, a composition specification is 
needed. It states how the arguments of the final program relate to 
the two extensions. The relation that we will assume is composition- 
specification(Progrml,Progrm2,Skeleton,FinalProgram). An ex- 
ample of the specification for our running example is composition- 
specif ication(union(Xs ,Ys ,Us), common(Xs ,Ys , N )  , skel(Xs ,Ys) , 
uc (Xs , Ys ,Us, N) . The composition specification is given as part of Pro- 
gram 18.6. 

The program for composition is given as Program 18.6. The top-level 
relation is compose/4, which composes the first two programs assumed 
to be enhancements of the thlrd argument to produce the composite 
program, which is the fourth argument. 

The program proceeds clause by clause in the top loop of Pro- 
gram 18.6, where compose-clause/4 does the clause composition. The 
arguments correspond exactly to the arguments for compose. To com- 
pose two clauses, we have to compose the heads and the bodies. Com- 
position of the heads of clauses happens through unification with the 
composition specification. The predicate compose-bodies/4 is used to 
compose the bodies. Note that the order of arguments has been changed 
so that we systematically traverse the skeleton. Each goal in the skeleton 
must be represented in each of the enhancements so that it can be used 
as a reference to align the goals in each of the enhancements. 

The essence of compose-bodies is to traverse the body of the skeleton 
goal by goal and construct the appropriate output goal as we proceed. 
In order to produce tidy output and avoid superfluous empty goals, a 
difference-structure is used to build the output body. The first clause 
for compose-bodies covers the case when the body of the skeleton is 
nonempty. The predicates first and rest, which access the body of the 
skeleton, are a good example of data abstraction. 
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compose(Program1 ,Program2,Skeleton,FinalProgram) - 
Finalprogram is the result of composing Program1 and 
Program2, whch are both enhancements of Skeleton. 

compose ( [Cll I Clsl] , [C12 1 Cls21 , [ClSkel I ~ l s ~ k e l l  , LC1 1 ~ 1 ~ 1 )  - 
compose~clause(C1l ,C12 ,ClSkel ,C1), 
compose(Clsl,Cls2,C1sSkel,Cls). 

compose([ I,[ I , [  I,[ I ) .  
cornpose-clause((~l-~1),(~2-~2),(~~kel-~~kel),(A-B)) - 

cornposition~specification(A1,A2,ASkel,A), 
cornpose-bodies(BSkel,Bl,B2,B\true). 

compose-bodies(SkelBody,Bodyl,Body2,B\BRest) - 
first (SkelBody, G) , ! , 
align(G,Bodyl,Gl,RestB~dyl,B\Bl), 
align(~,~ody2,G2,~estBody2,~1\(Goal,B2)), 
compose-goal (GI, G2 ,Goal) , 
rest (SkelBody ,Gs), 
c o m p o s e ~ b o d i e s ( ~ s , ~ e s t ~ o d y l , ~ e s t ~ o d y 2 , ~ 2 \ ~ R e s t ~ .  

compose-bodies (true, Bodyl , Body2 ,~\BRest) - 
rest-goals (Bodyl ,B\Bl) , rest-goals (Body2 , ~ 1 \ ~ R e s t )  . 

align(Goal,Body,G,RestBody,B\B) - 
f irst(Body ,GI, correspond(G,Goal) , ! , r e s t ( ~ o d ~  , ~ e s t ~ o d y ) .  

align(Goal,(G,Body),CorrespondingG,RestBod,G,\ - 
align(Goal,Body,~orres~ondin~~,~est~ody,B\Bl). 

first((G,Gs),G). 
first(G,G) - G f (A,B), G f true. 

rest ((G,Gs) ,Gs). 
rest(G,true) - G f (A,B). 

correspond(G,G). 
correspond(G,B) - map(G,B). 
compose-goal(G,G,G) - ! . 
compose-goal (A1 ,A2, A) - 

! ,  composition~specification(~1,~2,ASkel,A). 

rest-goals(true,B\B) - ! .  
rest-goals(Body,(G,B)\BRest) - 

first (Body ,GI, ! , rest (Body ,Body11 , rest-goals(~ody1 , ~ \ ~ ~ e s t ) .  

Program 18.6 Composing two enhancements of a skeleton 

An important assumption made by Program 18.6 concerns finding the 
goals in the bodies of the program that correspond to the goals in the 
skeleton. The assumption made, embedded in the predicate correspond, 
is that a mapping will be given from goals in the enhancement to goals 
in the skeleton. In our running example, the predicates member and non- 
member map onto themselves, while both union and common map onto 
skel. This information, provided by the predicate map/2, is needed to 
correctly align goals from the skeleton with goals of the program being 
composed. The code for align as presented allows for additional goals 
to be present between goals in the skeleton. The only extra goal in our 
running example is the arithmetic calculation in common, whch is after 
the goals corresponding to the skeleton goals. 

The second clause for compose-bodies covers the case when the body 
is empty, either from dealing with a fact or because the skeleton has been 
traversed. In this case, any additional goals need to be included in the 
result. This is the function of rest-goals. 

Program 18.7 contains a testing clause for Program 18.6, along with the 
specific data for our running example. As with Program 18.4, variables 
in the programs being composed must be named differently. Automatic 
generation of composition specifications for more complicated examples 
is possible. 

The second example of explicit manipulation of programs is the con- 
version of context-free grammar rules to equivalent Prolog clauses. 
Context-free grammars are defined over a language of symbols, divided 
into nonterminal symbols and terminal symbols. A context-free grammar 
is a set of rules of the form 

(head)  - (body)  

where head is a nonterminal symbol and body is a sequence of one 
or more items separated by commas. Each item can be a terminal or 
nonterminal symbol. Associated with each grammar is a starting symbol 
and a language that is the set of sequences of terminal symbols obtained 
by repeated (nondeterministic) application of the grammar rules starting 
from the starting symbol. For compatibility with Chapter 19, nonterminal 
symbols are denoted as Prolog atoms, terminal symbols are enclosed 
w i t h  lists, and [ ] denotes the empty operation. 

The language a(bc)* can be defined by the following context-free gram- 
mar consisting of four rules: 
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test-compose(X ,Prog) - 
programl(X,Pr~gl), program2(~,~rog2), 
skeleton(X,~keleton), compose(~rogl,~rog2,~keleton,~rog). 

program1 (test, [ 
(union([xl Ixsll ,Ysl ,Zsl) - 

member(X1 ,Ysl) , union(xs1 ,Ysl ,Zsl)), 
(union( [ ~ 2  1Xs21 ,Ys2, CX2 1 Zs21) - 

nonmember(X2 ,Ys2) , union(Xs2 ,Ys2,Zs2)), 
(union( [ 1 ,Ys3,Ys3) - true)] ) . 

program2(test, [ 
(cornmon([Xl IXsll ,Ysl,Nl) - 

member(X1 ,Ysl) , common(xs1 ,Ysl ,MI), N1 is ~1+1), 
(common ( CX2 I Xs21 , Ys2, N2) - 

nonmember(X2,Ys2), common(Xs2,Ys2,N2)), 
(common([ 1 ,Ys3,0) - true)]). 

skeleton(test, [ 
(skel([Xl IXsl] ,Ysl) - member(Xl,Ysl), skel(Xsl,~sl)), 
(skel( [X2 1 Xs21 ,Ys2) - nonmember(x2,~~2), skel(~s2,~s2)), 
(skel( [ 1 ,Ys3) - true)] 1. 

composition-specif ication(union(~s ,Ys ,Us) , common(~s ,YS , N) , 
skel(Xs,Ys),uc(Xs,Ys,Us,N)). 

map(union(Xs,Ys,Zs), skel(Xs,~s)). 
map(cornmon(Xs,Ys,N), skel(Xs,Ys)). 

Program 18.7 Testing program composition 

s - [a], b .  

b - [b] ,  C. 

b - [ I .  
c - [c], b .  

Another example of a context-free grammar is given in Figure 18.1. 
This grammar recognizes the language a*b*c*. 

A context-free grammar can be immediately written as a Prolog pro- 
gram. Each nonterminal symbol becomes a unary predicate whose argu- 
ment is the sentence or phrase it identifies. The naive choice for repre- 
senting each phrase is as a list of terminal symbols. The first grammar 
rule in Figure 18.1 becomes 

Figure 18.1 A context-free grammar for the language a*b*c* 

s(As\Xs) - a(As\Bs), b(Bs\Cs), c(Cs\Xs) . 
a(Xs\Ys) - connect ( [a] ,Xs\Xsl) , a(xsl\Ys) . 
a(~s\Ys) - connect ( [ I ,Xs\Ys) . 
b(xs\Ys) - connect ( [b] ,xs\xsl) , b(~sl\~s). 
b(xs\Ys) - connect ( [ I ,Xs\Ys) . 
c(Xs\Ys) - connect( Ccl ,Xs\Xsl), c(Xsl\Ys). 
c (XS\YS> - connect ( [ 1 , Xs\Ys) . 
connect ( [ I ,Xs\Xs) . 
connect ( [W I Ws] , [W I Xs1 \Ys) - connect (W~,XS\YS) . 

Program 18.8 A Prolog program parsing the language a*b*c* 

Completing the grammar of Figure 18.1 in the style of the previous 
rule leads to a correct program for parsing, albeit an inefficient one. 
The calls to append suggest, correctly, that a difference-list might be a 
more appropriate structure for representing the sequence of terminals 
in the context of parsing. Program 18.8 is a translation of Figure 18.1 to 
a Prolog program where difference-lists represent the phrases. The basic 
relation scheme is s(Xs), which is true if Xs is a sequence of symbols 
accepted by the grammar. 

The predicate connect (Xs ,Ws) is true if the list X s  represents the same 
sequence of elements as Ws. The predicate is used to make explicit the 
translation of terminal symbols to Prolog programs. 

As a parsing program, Program 18.8 is a top-down, left-to-right re- 
cursive parser that backtracks when it needs an alternative solution. Al- 
though easy to construct, backtraclung parsers are in general inefficient. 
However, the efficiency of the underlying Prolog implementation in gen- 
eral more than compensates. 
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translate( Grammar,Program) - 
Program is the Prolog equivalent of the context-free 
grammar G r a m m a r .  

translate ( [Rule I Rules] , [Clause I Clauses] ) - 
translate~rule(Rule,Clause), 
translate(Rules,Clauses). 

translate( C I ,  [ 1 ) .  

translate-rule ( GrammarRule,PrologClause) - 
PrologClause is the Prolog equivalent of the grammar 
rule GrammarRule. 

translate-rule((Lhs - Rhs),(~ead - Body)) - 
translate-head(Lhs ,Head,Xs\Ys) , 
translate-body (Rhs ,Body ,Xs\Ys) . 

translate-body(A,B),(Al,Bl),Xs\Ys) - 
! ,  translate-body(A,Al,Xs\Xsl), translate-b~d~(~,Bl,~sl\~s). 

translate-body (A, A1 ,Xs) - 
translate-goal(A,Al,Xs). 

translate-goal(A,Al,DList) - 
nonterminal(A1, functor (A1 ,A, 11, arg(l ,A1 , ~ ~ i s t ) .  

translate~goal(Terms,connect(Terms,~),S) - 
terminals(Terms1. 

terminals(Xs) - list (Xs) . 
list (XS) - see Program 3.11. 

Program 18.9 Translating grammar rules to Prolog clauses 

We now present Program 18.9, whlch translates Figure 18.1 to Pro- 
gram 18.8. As for Program 18.6, the translation proceeds clause by 
clause. There is a one-to-one correspondence between grammar rules 
and Prolog clauses. The basic relation is translate (Rules, Clauses). 
Individual clauses are translated by translate_rule/2. To translate a 
rule, both the head and body must be translated, with the appropriate 
correspondence of difference-lists, which will be added as additional 
arguments. 

Adding an argument is handled by the predicate translate-goal. If 
the goal to be translated is a nonterminal symbol, a unary predicate with 

the same functor is created. If the goal is a list of terminal symbols, the 
appropriate connect goal is created. When executed, the connect goal 
connects the two difference-lists. Code for connect is in Program 18.8. 

Program 18.9 can be extended for automatic translation of definite 
clause grammar rules. Definite clause grammars are the subject of Chap- 
ter 19. Most versions of Edinburgh Prolog provide such a translator. 

Exercise for Section 18.3 

(i) Apply Program 18.6 to one of the exercises posed at the end of 
Section 13.3. 

1 8.4 Background 

Often research in logic programming has followed in the steps of related 
research in functional programming. This is true for unfold/fold and par- 
tial evaluation. Burstall and Darlington (1977) wrote the seminal paper 
on unfold/fold in the functional programming literature. Their work was 
adapted for logic programming by Tamaki and Sato (1984). 

The term partial evaluation may have been used first in a paper by 
Lombardi and Raphael (19641, where a simple partial evaluator for Lisp 
was described. A seminal paper introducing partial evaluation to com- 
puter science is due to Futamura in 1971, who noted the possibility 
of compiling away levels of interpretation. Komorowski described the 
first partial evaluator for pure Prolog in his thesis in 1981. He has since 
preferred the term partial deduction. Gallagher in 1983 was the first to 
advocate using partial evaluation in Prolog for removing interpretation 
overhead (Gallagher, 1986). Venken (1984) was the first to list some of 
the problems of extending partial evaluation to full Prolog. The paper 
that sparked the most interest in partial evaluation in Prolog is due 
to Takeuch and Furukawa (1986). They discussed using partial evalua- 
tion for removing runtime overhead and showed an order of magnitude 
speedup. Sterling and Beer (1989) particularize the work for expert sys- 
tems. Their paper introduces the issue of pushng down meta-arguments, 
whch is subsumed in this chapter by should-f old declarations. Specific 
Prolog partial evaluation systems to read for more details are ProMiX 
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(Lakhotia and Sterling, 1990) and Mixtus (Sahlin, 1991). An interesting 
application of partial evaluation is given by Smith (1991), where efficient 
string-matching programs were developed. 

Composition was first discussed in the context of Prolog meta-inter- 
preters in Sterling and Beer (1989) and an informal algorithm was given 
in Sterling and Lakhotia (1988). A theory is found in Kirschenbaum, Ster- 
ling, and Jain (1993). 

Logic Grammars 

A very important application area of Prolog is parsing. In fact, Prolog 
originated from attempts to use logic to express grammar rules and to 
formalize the process of parsing. In thls chapter, we present the most 
common logic grammar formalism, definite clause grammars. We show 
how grammar rules can be considered as a language on top of Prolog, 
and we apply grammar rules to parse simple English sentences. In Chap- 
ter 24, definite clause grammars are used as the parsing component of a 
simple compiler for a Pascal-like language. 

19.1 Definite Clause Grammars 

Definite clause grammars arise from adding features of Prolog to 
context-free grammars. In Section 18.3, we briefly sketched how context- 
free grammars could be immediately converted to Prolog programs, 
which parsed the language specified by the context-free grammar. By 
adding the ability of Prolog to exploit the power of unification and the 
ability to call builtin predicates, a very powerful parsing formalism is 
indeed achieved, as h7e now shonr. 

Consider the context -free grammar for recognizing the language 
a*b*c*, presented in Figure 18.1, with equivalent Prolog program Pro- 
gram 18.8. The Prolog program can be easily enhanced to count the 
number of symbols that appear in any recognized sequence of a's, b's, 
and c's. An argument would be added to each predicate constituting 
the number of symbols found. Arithmetic would be performed to add 
numbers together. The first clause would become 
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s (As\Xs , N) + 

a(As\Bs , NA) , b (Bs\Cs , NB) , c (Cs\Xs , NC) , N is NA+NB+NC. 

The extra argument counting the nilmber of a's, b's, and c's can be 
added to the grammar rule just as easily, ylelding 

Adding arguments to nonterminal symbols of context-free grammars, 
and the ability to call (arbitrary) Prolog predicates, increases their util- 
ity and expressive power. Grammars in this new class are called definite 
clause grammars, or DCGs. Definite clause grammars are a generaliza- 
tion of context-free grammars that are executable, augmented by the 
language features of Prolog. 

Program 18.9, translating context-free grammars into Prolog programs, 
can be extended to translate DCGs into Prolog. The extension is posed as 
Exercise (i) at the end of this section. Throughout tlvs chapter we write 
DCGs in grammar rule notation, being aware that they can be viewed 
as Prolog programs. Many Edinburgh Prolog implementations provide 
support for grammar rules. The operator used for - is -->. Grammar 
rules are expanded automatically into Prolog clauses with two extra ar- 
guments added as the last two arguments of the predicate to represent 
as a difference-list the sequence of tokens or words recognized by the 
predicate. Braces are used to delimit goals to be called by Prolog di- 
rectly, which should not have extra arguments added during translation. 
Grammar rules are not part of Standard Prolog but will probably be in- 
corporated in the future. 

Program 19.1 gives a DCG that recognizes the language a*b*c* and 
also counts the number of letters in the recognized sequence. The en- 
hancement from Figure 18.1 is immediate. To query Program 19.1, con- 
sideration must be taken of the two extra arguments that will be added. 
For example, a suitable query is s (N , [a,  a ,  b , b , b , cl , [ 1 > ?. 

Counting the symbols could, of course, be accomplished by traversing 
the difference-list of words. However, counting is a simple enhancement 
to understand, whch effectively displays the essence of definite clause 
grammars. Section 19.3 presents a wider variety of enhancements. 

Our next example is a strilung one of the increase in expressive power 
possible using extra arguments and unification. Consider recognizing the 
language aNbNcN, which is not possible with a context-free grammar. 

s(N) - a(NA), b(NB), c(NC), {N is  NA+NB+NC} 

a(N) - [a], a(N1), {N i s  N1+1}. 
a(0) - [ I .  
b(N) - [b] , b(Nl) ,  {N is NI+I J .  
b(0) - C 1 .  
c(N) - Ccl , c(Nl) ,  {N i s  N1+1}. 
c (0)  - C I .  

Program 19.1 Enhancing the language a* b* c * 

a(N) - [a], a(N1), {N i s  ~ 1 + 1 } .  
a (0)  - [ I .  
b(N) - Cbl , b(Nl),  {N is N1+1}. 
b(0) - C 1 .  
c(N) - Ccl , c(N1), {N i s  ~ 1 + 1 } .  
c(0) - C I .  

Program 19.2 Recognizing the language a" b\cA 

However, there is a straightforward modification to the grammar given 
as Program 19.1. All that is necessary is to change the first rule and make 
the number of a's, b's, and c's the same. The modified program is given 
as Program 19.2. 

In Program 19.2, unification has added context sensitivity and in- 
creased the expressive power of DCGs over context-free grammars. DCGs 
should be regarded as Prolog programs. Indeed, parsing with DCGs is a 
perfect illustration of Prolog programming using nondeterministic pro- 
gramming and difference-lists. The top-down, left-to-right computation 
model of Prolog yields a top-down, left-to-right parser. 

Definite clause grammars can be used to express general programs. 
For example, a version of Program 3.15 for append with its last two 
arguments swapped can be written as follows. 

append([ I )  - [ I .  
append( CX I Xsl ) - CXI , append(Xs) . 

Using DCGs for tasks other than parsing is an acquired programming 
taste. 

PROYECTO
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The grammar for the declarative part of a Pascal program. 

Logic Grammars 

Procedure declarations 

declarative-part - 
const-declaration, type-declaration, 
var-declaration, procedure-declaration. 

Constant declarations 

const-declaration - [ I. 
const-declaration - 

[const], const-definition, [;I, const-definitions. 

const-def initions - [ 1 . 
const-def init ions - 

const-definition, [;I, const-definitions. 
const-definition - identifier, [=I, constant 
identifier - [XI , {atom(X) 1 . 
constant - [XI , {constant(X) 
Type declarations 

type-declaration - [ I. 
type-declaration - 

[type] , type-def inition, [;I , type-def initions. 

type-def initions - [ 1 . 
type-definitions - type-definition, [;I, type-definitions 
type-def inition - identifier, [=I , type 

type - ['INTEGER']. 
type - ['REAL']. 
type - ['BOOLEAN'] . 
type - ['CHAR']. 
Variable declarations 

var-declaration - [ 1 . 
var-declaration - 

[var] , var-def inition, [;] , var-def initions. 

var-def initions - [ 1 . 
var-definitions - var-definition, [ ; I ,  var-definitions. 
var-definition - identifiers, [:I, type. 
identifiers - identifier. 
identifiers - identifier, [,I , identifiers. 
Program 19.3 Parsing the declarative part of a Pascal block 

procedure-declaration - [ 1 .  
procedure-declaration - procedure-heading, [ ; I ,  block. 

procedure-heading - 
[procedure], identifier, formal-parameter-part 

formal-parameter-part - [ I .  
formal-parameter-part - [(I, formal-parameter-section, [)I. 
formal-parameter-section - formal-parameters. 
f ormal-parameter-section - 

formal-parameters, [;I, formal-parameter-section. 
f ormal-parameters - value-parameters. 
formal-parameters - variable-parameters. 
value-parameters - var-definition. 
variable-parameters - [var], var-definition. 
Program 19.3 (Continued) 

We conclude this section with a more substantial example. A DCG is 
given for parsing the declarative part of a block in a Pascal program. The 
code does not in fact cover all of Pascal - it is not complete in its defi- 
nition of types or constants, for example. Extensions to the grammar are 
posed in the exercises at the end of this section. Parsing the statement 
part of a Pascal program is illustrated in Chapter 24. 

The grammar for the declarative part of a Pascal block is given as Pro- 
gram 19.3. Each grammar rule corresponds closely to the syntax diagram 
for the corresponding Pascal statement. For example, the syntax diagram 
for constant declarations is as follows: 

--- > const ----- > Constant Definition -------> ; ------- > 
I I 
+---------------<--------------------+ 

The second grammar rule for const-declaration in Program 19.3 
says exactly the same. A constant declaration is the reserved word 
const followed by a constant definition, handled by the nonterminal 
symbol const-def inition; followed by a semicolon; followed by the 
rest of the constant definition, handled by the nonterminal symbol 
const-def initions. The first rule for const-declaration effectively 
states that the constant declaration is optional. A constant definition is 
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an identifier followed by =, followed by a constant. The definition for 
const-def  i n i t  i o n s  is recursive, being either empty or another constant 
definition; followed by a semicolon; followed by the rest of the constant 
definition. 

The remainder of Program 19.3 is similarly easy to understand. It 
clearly shows the style of writing grammars in Prolog. 

Exercises for Section 19.1 

(i) Extend Program 18.9 so that it translates definite clause grammars 
to Prolog as well as context-free grammars. 

(ii) Add to Program 19.3 the ability to correctly handle label declara- 
tions and function declarations. 

(iii) Enhance Program 19.3 to return the list of variables declared in the 
declarative part. 

(iv) Write a program to parse the language of your choice in the style of 
Program 19.3. 

19.2 A Grammar Interpreter 

Grammar rules are viewed in the previous section as syntactic sugar for 
Prolog clauses. This view is supported by Prolog systems with automatic 
grammar rule translation. There is a second way of viewing grammar 
rules, namely as a rule language. 

This section takes the second view and considers grammar rules as 
an embedded language on top of Prolog. We consider applying the in- 
terpreter techniques of Chapter 17 to grammar rules. 

Program 19.4 is an interpreter for grammar rules. The basic relation 
is p a r s e  (Symbol ,Tokens) ,  which is true if a sequence of grammar rules 
can be applied to Symbol to reach Tokens. The tokens are represented as 
a difference-list. 

The granularity of the DCG interpreter is at the clause reduction level, 
the same as for the vanilla meta-interpreter, Program 17.5, and the expert 
system rule interpreter, Program 17.18. Indeed, the code in Program 19.4 
is similar to those interpreters. There are four cases, handled by the 

parse(Start, Tokens) - 
The sequence of tokens Tokens represented as a difference-list 
can be reached by applying the grammar rules defined by - / 2 ,  
starting from Start. 

parse(A,Tokens) - 
nonterminal(A), A - B ,  parse(B,Tokens). 

parse((A,B),Tokens\Xs) - 
parse(A,Tokens\Tokensl), parse(B,Tokensl\Xs). 

parse(A,Tokens) - terminals(A1, connect(A,Tokens). 
 parse({^) ,~s\Xs) - A. 
terminals(Xs) - See Program 18.9. 

connect (Xs ,Tokens) - See Program 18.8. 

Program 19.4 A definite clause grammar (DCG) interpreter 

four clauses for p a r s e  in Program 19.4. The first rule handles the basic 
operation of reducing a nonterminal symbol, and the second rule handles 
conjunctions of symbols. The third rule handles terminal symbols, and 
the fourth rule covers the ability to handle Prolog predicates by calling 
them directly using the meta-variable facility. 

Observe that the last argument in parse /2 ,  the DCG interpreter, is a 
difference-list. This difference-list can be handled implicitly using gram- 
mar rule notation. In other words, Program 19.4 could itself be written as 
a DCG. This task is posed as Exercise 19.2(i). 

Recall that the interpreters of Chapter 17 were enhanced. Similarly, 
the DCG interpreter, Program 19.4, can be enhanced. Program 19.5 gives 
a simple enhancement that counts the number of tokens used in pars- 
ing. As mentioned before, thls particular enhancement could be accom- 
plished directly, but it illustrates how an interpreter can be enhanced. 

Comparing Programs 19.1 and 19.5 raises an important issue. Is it 
better to enhance a grammar by modifying the rules, as in Program 19.1, 
or to add the extra functionality at the level of the interpreter? The 
second approach is more modular, but suffers from a lack of efficiency. 

Exercises for Section 19.2 

(i) Write Program 19.4 as a DCG. 
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parse(Start, Tokens,N) - 
The sequence of tokens Tokens, represented as a difference-list, 
can be reached by applying the grammar rules defined by -/2, 
starting from Start, and N tokens are found. 

~arse(A,Tokens,N) - 
nonterminal(A), A - B, parse(B,Tokens,N). 

parse ((A,B) ,Tokens\Xs ,N) - 
parse (A ,Tokens\Tokensl, NA) , ~ a r s e  (B ,~okensl\Xs ,NB), 
N is NA+NB. 

~arse(A,Tokens,N) - 
terminals(A), connect(A,Tokens), length(A,N). 

parse ( {A} , Xs\Xs , 0 )  - A. 
terminals (Xs) - See Program 18.9. 

connect (A,Tokens) - See Program 18.8. 

length(Xs , N) - See Program 8.1 1. 

Program 19.5 A DCG interpreter that counts words 

(ii) Use the partial reducer, Program 18.3, to specialize the interpreter 
of Program 19.4 to a particular grammar. For example, Figure 18.1 
should be transformed to Program 19.1. 

(iii) Enhance Program 19.4 to build a parse tree. 

19.3 Application to Natural Language Understanding 

An important application area of logic programming has been under- 
standing natural languages. Indeed, the origins of Prolog lie withn t h s  
application. In t h s  section, it is shown how Prolog, through definite 
clause grammars, can be applied to natural language processing. 

A simple context-free grammar for a small subset of English is given 
in Program 19.6. The nonterminal symbols are grammatical categories, 
parts of speech and phrases, and the terminal symbols are English words 
that can be thought of as the vocabulary. The first rule in Program 19.6 
says that a sentence is a noun phrase followed by a verb phrase. The last 
rule says that surprise is a noun. A sample sentence recognized by the 
grammar is: "The decorated pieplate contains a surprise." 

G r a m m a r  Rules 

sentence - noun-phrase, verb-phrase 
noun-phrase - determiner, noun-phrase2 
noun-phrase - noun-phrase2. 
noun-phrase2 - adjective, noun-phrase2 
noun-phrase2 - noun. 
verb-phrase - verb. 
verb-phrase - verb, noun-phrase. 
Vocabulary 

determiner - [the] . adjective - [decorated] 
determiner - [a]. 
noun - [pieplate]. verb -- [contains] 
noun - [surprise]. 
Program 19.6 A DCG context-free grammar 

Using the terminology of stepwise enhancement introduced in Chap- 
ter 13, wc can view a grammar as a skeleton. We proceed to show how 
useful grammatical features can be added by enhancement. The next 
two programs are enhancements of Program 19.6. The enhancements, 
although simple, typify how DCGs can be used for natural language ap- 
plications. Both programs exploit the power of the logical variable. 

The first enhancement is constructing a parse tree for the sentence as 
it is being parsed. The program is given as Program 19.7. Arguments rep- 
resenting (subparts of) the parse tree must be added to Program 19.6. 
The enhancement is similar to adding structured arguments to logic pro- 
grams, as discussed in Section 2.2. The program builds the parse tree 
top-down, exploiting the power of the logic variable. 

The rules in Program 19.7 can be given a declarative reading. For exam- 
ple, consider the rule 

This states that the parse tree built in recognizing the sentence is a struc- 
ture sentence (NP, VP), where NP is the structure built while recognizing 
the noun phrase and VP is the structure built while recognizing the verb 
phrase. 
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sentence(sentence (NP ,VP) ) - noun-phrase(NP) , verb-phrase(VP) 
noun-phrase (np(D ,N) ) - determiner(D1, noun-~hrase2(N). 
noun-phrase (np (N) ) - noun-phrase2 (N) . 
no~n-~hrase:!(np2(A,N)) - adjective(A), noun_phrase2(N). 
no~n-~hrase2(np2(N)) - noun(N). 
verb-phrase(vp(V)) - verb(V). 
verb-phrase (vp(V , N) ) - verb (V) , noun-phrase (N) . 
Vocabulary 

determiner(det (the)) - [the] . 
determiner(det (a)) - [a] . 
noun(noun(piep1ate) ) - [pieplate] . 
noun(noun(surprise)) - [surprise]. 
adjective (adj (decorated) ) - [decorated] . 
verb(verb(c0ntains)) - [contains]. 
Program 19.7 A DCG computing a parse tree 

The next enhancement concerns subject/object number agreement. 
Suppose we wanted our grammar also to parse the sentence "The dec- 
orated pieplates contain a surprise." A simplistic way of handling plural 
forms of nouns and verbs, sufficient for the purposes of this book, is to 
treat different forms as separate words. We augment the vocabulary by 
adding the facts 

noun(noun(piep1ates)) - [pie~latesl. 
verb (verb (contain) ) -- [contain] . 

The new program would parse "The decorated pieplates contain a sur- 
prise" but unfortunately would also parse "The decorated pieplates con- 
tains a surprise." There is no insistence that noun and verb must both be 
singular, or both be plural. 

Number agreement can be enforced by adding an argument to the 
parts of speech that must be the same. The argument indicates whether 
the part of speech is singular or plural. Consider the grammar rule 

sentence (sentence (NP, VP) ) - 
noun-phrase (NP , Num) , verb-phrase (VP, Num) . 

The rule insists that both the noun phrase, whch is the subject of the 
sentence, and the verb phrase, whch is the object of the sentence, have 

noun-phrase (np (D , N) , Num) - 
determiner (D, Num) , noun_phrase2(N , N u )  . 

noun-phrase(np(N),Num) - noun_phrase2(N,Num) 
noun-phrase2 (np2 (A, N) , Num) - 

adjective(A1, noun_phrase2(~,Num). 
noun-phrase2 (np2 (N) , Num) - noun (N , Num) 

Vocabulary 

determiner (det (the) , Num) - [the] . 
determiner (det (a), singular) - [a] . 
noun(noun(pieplate),singular) - [pieplatel. 
noun (noun (pieplates) ,plural) - [pieplatesl . 
noun(noun(surprise),singular) - [surprise]. 
noun(noun(surprises) ,plural) - [surprises] . 
adjective(adj (decorated)) - [decorated] . 
verb (verb (contains) , singular) - [contains] 
verb(verb(contain) ,plural) - [contain] . 
Program 19.8 A DCG with subject/object number agreement 

the same number, singular or plural. The agreement is indicated by the 
sharing of the variable Num. Expressing subject/object number agreement 
is context-dependent information, whch is clearly beyond the scope of 
context-free grammars. 

Program 19.8 is an extension of Program 19.7 that handles number 
agreement correctly. Noun phrases and verb phrases must have the same 
number, singular or plural. Similarly, the determiners and nouns in a 
noun phrase must agree in number. The vocabulary is extended to indi- 
cate whch words are singular and whch plural. Where number is unim- 
portant, for example, with adjectives, it can be ignored, and no extra 
argument is given. The determiner the can be either singular or plural. 
This is handled by leaving the argument indicating number uninstanti- 
ated. 
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The next example of a DCG uses another Prolog feature, the ability 
to refer to arbitrary Prolog goals in the body of a rule. Program 19.9 is 
a grammar for recognizing numbers written in English up to, but not 
including, 1,000. The value of the number recognized is calculated using 
the arithmetic facilities of Prolog. 

The basic relation is number (N), where N is the numerical value of the 
number being recognized. According to the grammar specified by the 
program, a number is zero or a number N of at most three digits, the rela- 
tion xxx (N). Similarly xx(N) represents a number N of at most two digits, 
and the predicates rest-xxx and rest-xx denote the rest of a number of 
three or two digits, respectively, after the leading digit has been removed. 
The predicates digit, teen, and tens recognize, respectively, single dig- 
its, the numbers 10 to 19 inclusive, and the multiples of ten from 20 to 
90 inclusive. 

A sample rule from the grammar is 

xxx(N) -- 
digit(D), [hundred], rest-xxx(Nl), { N  is ~ * 1 0 0 + ~ 1 } .  

This says that a three-digit number N must first be a digit with value 
D, followed by the word hundred followed by the rest of the number, 
which will have value Nl. The value for the whole number N is obtained 
by multiplying D by 100 and adding N1. 

DCGs inherit another feature from logic programming, the ability to 
be used backward. Program 19.9 can be used to generate the written 
representation of a given number up to, but not including, 1,000. In 
technical terms, the grammar generates as well as accepts. The behavior 
in so doing is classic generate-and-test. All the legal numbers of the 
grammar are generated one by one and tested to see whether they have 
the correct value, until the actual number posed is reached. This feature 
is a curiosity rather than an efficient means of writing numbers. 

The generative feature of DCGs is not generally useful. Many grammars 
have recursive rules. For example, the rule in Program 19.6 defining a 
noun-phrase2 as an adjective followed by a noun-phrase2 is recursive. 
Using recursively defined grammars for generation results in a nonter- 
minating computation. In the grammar of Program 19.7, noun phrases 
with arbitrarily many adjectives are produced before the verb phrase is 
considered. 

number(0) - [zero] . 
number(N) - xxx(N). 
xxx(N) - 

digit (Dl, [hundred] , rest-xxx(NI), {N is D*~OO+NI} 
xxx(N) - xx(N). 
rest-xxx(0) - [ I . 
rest-xxx (N) - Candl , xx (N). 
xx(N) - digit (N) . 
xx(N) - teen(N). 
XX(N) - tens(T), rest-xx(N1), {N is T + N ~ }  

digit(1) - [one] . 
digit (2) - [two] . 
digit (3) - [three]. 
digit (4) - [four] . 
digit (5) - [five] . 
digit (6) - [six]. 
digit(7) - [seven] . 
digit(8) - [eight] . 
digit(9) - [nine] . 
tens(20) - [twenty] . 
tens(30) - [thirty] . 
tens(40) - [forty]. 
tens(50) - [fifty]. 
tens(60) - [sixty]. 
tens(70) - [seventy] 
tens(80) - [eighty]. 
tens(90) - [ninety]. 

teen(l0) - [ten]. 
teen(l1) - [eleven] . 
teen(l2) - [twelve]. 
teen(l3) - [thirteen]. 
teen(l4) - [fourteen] . 
teen(l5) - If ifteenl . 
teen(l6) - [sixteen] . 
teen(l7) - [seventeen] . 
teen(l8) - [eighteen] . 

teen(l9) - [nineteen] 

Program 19.9 A DCG for recognizing numbers 
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Exercises for Section 19.3 

(i) Write a simple grammar for French that illustrates gender agree- 
ment. 

(ii) Extend and modify Program 19.9 for parsing numbers so that it cov- 
ers all numbers less than 1 million. Don't forget to include thmgs 
like "thirty-five hundred" and to not include "thlrty hundred." 

1 9.4 Background 

Prolog was connected to parsing right from its very beginning. As men- 
tioned before, the Prolog language grew out of Colmerauer's interest 
in parsing, and his experience with developing Q-systems (Colmerauer, 
1973). The implementors of Edinburgh Prolog were also keen on natu- 
ral language processing and wrote one of the more detailed accounts of 
definite clause grammars (Pereira and Warren, 1980). This paper gives a 
good discussion of the advantages of DCGs as a parsing formalism in 
comparison with augmented transition networks (ATNs). 

The examples of using DCGs for parsing languages in Section 19.1 were 
adapted from notes from a tutorial on natural language analysis given 
by Lynette Hirschrnan at the Symposium on Logic Programming in San 
Francisco in 1987. The DCG interpreter of Section 19.2 is adapted from 
Pereira and Shieber (1987). 

Even though the control structure of Prolog matches directly that of 
recursive-descent, top-down parsers, other parsing algorithms can also 
be implemented in it quite easily. For example, Matsumoto et al. (1986) 
describes a bottom-up parser in Prolog. 

The grammar in Program 19.3 is taken from Appendix 1 of Findlay 
and Watt (1985). The grammar in Program 19.6 is taken from Winograd's 
(1983) book on computational linguistics. 

For further reading on logic grammars, refer to Pereira and Shleber 
(1987) and Abramson and Dahl(1989). 

Search Techniques 

In thls chapter, we show7 programs encapsulating classic A1 search tech- 
niques. The first section discusses state-transition frameworks for solv- 
ing problems formulated in terms of a state-space graph. The second 
discusses the minimax algorithm with alpha-beta pruning for searching 
game trees. 

20.1 Searching State-Space Graphs 

State-space graphs are used to represent problems. Nodes of the graph 
are states of the problem. An edge exists between nodes if there is a 
transition rule, also called a move, transforming one state into the next. 
Solving the problem means finding a path from a given initial state to a 
desired solution state by applying a sequence of transition rules. 

Program 20.1 is a framework for solving problems by searching their 
state-space graphs, using depth-first search as described in Section 14.2. 

No commitment has been made to the representation of states. The 
moves are specified by a binary predicate move ( S t a t e ,  Move), where 
Move is a move applicable to S t a t e .  The predicate update ( S t a t e  ,Move, 
S t a t e l )  finds the state S t a t e 1  reached by applying the move Move to 
state S t a t e .  It is often easier to combine the move and update proce- 
dures. We keep them separate here to make knowledge more explicit and 
to retain flexibility and modularity, possibly at the expense of perfor- 
mance. 

The validity of possible moves is checked by the predicate l e g a l  
( S t a t e ) ,  which checks if the problem state S t a t e  satisfies the con- 
straints of the problem. The program keeps a history of the states visited 
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solve-dfs (State,History,Moves) - 
Moves is a sequence of moves to reach a 
desired final state from the current State, 
where History contains the states visited previously. 

solve-df s(State ,History, [ 1 ) - 
final-state(State). 

solve~dfs(State,History,[Move~Movesl) - 
move(State ,Move), 
update(State ,Move,Statel) , 
legal(State1) , 
not member(Statel,History), 
solve~dfs(Statel,[StatellHistory],Moves). 

Testing the framework 

Program 20.1 A depth-first state-transition framework for problem solving 

to prevent looping. Checlung that looping does not occur is done by see- 
ing if the new state appears in the history of states. The sequence of 
moves leading from the initial state to the final state is built incremen- 
tally in the third argument of solve-df s / 3 .  

To solve a problem using the framework, the programmer must decide 
how states are to be represented, and axiomatize the move, update, and 
legal procedures. A suitable representation has profound effect on the 
success of thls framework. 

Let us use the framework to solve the wolf, goat, and cabbage problem. 
We state the problem informally. A farmer has a wolf, goat, and cabbage 
on the left side of a river. The farmer has a boat that can carry at most 
one of the three, and he must transport this trio to the right bank. The 
problem is that he dare not leave the wolf with the goat (wolves love 
to eat goats) or the goat with the cabbage (goats love to eat cabbages). 
He takes all his jobs very seriously and does not want to disturb the 
ecological balance by losing a passenger. 

States are represented by a triple, wgc(B,L,R), where B is the po- 
sition of the boat (left or right), L is the list of occupants of the 
left bank, and R the list of occupants of the right bank. The ini- 
tial and final states are wgc (lef t , [wolf, goat, cabbage] , [ 1 and 
wgc (right, [ 1 , [wolf, goat, cabbage] ) , respectively. In fact, it is not 
strictly necessary to note the occupants of both the left and right banks. 

The occupants of the left bank can be deduced from the occupants of 
the right bank, and vice versa. But having both makes specifying moves 
clearer. 

It is convenient for checlung for loops to keep the lists of occupants 
sorted. Thus wolf will always be listed before goat, both of whom will be 
before cabbage if they are on the same bank. 

Moves transport an occupant to the opposite bank and can thus be 
specified by the particular occupant who is the Cargo. The case when 
nothmg is taken is specified by the cargo alone. The nondeterministic 
behavior of member allows a concise description of all the possible moves 
in three clauses as shown in Program 20.2: moving something from the 
left bank, moving somethng from the right bank, or the farmer's rowing 
in either direction by hlmself. 

For each of these moves, the updating procedure must be specified, 
namely, changing the position of the boat (by update_boat/2) and up- 
dating the banks (by update-banks). Using the predicate select allows 
a compact description of the updating process. The insert procedure 
is necessary to keep the occupant list sorted, facilitating the check if a 
state has been visited before. It contains all the possible cases of adding 
an occupant to a bank. 

Finally, the test for legality must be specified. The constraints are sim- 
ple. The wolf and goat cannot be on the same bank without the farmer, 
nor can the goat and cabbage. 

Program 20.2, together with Program 20.1, solves the wolf, goat, and 
cabbage problem. The clarity of the program speaks for itself. 

We use the state-transition framework for solving another classic 
search problem from recreational mathematics-the water jugs prob- 
lem. There are two jugs of capacity 8 and 5 liters with no markings, and 
the problem is to measure out exactly 4 liters from a vat containing 20 
liters (or some other large number). The possible operations are filling 
up a jug from the vat, emptying a jug into the vat, and transferring the 
contents of one jug to another until either the pouring jug is emptied 
completely, or the other jug is filled to capacity. The problem is depicted 
in Figure 20.1. 

The problem can be generalized to N jugs of capacity CI,. . .,CN. The 
problem is to measure a volume V, different from all the C, but less 
than the largest. There is a solution if V is a multiple of the greatest 
common divisor of the Ci. Our particular example is solvable because 4 
is a multiple of the greatest common divisor of 8 and 5. 
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States for the wolf, goat and cabbage problem are a structure 
wgc(Boat,Left,Right), where Boat is the bank on which the boat 
currently is, Left is the list of occupants on the left bank of 
the river, and Right is the list of occupants on the right bank. 

initial-state (wgc, wgc (left , [wolf ,goat, cabbage] , [ 1 ) ) . 
f inal-state (wgc (right, [ 1 , [wolf ,goat, cabbage] ) ) . 
move(wgc(left,L,~),~arg~) + member(~argo,L). 
move (wgc (right, L ,R) ,Cargo) - member (Cargo, R) . 
move(wgc(B,~,~),alone). 

insert(X,[YlYsl ,[X,YIYsl) - 
precedes(X,Y). 

insert (X, [Y I YS] , [Y I ZS] ) - 
~recedes(Y ,XI, insert (X,Ys ,Zs) 

insert(X, [ I, [XI). 

legal(wgc(left,L,R)) - not illegal(R1. 
legal(wgc(right,L,R)) - not illegal(L). 
illegal(Bank) - member(wolf,Bank), member(goat,~ank). 
illegal (Bank) - member (goat ,Bank) , member (cabbage , ~ a n k )  
select(X,Xs,Ys) - See Program 3.19. 

Program 20.2 Solving the wolf, goat, and cabbage problem 

- 
I- e Figure 20.1 The water jugs problem ric: 4 9  

d e l i :  < "  

> .  r 2  2. U 
The particular problem we solve is for two jugs of arbitrary capacity, % C 

L) 

but the approach is immediately generalizable to any number of jugs. 
The program assumes two facts in the database, capaci ty(1  ,CI), for 
I equals 1 and 2. The natural representation of the state is a structure 
jugs (Vl ,V2), where V 1  and V2 represent the volumes of liquid currently 
in the two jugs. The initial state is jugs (0,O) and the desired final state 
either jugs (0,  X I  or jugs (X, 01, where X is the desired volume. In fact, 
the only final state that needs to be specified is that the desired volume 
be in the larger jug. The volume can be transferred from the smaller 
volume, if it fits, by emptylng the larger jug and pouring the contents 
of the smaller jug into the larger one. 

Data for solving the jugs problem in conjunction with Program 20.1 
are given in Program 20.3. There are six moves: filling each jug, emptying 
each jug, and transferring the contents of one jug to another. A sam- 
ple fact for filling the first jug is move ( jugs (Vl , V2) , f i l l  (1) 1. The jugs' 
state is given explicitly to allow the data to coexist with other problem- 
solving data such as in Program 20.2. The emptying moves are optimized 
to prevent emptying an already empty jug. The updating procedure asso- 
ciated with the first four moves is simple, whlle the transferring opera- 
tion has two cases. If the total volume in the jugs is less than the capacity 
of the jug being filled, the pouring jug will be emptied and the other 
jug will have the entire volume. Otherwise the other jug will be filled to 
capacity and the difference between the total liquid volume and the ca- 
pacity of the filled jug will be left in the pouring jug. This is achieved by 
the predicate adjus t /4 .  Note that the test for legality is trivial because 
all reachable states are legal. 

Most interesting problems have too large a search space to be searched 
exhaustively by a program like 20.1. One possibility for improvement is 
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initial-statecjugs, jugs(0,O)). 
final-state(jugs(4,V)). 
f inal_state(jugs(V,4). 

move(jugs(~l,V2) ,fill(l)). 
move(jugs(V1 ,v2) ,f ill(2) 1.  
move(jugs(Vl,V2),empty(l)) - V1 > 0. 
move(jugs(vl,v2),empty(2)) - V2 > 0. 
move(jugs(V1,~2) ,transfer(2,1)). 
move(jugs(V1,~2),transfer(1,2)). 

update(jugs(Vl,V2) ,fill(l), jugs(Cl,V2)) - capacity(1,Cl). 
update(jugs(V1 ,V2) ,f ill(2), jugs(V1 ,C2)) - capacity(2,c2). 
update(jugs(Vl ,V2) ,empty(l) ,jugs(O,v2)). 
update(jugs(V1 ,V2) ,empty(2), jugs(v1,O)). 
update(jugs(V1,V2),transfer(2,1),jugs(~1,~2)) - 

capacity(1 ,C1), 
Liquid is V1 + V2, 
Excess is Liquid - C1, 
adjust(Liquid,Excess,Wl,W2). 

update(jugs(V1 ,V2) ,transfer(l,2), jugs(W1 ,W2)) - 
capacity(2,C2), 
Liquid is V1 + V2, 
Excess is Liquid - C2, 
adjust(Liquid,Excess,W2,Wl). 

adjust(Liquid,Excess,Liquid,O) - Excess 5 0. 
adjust(Liquid,Excess,V,Excess) - 

Excess > 0, V is Liquid - Excess. 

legal (jugs (V1 , V 2 ) ) .  

capacity(l,8). 
capacity(2,5). 

Program 20.3 Solving the water jugs problem 

to put more knowledge into the moves allowed. Solutions to the jug prob- 
lem can be found by filling one of the jugs whenever possible, emptying 
the other whenever possible, and otherwise transferring the contents of 
the jug being filled to the jug being emptied. Thus instead of six moves 
only three need be specified, and the search will be more direct, because 
only one move will be applicable to any given state. This may not give an 
optimal solution if the wrong jug to be constantly filled is chosen. 

Developing this point further, the three moves can be coalesced into 
a higher-level move, f ill-and-transfer. This tactic fills one jug and 
transfers all its contents to the other jug, emptying the other jug as 
necessary. The code for transferring from the bigger to the smaller jug 
is 

move(jugs(V1 ,V2) ,f ill-and-transf er(1) ) . 
update(jugs(V1 ,V2) ,f ill-and-transfer (I), jugs ( 0 , V ) )  + 

capacity(1 ,Cl), 
capacity(2,C2), 
C1 > C2, 
V is (Cl+V2) mod C2. 

Using this program, we need only three fill and transfer operations to 
solve the problem in Figure 20.1. 

Adding such domain knowledge means changing the problem descrip- 
tion entirely and constitutes programming, although at a different level. 

Another possibility for improvement of the search performance, inves- 
tigated by early research in AI, is heuristic guidance. A general frame- 
work, based on a more explicit choice of the next state to search in 
the state-space graph, is used. The choice depends on numeric scores 
assigned to positions. The score, computed by an evuluation function, 
is a measure of the goodness of the position. Depth-first search can 
be considered a special case of searching using an evaluation function 
whose value is the distance of the current state to the initial state, while 
breadth-first search uses an evaluation function which is the inverse of 
that distance. 

We show two search techniques that use an evaluation function explic- 
itly: hill climbing and best-first search. In the following, the predicate 
value (State ,Value) is an evaluation function. The techniques are de- 
scribed abstractly. 
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Hill climbing is a generalization of depth-first search where the suc- 
cessor position with the highest score is chosen rather than the leftmost 
one chosen by Prolog. The problem-solving framework of Program 20.1 is 
easily adapted. The hill climbing move generates all the states that can be 
reached from the current state in a single move, and then orders them 
in decreasing order with respect to the values computed by the evalu- 
ation function. The predicate evaluate-and-order (Moves, S t a t e ,  MVs) 
determines the relation that MVs is an ordered list of move-value tuples 
corresponding to the list of moves Moves from a state S t a t e .  The overall 
program is given as Program 20.4. 

To demonstrate the behavior of the program we use the example tree 
of Program 14.8 augmented with a value for each move. This is given as 
Program 20.5. Program 20.4, combined with Program 20.5and appropri- 
ate definitions of update and l e g a l  searches the tree in the order a, d, 
j. The program is easily tested on the wolf, goat, and cabbage problem 
using as the evaluation function the number of occupants on the right 
bank. 

Program 20.4 contains a repeated computation. The state reached by 
Move is calculated in order to reach a value for the move and then re- 
calculated by update. This recalculation can be avoided by adding an 
extra argument to move and keeping the state along with the move and 
the value as the moves are ordered. Another possibility if there will be 
many calculations of the same move is using a memo-function. What is 
the most efficient method depends on the particular problem. For prob- 
lems where the update procedure is simple, the program as presented 
will be best. 

Hill climbing is a good technique when there is only one hill and the 
evaluation function is a good indication of progress. Essentially, it takes 
a local look at the state-space graph, making the decision on where next 
to search on the basis of the current state alone. 

An alternative search method, called best-first search, takes a global 
look at the complete state-space. The best state from all those currently 
unsearched is chosen. 

Program 20.6 for best-first search is a generalization of breadth-first 
search given in Section 16.2. A frontier is kept as for breadth-first search, 
whch is updated as the search progresses. At each stage, the next best 
available move is made. We make the code as similar as possible to 
Program 20.4 for hill climbing to allow comparison. 

solve- hill-climb (State,History,Moves) - 
Moves is the sequence of moves to reach a 
desired final state from the current State, 
where History is a list of the states visited previously. 

solve~hill~climb(State,History,[ 1 )  - 
f inal-state(State1 . 

solve~hill~climb(State,History,[Move~Moves]) - 
hill-climb(State ,Move), 
update(State,Move,Statel), 
legal(Statel), 
not member(State1 ,History), 
solve~hill~climb(Statel, [Statel (History] ,Moves). 

hill-climb(State,Move) - 
f indall(M,move(State ,M) ,Moves), 
evaluate-and-order(Moves,State,[ ],MVs), 
member ( (Move, Value) , MVs) . 

evaluate-and-order (Moves,Srate,SoFar,OrderedMVs) - 
All the Moves from the current State 
are evaluated and ordered as OrderedMVs. 
SoFar is an accumulator for partial computations. 

evaluate~and~order([MoveIMovesl,State,MVs,OrderedMVs) - 
update(State,Move,Statel), 
value (Statel, Value) , 
insert ((Move ,Value) ,MVs ,MVsl) , 
evaluate-and-order(Moves,State,MVsl,OrderedMVs). 

evaluate-and-order([ ],State,MVs,MVs). 

insert (MV, [ 1 , [MV] 1. 
insert((M,V),[(~l,Vl) IMVs],[(M,V),(Ml,Vl)~MVs]) - 

v 2 v1. 
insert((~,~),[(Ml,Vl)IMVs] ,[(Ml,Vl)IMVsl]) - 

V < V 1 ,  insert((M,V),MVs,MVsl). 

Testing the f r a m e w o r k  

test-hill-climb(Problem,Moves) - 
initial-state (Problem, State) , 
solve-hill-climb(State, [State] ,Moves). 

Program 20.4 Hill climbing framework for problem solving 
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Program 20.5 Test data 

At each stage of the search, there is a set of moves to consider rather 
than a single one. The plural predicate names, for example, updates 
and l ega l s ,  indicate this. Thus l e g a l s  (S ta tes ,  S t a t e s l )  filters a set of 
successor states, checlung which ones are allowed by the constraints of 
the problem. One disadvantage of breadth-first search (and hence best- 
first search) is that the path to take is not as conveniently calculated. 
Each state must store explicitly with it the path used to reach it. T h s  is 
reflected in the code. 

Program 20.6 tested on the data of Program 20.5 searches the tree in 
the same order as for hlll climbing. 

Program 20.6 makes each step of the process explicit. In practice, it 
may be more efficient to combine some of the steps. When filtering the 
generated states, for example, we can test that a state is new and also le- 
gal at the same time. This saves generating intermediate data structures. 
Program 20.7 illustrates the idea by combining all the checks into one 
procedure, update-f r o n t i e r .  

Exercises for Section 20.1 

(i) Redo the water jugs program based on the two fill-and-transfer 
operations. 

(ii) Write a program to solve the missionaries and cannibals problem: 

Three missionaries and three cannibals are standing on the left bank o f  
a river. There is a small boat to ferry them across with enough room 
for only one or two people. They wish to cross the river. I f  ever there 
are more missionaries than cannibals on a particular bank of the river, 
the missionaries will convert the cannibals. Find a series of ferryings 
to transport safely all the missionaries and cannibals across the river 
without exposing any of the cannibals to conversion. 

solve- best (Frontier,History,Moves) - 
Moves is a sequence of moves to reach a desired final state from 
the initial state, where Frontier contains the current states under 
consideration, and History contains the states visited previously. 

solve-best([state(State,~ath,~alue) l F r o n t i e r , H i s t o r y , ~ o v e s ) +  
f inal-state (State) , reverse(Path,Moves) . 

solve~best([state(State,Path,~alue)~Frontier],~istory,FinalPath)- 
findall(M,move(State,M) ,Moves), 
updates(Moves ,Path,State ,States), 
legals (States ,Statesl), 
news(Statesl,History,States2), 
evaluates (States2, Values) , 
inserts(Values,Frontier,Frontierl), 
solve-best(Frontierl,[StatelHistory] ,Finalpath). 

updates (Moves,Path,State,States) - 
States is the list of possible states accessible from the 
current State, according to the list of possible Moves, 
where Path is a path from the initial node to State. 

updates([MIMsl ,Path,S, [(Sl, [MIPathl) lSsl - 
update(S,M,Sl), updates(Ms,Path,S,Ss). 

updates([ 1 ,Path,State, [ I). 
legals (States,Statesl ) - 

Statesl is the subset of the list of States that are legal. 
legals( [(S,P) IStatesl , [(S,P) IStatesll) - 

legal(S), legals(States,Statesl). 
legals( [(S,P) I Statesl ,Statesl) - 

not legal(S), legals(States,Statesl). 
legals([ I,[ I). 
news (States,History,Statesl) - 

Statesl is the list of states in States but not in History. 

news([(S,P) IStates],History,Statesl) - 
member(S,History), news(States,History,Statesl). 

news( [(S,P) I Statesl ,History, [(S ,P) I States11 - 
not member(S,History), news(States,History,Statesl). 

news([ I ,History, [ I). 
evaluates (States, Values) - 

Values is the list of tuples of States augmented by their value. 

evaluates( [(S,P) I Statesl, [state(S,P,V) IValuesI) - 
value(S,V), evaluates(States,Values). 

evaluates( [ I ,  [ I). 

Program 20.6 Best-first framework for problem solving 
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inserts(States,Frontier,Frontierl) - 
Frontier1 is the result of inserting States into the current Frontier. 

insert (State, [ 1 , [State] ) . 
insert(State, [Statel I States] , [State,StatelI States] - 

lesseq-value (State,Statel) . 
insert (State, [Statel l Statesl , [State l Statesl ) - 

equals(State,Statel) . 
insert (State, [Statel I Statesl , [Statel I States11 - 

greater-value(State ,Statel), insert (state ,states ,states11 

Program 20.6 (Continued) 

solve- best (Frontier,History,Moves) - 
Moves is a sequence of moves to reach a desired final state 
from the initial state. Frontier contains the current states 
under consideration. History contains the states visited previously. 

solve-best ( [state(State ,Path,Value) 1 ~rontier]  i is tory ,Moves) + 

f inal-state(State) , reverse(Path, [ 1 ,~oves). 
solve-best ([state(State ,Path,Value) (~rontier]    is tor^ ,~inal~ath) - 

f indall (M ,move(State ,M) ,Moves) , 
update-f rontier (Moves ,State ,Path,History ,Frontier ,~rontierl), 
solve~best(Frontierl,[~tate~~istor~],~inal~ath~. 

update-frontier( [MIMsl ,~tate,~ath,~istory .F,F1) - 
update(~tate ,M,Statel), 
legal(Statel), 
value (Statel ,Value) , 
not member(~tatel,History), 
insert((State1, [MIPathl ,Value) ,F,FO), 
update-f rontier (Ms ,State ,Path,History ,FO ,F1) . 

update-frontier([ 1 ,S,P,H,F,F). 

insert (State ,Frontier ,Frontierl) - See Program 20.6. 

Program 20.7 Concise best-first framework for problem solving 

(iii) Write a program to solve the five jealous husbands problem (Du- 
deney, 19 1 7): 

During a certain flood five married couples found themselves sur- 
rounded by water and had to escape from their unpleasant position 
in a boat that would only hold three persons at a time. Every husband 
was so jealous that he would not allow his wife to be in the boat or on 
either bank with another man (or with other men) unless he himself was 
present. Find a way o f  getting these five men and their wives across to 
safety. 

(iv) Compose a general problem-solving framework built around 
breadth-first search analogous to Program 20.1, based on programs 
in Section 16.2. 

(v) Express the 8-queens puzzle within the framework. Find an evalua- 
tion function. 

-- - - 

20.2 Searching Game Trees 

What happens when we play a game? Starting the game means setting up 
the chess pieces, dealing out the cards, or setting out the matches, for 
example. Once it is decided who plays first, the players take turns making 
a move. After each move the game position is updated accordingly. 

We develop the vague specification in the previous paragraph into a 
simple framework for playing games. The top-level statement is 

The predicate initialize (Game, Position, Player) determines the ini- 
tial game position Position for Game, and Player, the player to start. 

A game is a sequence of turns, where each turn consists of a player 
choosing a move, the move being executed, and the next player being 
determined. The neatest way of expressing thls is as a tail recursive 
procedure, play, with three arguments: a game position, a player to 
move, and the final result. It is convenient to separate the choice of the 
move by choose-move/3 from its execution by move/3. The remaining 
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play(Game) - 
Play game with name G a m e .  

play(Position,Player,Re~ult) - 
game-over (~osition,Player ,Result) , ! , announce(Result) 

play(Position,Player,Re~ult) - 
choose-move(~osition,Player,Move), 
m o v e ( M o v e , P ~ ~ i t i ~ n , P ~ ~ i t i ~ n l ) ,  
display-game (Position1 ,Player) , 
next-player(P1ayer , Playerl) , 
! ,  play(Positionl,Playerl,Re~~lt). 

Program 20.8 Framework for playing games I 
I 

I 

predicates in the clause for play/3 display the state of the game and 
I 
I 

determine the next player: I 
play (position,~layer ,Result) - 

choose-move (Position, Player ,Move) , 
move (Move , ~ o s i t i ~ n , P ~ ~ i t i ~ n l )  , 
display-game(~o~iti~nl,Player), 

next-player (Player ,Playerl) , 
! , play (Position1 ,Player1 ,Result) . 

Program 20.8 provides a logical framework for game-playing programs. 
Using it for writing a program for a particular game focuses attention on 
the important issues for game playing: what data structures should be 
used to represent the game position, and how strategies for the game 
should be expressed. We demonstrate the process in Chapter 2 1 by writ- 
ing programs to play Nim and Kalah. 

The problem-solving frameworks of Section 20.1 are readily adapted 
to playing games. Given a particular game state, the problem is to find a 
path of moves to a winning position. 

A game tree is similar to a state-space graph. It is the tree obtained by 
identifying states with nodes and edges with players' moves. We do not, 
however, identify nodes on the tree, obtained by different sequences of 
moves, even if they repeat the same state. In a game tree, each layer is 
called a ply. 

Search Techniques 

evaluate-and-choose (Moves,Position,Record,BestMove - 
Chooses the BestMove from the set of Moves from the 
current Position. Record records the current best move. 

evaluate-and-choose ( [Move I Moves] ,position ,Record, ~ e s t ~ o v e )  - 
move(~ove,Position,~ositionl), 
value (Positionl ,Value) , 
update (Move, Value, Record, Recordl) , 
evaluate~and~choose(Moves,Position,Recordl,BestMo~e). 

evaluate-and-choose([ ],~osition,(~ove,Value),Move). 

update(Move,Value,(Movel,Valuel),(Movel,Valuel)) - 
Value I Value 1. 

update(Move,Value,(Movel,Valuel),(Move,Value~) - 
Value > Valuel. 

Program 20.9 Choosing the best move 

Most game trees are far too large to be searched exhaustively. This sec- 
tion discusses the techniques that have been developed to cope with the 
large search space for two-person games. In particular, we concentrate 
on the minimax algorithm augmented by alpha-beta pruning. This strat- 
egy is used as the basis of a program we present for playing Kalah in 
Chapter 21. 

We describe the basic approach of searchmg game trees using evalua- 
tion functions. Again, in this section value (Posit ion, Value) denotes 
an evaluation function computing the Value of Position, the current 
state of the game. Here is a simple algorithm for choosing the next move: 

Find all possible game states that can be reached in one move. 
Compute the values of the states using the evaluation function. 
Choose the move that leads to the position with the highest score. 

This algorithm is encoded as Program 20.9. It assumes a predicate 
move (Move, Position, Positionl) that applies a Move to the current Po- 
sition to reach Positionl. The interface to the game framework of 
Program 20.8 is provided by the clause 

choose~move(Position,computer,Move) - 
f indall (M,move (Position,M) ,Moves), 
evaluate~and~choose(Moves ,Position, (nil, -1000) ,~ove) . 

The predicate move (Position,Move) is true if Move is a possible move 
from the current position. 
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The basic relation is evaluate-and-choose (Moves ,Position, Record, 
BestMove) whlch chooses the best move BestMove in the possible Moves 
from a given Position. For each of the possible moves, the correspond- 
ing position is determined, its value is calculated, and the move with 
the highest value is chosen. Record is a record of the current best move 
so far. In Program 20.9, it is represented as a tuple (Move ,Value). The 
structure of Record has been partially abstracted in the procedure up- 
date/4. How much data abstraction to use is a matter of style and a 
trade-off among readability, conciseness, and performance. 

Looking ahead one move, the approach of Program 20.9, would be 
sufficient if the evaluation function were perfect, that is, if the score 
reflected which positions led to a win and which to a loss. Games become 
interesting when a perfect evaluation function is not known. Choosing a 
move on the basis of looking ahead one move is generally not a good 
strategy. It is better to look several moves ahead and to infer from what 
is found the best move to make. 

The minimax algorithm is the standard method for determining the 
value of a position based on searchng the game tree several ply ahead. 

The algorithm assumes that, when confronted with several choices, 
the opponent would make the best choice for her, i.e., the worst choice 
for me. My goal then is to make the move that maximizes for me the 
value of the position after the opponent has made her best move, 
i.e., that minimizes the value for her. Hence the name minimax. This 
reasoning proceeds several ply ahead, depending on the resources that 
can be allocated to the search. At the last ply the evaluation function is 
used. 

Assuming a reasonable evaluation function, the algorithm will produce 
better results the more ply are searched. It will produce the best move if 
the entire tree is searched. 

The minimax algorithm is justified by a zero-sum assumption, which 
says, informally, that what is good for me must be bad for my opponent, 
and vice versa. 

Figure 20.2 depicts a simple game tree of depth 2 ply. The player has 
two moves in the current position, and the opponent has two replies. 
The values of the leaf nodes are the values for the player. The oppo- 
nent wants to minimize the score, so will choose the minimum values, 
making the positions be worth + 1 and -1 at one level hgher in the tree. 
The player wants to maximize the value and will choose the node with 
value + 1. 

Figure 20.2 A simple game tree 

Program 20.10 encodes the minimax algorithm. The basic relation is 
minimax (D , Posit ion, MaxMin , Move, Value), which is true if Move is the 
move with the highest Value from Position obtained by searchng D ply 
in the game tree. MaxMin is a flag that indicates if we are maximizing or 
minimizing. It is 1 for maximizing and - 1 for minimizing, the particular 
values being chosen for ease of manipulation by simple arithmetic opera- 
tions. A generalization of Program 20.9 is used to choose from the set of 
moves. Two extra arguments must be added to evaluate-and-choose: 
the number of ply D and the flag MaxMin. The last argument is general- 
ized to return a record including both a move and a value rather than 
just a move. The minimax procedure does the bookkeeping, changing the 
number of moves being looked ahead and also the minimax flag. The ini- 
tial record is (nil, -1000), where nil represents an arbitrary move and 
-1000 is a score intended to be less than any possible score of the evalu- 
ation function. 

The observation about efficiency that was made about combining the 
move generation and update procedures in the context of searchng 
state-space graphs has an analogue when searchmg game trees. Whether 
it is better to compute the set of positions rather than the set of moves 
(with the corresponding change in algorithm) will depend on the particu- 
lar application. 

The minimax algorithm can be improved by keeping track of the re- 
sults of the search so far, using a t e c h q u e  known as alpha-beta pruning. 
The idea is to keep for each node the estimated minimum value found so 
far, the alpha value, along with the estimated maximum value, beta. If, 
on evaluating a node, beta is exceeded, no more search on that branch is 
necessary. In good cases, more than half the positions in the game tree 
need not be evaluated. 
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evaluate~and~choose(Moves,Position,Depth,Flag,Record,BestMove~ - 
Choose the BestMove from the set of Moves from the current 
Position using the minimax algorithm searching Depth ply ahead. 
Flag indicates if we are currently minimizing or maximizing. 
Record records the current best move. 

evaluate-and-choose( [Move l Moves] ,Position,D , ~ a x ~ i n , ~ e c o r d , ~ e s t )  + 

move(Move,Position,Positionl), 
minimax(D,Positionl,MaxMin,MoveX,Value), 
update(Move,Value,Record,Recordl), 
evaluate~and~choose(Moves,Position,D,~ax~in,~ecordl,~est). 

evaluate-and-choose ( [ 1 ,Position,D ,MaxMin ,Record ,~ecord). 

minirnax(0,Position,MaxMin,Mo~e,Value) - 
value(Position,V) , 
Value is V*MaxMin. 

minimax(D,Position,MaxMin,Mo~e,Value) - 
D > 0, 
f indall(M,move(Position,M) ,Moves), 
Dl is D - 1 ,  
MinMax is -MaxMin, 
evaluate~and~choose(Moves,Position,Dl,MinMax, (nil,-1000), 

(Move,Value)). 

update(Move,Value,Record,Recordl) - See Program 20.9. 

Program 20.10 Choosing the best move ~vi th  the minimax algorithm 

Program 20.11 is a modified version of Program 20.10 that incor- 
porates alpha-beta pruning. The new relation scheme is alpha-beta 
(Depth, Position, Alpha, Beta, Move, Value), which extends minimax 
by replacing the minimax flag with alpha and beta. The same relation 
holds with respect to evaluate-and-choose. 

Unlike the one in Program 20.10, the version of evaluate-and-choose 
in Program 20.1 1 does not need to search all possibilities. This is 
achieved by introducing a predicate cutoff, whch either stops searching 
the current branch or continues the search, updating the value of alpha 
and the current best move as appropriate. 

For example, the last node in the game tree in Figure 20.2 does not 
need to be searched. Once a move with value -1 is found, which is 
less than the value of + I  the player is guaranteed, no other nodes can 
contribute to the final score. 

The program can be generalized by replacing the base case of alpha- 
beta by a test of whether the position is terminal. This is necessary in 
chess programs, for example, for handling incomplete piece exchanges. 

evaluate~and~choose(Moves,Position,Depth,Alpha,Beta,Record,BestMove) - 
Chooses the BestMove from the set of Moves from the current 
Position using the minimax algorithm with alpha-beta cutoff searchmg 
Depth ply ahead. Alpha and Beta are the parameters of the algorithm. 
Record records the current best move. 

evaluate~and~choose([MoveIMovesl,Position,D,Alpha,Beta,Movel, 

BestMove) - 
move (Move, Position,Positionl) , 
alpha-beta(D,Positionl,Alpha,Beta,MoveX,Value), 
Value1 is -Value, 
cutoff(Move,Valuel,D,Alpha,Beta,Moves,Position,Move1,BestMove). 

evaluate-and-choose([ 1,Position,D,Alpha,Beta,Move,(Move,Alpha)). 

alpha~beta(0,Position,Alpha,Beta,Move,Value - 
value(Position,Value). 

alpha~beta(D,Position,Alpha,Beta,Move,Value - 
f indall (M,move(Position ,M) ,Moves) , 
Alpha1 is -Beta, 
Beta1 is -Alpha, 
Dl is D-1, 
evaluate~and~choose(Moves,Position,D1,Alphal,Beta1,nil, 

i (Move,Value)). 

cutoff(Move,Value,D,Alpha,Beta,Moves,Position,Move1,~Move,Value)) - 
Value 1 Beta. 

cutoff(Move,Value,D,Alpha,Beta,Moves,Position,Movel,BestMove) - 
Alpha < Value, Value < Beta, 
evaluate~and~choose(Moves,Position,D,Value,Beta,Move,BestMove). 

cutoff(Move,Value,D,Alpha,Beta,Moves,Position,Move1,BestMove) - 
Value I Alpha, 
evaluate~and~choose(Moves,Position,D,Alpha,Beta,Movel,BestMove). 

Program 20.1 1 Choosing a move using minimax with alpha-beta pruning 

- -  - - -- - - - 

20.3 Background 

Search techniques for both planning and game playing are discussed in 
A1 textbooks. For further details of search strategies or the minimax algo- 
rithm and its extension to alpha-beta pruning, see, for example, Nilsson 
(1971) or Winston (1977). 

Walter Wilson originally showed us the alpha-beta algorithm in Prolog. 



IV Applications 

Prolog has been used for a wide range of applications: expert systems, 
natural language understanding, symbolic algebra, compiler writing, 
building embedded languages, and architectural design, to name a few. 
In this part, we give a flavor of writing application programs in Prolog. 

The first chapter looks at programs for playing three games: master- 
mind, Nim, and Kalah. The next chapter presents an expert system for 
evaluating requests for credit. The third chapter presents a program for 
solving symbolic equations, and the final chapter looks at a compiler for 
a Pascal-like language. 

The emphasis in presentation in these chapters is on writing clear 
programs. Knowledge embedded in the programs is made explicit. Minor 
efficiency gains are ignored if they obscure the declarative reading of the 
program. 

Leonardo Da Vinci, The Proportions of the Human Figure, after Vitruvius. Pen 
and ink. About 1492. Venice Academy. 



Game-Playing Programs 

Learning how to play a game is fun. As well as understanding the rules 
of the game, we must constantly learn new strategies and tactics until 
the game is mastered. Writing a program to play games is also fun, and 
a good vehicle for showing how to use Prolog for w~iting nontrivial pro- 
grams. 

2 1.1 Mastermind 

Our first program guesses the secret code in the game of mastermind. It 
is a good example of what can be programmed in Prolog easily with just 
a little thought. 

The version of mastermind we describe is what we played as kids. It 
is a variant on the commercial version and needs less hardware (only 
pencil and paper). Player A chooses a sequence of distinct decimal digits 
as a secret code-usually four digits for beginners and five for advanced 
players. Player B makes guesses and queries player A for the number of 
bulls (number of digits that appear in identical positions in the guess and 
in the code) and cows (number of digits that appear in both the guess and 
the code, but in different positions). 

There is a very simple algorithm for playing the game: Impose some 
order on the set of legal guesses; then iterate, making the next guess that 
is consistent with all the information you have so far until you find the 
secret code. 
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Rather than defining the notion of consistency formally, we appeal to 
the reader's intuition: A guess is consistent with a set of answers to 
queries if the answers to the queries would have remained the same if 
the guess were the secret code. 

The algorithm performs quite well compared with experienced players: 
an average of four to six guesses for a code with four digits with an 
observed maximum of eight guesses. However, it is not an easy strategy 
for humans to apply, because of the amount of bookkeeping needed. On 
the other hand, the control structure of Prolog-nondeterministic choice, 
simulated by backtraclung-is ideal for implementing the algorithm. 

We describe the program top-down. The entire program is given as 
Program 21.1. The top-level procedure for playing the game is 

rnastermind(C0de) - 
cleanup, guess (Code) , check(Code), announce 

The heart of the top level is a generate-and-test loop. The guessing pro- 
cedure guess(Code), whch acts as a generator, uses the procedure se- 
lects(Xs,Ys) (Program 7.7) to select nondeterministically a list Xs of 
elements from a list Ys. According to the rules of the game, Xs is con- 
strained to contain four distinct elements, while Ys is the list of the ten 
decimal digits: 

guess (Code) - 
Code = [XI, X2, X3, X41 , 
selects(Code, [1,2,3,4,5,6,7,8,9,0]) 

The procedure check(Guess) tests the proposed code Guess. It first 
verifies that Guess is consistent with all (i.e., not inconsistent with any) of 
the answers to queries already made; then it asks the user for the number 
of bulls and cows in Guess. The ask(Guess) procedure also controls 
the generate-and-test loop, succeeding only when the number of bulls is 
four, indicating the correct code is found: 

check(Guess) - 
not inconsistent (Guess), ask(Guess). 

Ask stores previous answers to queries in the relation query (X , B , C) , 
where X is the guess, B is the number of bulls in it, and C the number 
of cows. A guess is inconsistent with a previous query if the number of 
bulls and cows do not match: 

mastermind(Code) - 
cleanup, guess (Code), check(Code) , announce. 

guess(Code) - 
Code = CXl,X2,X3,X41, selects(Code,[1,2,3,4,5,6,7,8,9,01). 

Verify the proposed guess 

check(Guess) - 
not inconsistent (Guess) , ask(Guess) 

inconsistent(Guess) - 
query(0ldGuess,Bulls,Cows), 
not bulls~and~cows~match(OldGuess,Guess,Bulls,Cows). 

bulls~and~cows~match(OldGuess,Guess,Bulls,Cows) - 
exact-matches (OldGuess, Guess ,N1) , 
Bulls =:=  N1, % Correct number of bulls 
common~members(OldGuess,Guess,N2), 
Cows =:= N2-Bulls. % Correct number of cows 

same-place (X, CX I Xsl , [X I Ysl ) . 
same-place (A, [XI Xsl , [Y I Ysl ) - same-place (A, Xs ,Ys) . 
Asking a guess 

repeat, 

writeln(['How many bulls and cows in ',Guess,'?']), 
read( (Bulls ,Cows)) , 
sensible(Bulls,Cows), ! ,  
assert(query(Guess,Bulls,Cows)), 
Bulls =:= 4. 

sensible(Bulls,Cows) - 
integer(Bulls), integer(Cows), Bulls+Cows 5 4. 

Bookkeeping 

cleanup - abolish(query,3). 
announce - 

size-of(X,query(X,A,B),N), 
writeln(['Found the answer after ',N,' queries']). 

size-of (X,G,N) - f indall(X,G,Xs) , length(Xs,N) . 
length(Xs ,N) - See Program 8.1 1. 

selects(X,Xs) - See Program 7.7. 

abolish(F,N) - See Exercise 12.5(i). 

Program 2 1.1 Playlng mastermind 
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inconsistent(Guess) - 
query(Old,Bulls,Cows), 

not bulls~and~cows~match(Old,Guess,Bulls,Cow~~. 

The bulls match between a previous guess OldGuess and a conjectured 
guess Guess if the number of digits in the same position in the two 
guesses equals the number of Bulls in OldGuess. It is computed by the 
predicate exact-matches (OldGuess ,Guess ,Bulls). The cows match if 
the number of common digits without respect to order corresponds to 
the sum of Bulls and Cows; it is computed by the procedure bulls- 
and-cows-match. It is easy to count the number of matchmg digits and 
common digits in two queries, using an all-solutions predicate size- 
of /3. 

The ask(Guess) procedure is a memo-function that records the answer 
to the query. It performs some limited consistency checks on the input 
with the procedure sensible/2 and succeeds only if four bulls are indi- 
cated. The expected syntax for the user's reply is a tuple (Bulls, Cows). 

The remaining (top-level) predicates are for bookkeeping. The first, 
cleanup, removes unwanted information from previous games. The 
predicate announce tells how many guesses were needed, whch is de- 
termined using size-of /3. 

A more efficient implementation of the exact-matches and common- 
members procedures can be obtained by writing iterative versions: 

exact-matches ( [X I XsI , [X I Ysl , K, N) - 
~1 is K+I, exact-matches (XS ,Ys ,K1 ,N) 

exact-matches ( [X 1 Xsl , [Y I Ysl ,K,N) - 
x # Y, exact-matches(~s,Ys,K,N). 

exact-matches ( [: 1 , 1 ,N,N) . 

common-members ( [X I Xs] , Ys , K, N) - 
rnember(x,Ys), K1 is K+l, common-members(Xs,Ys,Kl,N). 

common-members ( [X I Xsl , Ys , K , N) - 
common-members (XS , Ys , K ,  N) . 

common-members ( [ 1 , Ys, N ,  N) . 

Using the more efficient versions of exact-matches and common- 
members saves about 10%-30% of the execution time. 

21.2 Nirn 

We turn our attention now from mastermind to Nim, also a game for two 
players. There are several piles of matches, and the players take turns 
removing some of the matches (up to all) in a pile. The winner is the 
player who takes the last match. Figure 21.1 gives a common starting 
position, with piles of 1, 3, 5 and 7 matches. 

To implement the Nim-playing program, we use the game-playing 
framework of Program 20.8. 

The first decision is the representation of the game position and 
the moves. A natural choice for positions is a list of integers where 
elements of the list correspond to piles of matches. A move is a tu- 
ple (N,M) for talung M matches from pile N. Writing the procedure 
move (Move ,Position,Positionl), where Position is updated to Posi- 
tionl by Move, is straightforward. The recursive rule counts down match 
piles until the desired pile is reached. The remaining piles of matches 
representing the new game position are computed routinely: 

There are two possibilities for updating the specified pile of matches, 
the base case of the procedure. If all the matches are taken, the pile is 
removed from the list. Otherwise the new number of matches in the pile 
is computed and checked to be legal: 

move((l,N>, [NINsI ,Ns). 

m o v e ( ( 1 , ~ ) , ~ N l ~ s l , C ~ 1 l ~ s l )  - N > M, N1 is N-M. 

The mechanics of turns for two-person games is specified by two facts. 

Figure 21.1 A starting position for Nim 
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The initial piles of matches and who moves first must be decided by 
the two players. Assuming the computer moves second, the game of 
Figure 21.1 is specified as 

initialize (nim, [I, 3,5,7] ,opponent) . 

The game is over when the last match is taken. Ths  corresponds to the 
game position being the empty list. The person having to move next is 
the loser, and the output messages of announce are formulated accord- 
ingly. The details are in Program 21.2. 

It remains to specify how to choose the moves. The opponent's moves 
are accepted from the keyboard; how much flexibility is allowed in input 
is the responsibility of the programmer: 

choose-move (Posit ion, opponent, Move) - 
writeln(['Please make move']), 

read (Move) , 
legal (Move, Position) . 

Choosing a move for the computer requires a strategy. A simple strat- 
egy to implement is talung all of the first pile of matches. It is recom- 
mended only for use against extremely poor players: 

choose-move ( [N I NsI , computer (1 ,N) ) . 

A winning strategy is known for Nim. It involves dividing game states, 
or positions, into two classes, safe and unsafe. To determine if a position 
is safe or unsafe, the binary representation of the number of matches 
in each pile is computed. The nim-sum of these binary numbers is then 
calculated as follows. Each column is summed independently modulo 2. 
If the total in each column is zero, the position is safe. Otherwise the 
position is unsafe. 

Figure 21.2 illustrates the process for the four piles of matches in 
Figure 21.1. The binary representations of 1, 3, 5 ,  and 7 are 1, 11, 101, 
and 11 1 respectively. Calculating the nim-sum: there are four 1's in the 
units column, two 1's in the 2's column and two 1's in the 4's column; 
an even number of 1's in each. The nim-sum is zero, malung the position 
[1,3,5,7] safe. On the other hand the position [2,6] is unsafe. The binary 
representations are 10 and 110. Summing them gives one 1 in the 4's 
column and two 1's in the 2's column. The single 1 in the 4's column 
makes the position unsafe. 

play (Game) - See Program 20.8. 

Filling in the game-playing framework 

display-game(Position,X) - write(Position), nl. 

game-over([ l,Player,Player). 

announce(computer) - write('You won! Congratulations.'), nl. 
announce(opponent) - write('1 won.'), nl. 

Choosing moves 

choose~move(Position,opponent,Move) - 
writeln(['Please make move']), read(Move), legal(Move,Position). 

legal((K,N),Position) - nth-member(K,Position,M), N I M. 
nth-member (1, [X I XS] , X) . 
nth-member(N,[XIXs],Y) - N > 1, N1 is N-1, nth-member(Nl,Xs,Y). 

evaluate(Position,Safety,Sum) - 
nim-sum(Position, [ 1 ,Sum), saf ety(Sum,Saf ety) 

safety(Sum, saf e) - zero(Sum), ! . 
safety(Sum,unsafe) - not zero(Sum), ! .  

decide-move(safe,Position,Sum,(1,1)). 
% The computer's "arbitrary move" 

decide~move(unsafe,Position,Sum,Move) - 
safe~move(Position,Sum,Move). 

move(Move,Position,Positionl ) - 
Position1 is the result of executing the move 
Move from the current Position. 

move((K,M),[NINsl,[NINsll) - 
K > 1, K1 is K-1, move((KI,M),Ns,Nsl). 

move((1 ,N) , [NI Nsl ,Ns) . 
move((l,M),[N1Nsl ,[NlINsl) - 

N > M, N1 is N-M. 

Program 21.2 A program for playing a winning game of Nim 
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nim-sum (Position,SoFar,Sum) - 
Sum is the nim-sum of the current Position, 
and SoFar is an accumulated value. 

nim-sum( [N I Nsl ,Bs ,Sum) - 
binary(N,Ds) , nim-add(Ds ,Bs ,Bsl) , nim-sum(Ns ,Bsl ,Sum). 

nim-sum( [ I , Sum,Sum) . 
nim-add(Bs, [ 1 ,Bs). 
nim-add( [ 1 ,Bs ,Bs) . 
nim-add([~IBsl, [CICs], [DIDsl) - 

D is (B+C) mod 2, nim-add(Bs,Cs,Ds). 

binary (1, [ll ) . 
binary (N, [D I Dsl ) - 

N > 1, D is N mod 2, N1 is N/2, binary(N1,Ds). 

zero([ I). 
zero( [oI Zsl ) - zero(Zs1. 
safe-move(Position,NimSum,Move) - 

Move is a move from the current Position with 
the value NimSum that leaves a safe position. 

safe-move([~ileI~iles],NimSum,K,(K,M)) - 
binary (Pile ,Bs) , can-zero (Bs ,NimSum,Ds ,0) , decimal (Ds ,MI 

saf e-move ( [Pile I piles] , NimSum,K ,Move) - 
K1 is K+1, safe-move(Piles,NimSum,K1,~ove). 

can-zero( [ I ,NirnSum, [ 1,o) - 
zero(NimSum). 

can-zero ( [B I Bsl , [O I NimSuml , [C 1 Dsl ,C) - 
can-zero(Bs,NimSum,Ds,C). 

can-zero ( [B I Bsl , [I I Nim~uml , [D IDS] ,C) - 
D is 1-B*C, C1 is 1-B, can-zero(Bs,NimSum,Ds,~i). 

Program 21.2 (Continued) 

Figure 2 1.2 Computing nim-sums 

The winning strategy is to always leave the position safe. Any unsafe 
position can be converted to a safe position (though not all moves do), 
while any move from a safe position creates an unsafe one. The best 
strategy is to make an arbitrary move when confronted with a safe posi- 
tion, hoping the opponent will blunder, and to convert unsafe positions 
to safe ones. 

The current position is evaluated by the predicate e v a l u a t e / 3 ,  whlch 
determines the safety of the current position. An algorithm is needed 
to compute the nim-sum of a position. The nim-sum is checked by the 
predicate s a f e t y  (Sum, Saf e t y )  , which labels the position safe or unsafe 
depending on the value of Sum. 

The move made by the computer computed by decide_move/4 de- 
pends on the safety of the position. If the position is safe, the computer 
makes the "arbitrary" move of one match from the first pile. If the posi- 
tion is unsafe, an algorithm is needed to compute a move that converts 
an unsafe position into a safe one. This is done by sa f  e_move/3. 

In a prior version of the program e v a l u a t e  did not return Sum. In the 
writing of s a f  e-move it transpired that the nim-sum was helpful, and it 
was sensible to pass the already computed value rather than recomput- 
ing it. 

The nim-sum is computed by nim-sum(Ns, SoFar , Sum). The relation 
computed is that Sum is the nim-sum of the numbers N s  added to what 
has been accumulated in SoFar. To perform the additions, the numbers 
must first be converted to binary, done by b inary /2 :  

nim-sum ( [N I Nsl ,Bs ,Sum) - 
b i n a r y  (N, Ds) , nim-add(Ds , B s  , B s l )  , nim-sum (Ns , B s l  , Sum) 
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The binary form of a number is represented here as a list of digits. To 
overcome the difficulty of adding lists of unequal length, the least signif- 
icant digits are earliest in the list. Thus 2 (in binary 10) is represented 
as [0,1], whle 6 is represented as [0,1,1]. The two numbers can then be 
added from least significant digit to most significant digit, as is usual for 
addition. This is done by nim_add/3 and is slightly simpler than regu- 
lar addition, since no carry needs to be propagated. The code for both 
binary and nim-add appears in Program 2 1.2. 

The nim-sum Sum is used by the predicate saf e-move (Ns , Sum ,Move) to 
find a winning move Move from the position described by Ns. The piles of 
matches are checked in turn by saf e_move/4 to see if there is a number 
of matches that can be taken from the pile to leave a safe position. The 
interesting clause is 

safe-move ( [Pile l Piles1 ,NimSum,K, (K,M) ) + 

binary (Pile ,Bs) , can-zero (Bs ,NimSum,Ds 20) . 

The heart of the program is can-zero (Bs , NimSum, Ds ,Carry). This re- 
lation is true if replacing the binary number Bs by the binary number 
Ds would make NimSum zero. The number Ds is computed digit by digit. 
Each digit is determined by the corresponding digit of Bs, NimSum, and a 
carry digit Carry initially set to 0. The number is converted to its decimal 
equivalent by decimal/2 in order to get the correct move. 

Program 21.2 is a complete program for playlng Nim interactively in- 
corporating the winning strategy. As well as being a program for playlng 
the game, it is also an axiomatization of what constitutes a winning strat- 

egy. 

21.3 Kalah 

We now present a program for playing the game of Kalah that uses alpha- 
beta pruning. Kalah fits well into the paradigm of game trees for two 
reasons. First, the game has a simple, reasonably reliable evaluation func- 
tion, and second, its game tree is tractable, whch is not true for games 
such as chess and go. It has been claimed that some Kalah programs are 
unbeatable by human players. Certainly, the one presented here beats us. 

Kalah is played on a board with two rows of six holes facing each other. 
Each player owns a row of six holes, plus a kalah to the right of the holes. 

Figure 21.3 Board positions for Kalah 

In the initial state there are six stones in each hole and the two kalahs are 
empty. This is pictured in the top half of Figure 21.3. 

A player begins his move by piclung up all the stones in one of his 
holes. Proceeding counterclockwise around the board, he puts one of 
the picked-up stones in each hole and in hls own kalah, skipping the 
opponent's kalah, until no stones remain to be distributed. There are 
three possible outcomes. If the last stone lands on the kalah, the player 
has another move. If the last stone lands on an empty hole owned by 
the player, and the opponent's hole directly across the board contains at 
least one stone, the player takes all the stones in the hole plus his last 
landed stone and puts them all in his kalah. Otherwise the player's turn 
ends, and his opponent moves. 

The bottom kalah board in Figure 2 1.3 represents the following move 
from the top board by the owner of the top holes. He took the six stones 
in the rightmost hole and distributed them, the last one ending in the 
kalah, allowing another move. The stones in the fourth hole from the 
right were then distributed. 

If all the holes of a player become empty (even if it is not his turn to 
play), the stones remaining in the holes of the opponent are put in the 
opponent's kalah and the game ends. The winner of the game is the first 
player to get more than half the stones in his kalah. 
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The difficulty for programming the game in Prolog is finding an effi- 
cient data structure to represent the board, to facilitate the calculation 
of moves. We use a four-argument structure board (Holes, Kalah, Opp- 
Holes, OppKalah), where Holes is a list of the numbers of stones in your 
six holes, Kalah is the number of stones in your kalah, and OppHoles 
and OppKalah are, respectively, the lists of the numbers of stones in the 
opponent's holes and the number of stones in his kalah. Lists were cho- 
sen rather than six-place structures to facilitate the writing of recursive 
programs for distributing the stones in the holes. 

A move consists of choosing a hole and distributing the stones therein. 
A move is specified as a list of integers with values between 1 and 6 
inclusive, where the numbers refer to the holes. Hole 1 is farthest from 
the player's kalah, while hole 6 is closest. A list is necessary rather than 
a single integer because a move may continue. The move depicted in 
Figure 21.3 is [1,4] .  

The code gives all moves on backtracking. The predicate stones-in- 
hole (M, Board, N )  returns the number of stones N in hole M of the Board 
if N is greater than 0, failing if there are no stones in the hole. The 
predicate extend-move (M , Board, N , Ms) returns the continuation of the 
move Ms. The second clause for move handles the special case when all 
the player's holes become empty during a move. 

Testing whether the move continues is nontrivial, since it may involve 
all the procedures for making a move. If the last stone is not placed in the 
kalah, which can be determined by simple arithmetic, the move will end, 
and there is no need to distribute all the stones. Otherwise the stones are 
distributed, and the move continues recursively. 

The basic predicate for making a move is distribute-stones (Stones, 
N ,Board,Boardl), which computes the relation that Board1 is obtained 
from Board by distributing the number of stones in Stones starting 
from hole number N. There are two stages to the distribution, putting 
the stones in the player's holes, distribute-my-holes, and putting the 
stones in the opponent's holes, distribute-your-holes. 

The simpler case is distributing the stones in the opponent's holes. 
The holes are updated by distribute, and the distribution of stones 
continues recursively if there is an excess of stones. A check is made 
to see if the player's board has become empty during the course of the 
move, and if so, the opponent's stones are added to his kalah. 

Distributing the player's stones must take into account two possibili- 
ties, distributing from any particular hole, and continuing the distribu- 

tion for a large number of stones. The pick-up-and-distribute pred- 
icate is the generalization of distribute to handle these cases. The 
predicate check-capture checks if a capture has occurred and updates 
the holes accordingly; updat e-kalah updates the number of stones in 
the player's kalah. Some other necessary utilities such as n-substitute 
are also included in the program. 

The evaluation function is the difference between the number of stones 
in the two kalahs: 

value(board(H,K,Y,L),Value) - Value is K-L 
The central predicates have been described. A running program is now 

obtained by filling in the details for I/O, for initializing and terminating 
the game, etc. Simple suggestions can be found in the complete program 
for the game, given as Program 21.3. 

In order to optimize the performance of the program, cuts can be 
added. Another tip is to rewrite the main loop of the program as a failure- 
driven loop rather than a tail recursive program. This is sometimes nec- 
essary in implementations that do not incorporate tail recursion opti- 
mization and a good garbage collector. 

2 1.4 Background 

The mastermind program, slightly modified, originally appeared in 
SIGART (Shapiro, 1983d) in response to a program for playing master- 
mind in Pascal. The SIGART article provoked several reactions, both 
of theoretical improvements to algorithms for playing mastermind and 
practical improvements to the program. Most interesting was an analy- 
sis and discussion by Powers (1984) of how a Prolog program could be 
rewritten to good benefit using the mastermind code as a case study. 
Eventually, speedup by a factor of 50 was achieved. 

A proof of the correctness of the algorithm for playing Nim can be 
found in any textbook discussing games on graphs, for example, Berge 
(1962). 

Kalah was an early A1 target for game-playing programs (Slagle and 
Dixon, 1969). 
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Play framework 

play (Game) - See Program 20.8. 

Choosing a move by minimax with alpha-beta cutoff 

choose~move(Position,computer,~ove) - 
lookahead(Depth) , 
alpha-beta(~e~th,Position,-40,40,Move,~alue), 
nl, write(Move), nl. 

choose~move(Position,opponent,Mo~e) - 
nl, writeln( ['please make move'] 1, read(Move), legal(Move) 

alpha-beta(Depth,Position,Alpha,Beta,Move,Value - 
See Program 20.1 1. 

move (Board, [M 1 Ms] ) - 
member(M, [1,2,3,4,5,61), 
stones-in-hole(M,Board,N), 
extend-move(N,M,Board,Ms). 

move(board([0,0,0,0,0,0~,K,Ys,L),[ I ) .  
stones-in-hole(M,board(Hs ,K,Ys ,L) ,Stones) - 

nth-member(M,Hs,Stones), Stones > 0. 

extend-move(Stones,M,Board,[ 1) - 
Stones =\= (7-M) mod 13, ! .  

extend-move(Stones,M,Board,Ms) - 
Stones =:= (7-M) mod 13, ! ,  
distribute~stones(Stones,M,Board,Boardl), 
move(Board1,Ms). 

Executing a move 

move([NINs],Board,FinalBoard) - 
stones-in-hole(N ,Board,Stones) , 
distribute-stones(Stones,N,Board,Boardl), 
move(Ns,Boardl,FinalBoard). 

move ( [ I ,Boardl ,Board21 - 
swap(Eoardl,Board2). 

distribute-stones(Stones,Hole,Board,Boardl) - 
Board1 is the result of distributing the number of stones 
Stones from Hole from the current Board. 
It consists of two stages: distributing the stones in the player's 
holes, distribute-my-holes, and distributing the stones 
in the opponent's holes, distribute-yourholes. 

Program 21.3 A complete program for playing Kalah 

distribute~stones(Stones,Hole,Board,FinalBoard) - 
distribute~my~holes(Stones,Hole,Board,Board1,St0ne~l~, 
distribute~your~holes(Stonesl,Board1,FinalBoard). 

distribute-my-holes(Stones ,N ,board(Hs ,K,Ys ,L) , 
board(Hs1 ,Kl,Ys,L) ,Stonesl) - 

Stones > 7-N, ! ,  
pick-up-and-distribute(N,Stones ,Hs ,Hsl), 
K1 is K+1, Stones1 is Stones+N-7. 

distribute-my-holes(Stones ,N ,board(Hs ,K,Ys ,L) ,Board,O) - 
Stones 5 7-N, 
pick-up-and-distribute(N ,Stones ,Hs ,Hsl), 
check~capture(~,~tones,Hsl,Hs2,Ys,~sl,Pieces), 
update-kalah(Pieces ,N,Stones,K,Kl), 
check-if-finished(board(Hs2,K1,~sl,L),Board). 

check-capture(N,Stones,Hs,Hsl,Ys,Ysl,Pieces) - 
FinishingHole is N+Stones, 
nth-member(FinishingHole,Hs,l), 
OppositeHole is 7-FinishingHole, 
nth-member (OppositeHole , YS ,Y) , 
Y > O ,  ! ,  
n-substitute(OppositeHole,Ys,O,Ysl), 
n-substitute(FinishingHole,Hs,O,Hsl), 
Pieces is Y+1. 

check~capture(N,Stones,Hs,Hs,Ys,Ys,O) - !.  

check-if-finished(board(Hs,K,Y~,L),board(Hs,K,Hs,L1)) - 
zero(Hs) , ! , sumlist (YS ,YsSum) , L1 is L+YsSum. 

check-if -f inished(board(Hs ,K,Ys,L) ,board(Ys ,K1 ,Ys ,L)) - 
zero(Ys), ! , sumlist(Hs,HsSum) , K1 is K+HsSum. 

check-if-finished(Board,~oard) - ! .  

update-kalah(O,Stones,N,K,K) - Stones < 7-N, ! .  
update-kalah(O,Stones,N,K,Kl) - Stones =:= 7-N, ! ,  K1 is K+1. 
update-kalah(Pieces,Stones,N,K,Kl) - Pieces > 0, ! ,  K1 is K+Pieces. 

distribute-your-holes(O,Board,Board) - ! .  
distribute-your-holes(Stones,board(Hs,K,Ys,L) ,board(~s ,K,Ysl ,L)) - 

1 5 Stones, Stones 5 6, 
non-zero(Hs) , ! , 
distribute(Stones,Ys,Ysl). 

Program 2 1.3 (Continued) 



Chapter 21 Game-Playing Programs 

distribute~your~holes(Stones,board(Hs,K,Ys,L~,Board~ - 
Stones > 6, ! ,  
distribute(6,Ys,Ysl), 
Stones1 is Stones-6, 
distribute~stones(Stonesl,O,board(~s,~,Ys1,L~,Board~. 

distribute-your-holes(Stones ,board(Hs,K,Ys,L) ,board(~s,K,Hs,~l)) - 
zero(Hs) , ! , sumlist(Ys,YsSum), L1 is Stones+YsSum+L. 

Lower-level stone distribution 

pick-up-and-distribute(O,N,Hs ,Hsl) - 
! ,  distribute(N,Hs,Hsl). 

pick-up-and-distribute(l , N ,  [HI Hsl , [O IHsll ) - 
! ,  distribute(N,Hs,Hsl). 

pick-up-and-distribute (K, N ,  [H 1 Hsl , [HI Hsll ) - 
K > 1, ! ,  K1 is K-1, pick-up-and-distribute(~l,N,Hs,Hsl) 

Evaluation function 

value(board(H,K,Y,L),Value) - Value is K-L 
Testing for the end o f  the game 

game-over(board(O,N,O,N),Player,draw) - 
pieces(K), N =:= 6*K, ! .  

game-over(board(~,K,Y ,L) ,Player ,Player) - 
pieces(N), K > 6*N, ! .  

game-over (board (H ,K, Y , L) ,Player, Opponent) - 
pieces(N), L > 6*N, next-player(Player,Opponent). 

announce(opponent) - writeln(1'You won! Congratulations.'~). 
announce(computer) - writeln(['I won.']). 
announce(draw1 - writeln(['The game is a draw']). 

Miscellaneous game utilities 
nth-member (N , [HI Hsl , K) - 

N > 1, ! ,  N1 is N - 1 ,  nth-member(Nl,Hs,K). 
nth-member (1, [HI Hsl , H) . 

show(board(H,K,Y,L)) - 
reverse (H,HR), write-stones (HR) , 
write-kalahs(K,L), write-stones(Y). 

write-stones(H) - 
nl, tab(5) , display-holes (HI 

write-kalahs(K,L) - 
write(K), tab(34), write(L), nl. 

zero([0,0,0,0,0,01). 
non-zero(Hs) - Hs f [0,0,0,0,0,01 

Initializing 

Program 2 1.3 (Continued) 

n-substitute(l,[XlXsl,Y,[YIXsl) - ! .  
n-substitute(N, [XIXsl ,Y, [XI Xsll) - 

N > 1, ! ,  N1 is N-1, n-substitute(Nl,Xs,Y,Xsl). 

Program 21.3 (Continued) 



A Credit Evaluation Expert System 

When the first edition of t h s  book was published, there was a surge of 
activity in the application of artificial intelligence to industry. Of partic- 
ular interest were expert systems-programs designed to perform tasks 
previously allocated to hghly paid human experts. One important fea- 
ture of expert systems is the explicit representation of knowledge. 

Thls entire book is relevant for programming expert systems. The ex- 
ample programs typify code that might be written. For instance, the 
equation-solving program of Chapter 23 can be, and has been, viewed as 
an expert system. The knowledge of expert systems is often expressed as 
rules. Prolog whose basic statements are rules is thus a natural language 
for implementing expert systems. 

- - 

22.1 Developing the System 

Ths  chapter presents an account of developing a prototype expert sys- 
tem. The example comes from the world of banlung: evaluating requests 
for credit from small business ventures. We give a fictionalized account 
of the development of a simple expert system for evaluating client re- 
quests for credit from a bank. The account is from the point of view of 
Prolog programmers, or knowledge engineers, commissioned by the bank 
to write the system. It begins after the most difficult stage of building an 
expert system, extracting the expert knowledge, has been under way for 
some time. In accordance with received wisdom, the programmers have 
been consulting with a single bank expert, Chas E. Manhattan. Chas has 
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told us that three factors are of the utmost importance in considering a 
request for credit from a client (a small business venture). 

The most important factor is the collateral that can be offered by the 
client in case the venture folds. The various types of collateral are di- 
vided into categories. Currency deposits, whether local or foreign, are 
first-class collateral. Stocks are examples of second-class collateral, and 
the collateral provided by mortgages and the like is illiquid. 

Also very important is the client's financial record. Experience in the 
bank has shown that the two most important factors are the client's 
net worth per assets and the current gross profits on sales. The client's 
short-term debt per annual sales should be considered in evaluating the 
record, and slightly less significant is last year's sales growth. For knowl- 
edge engineers with some understanding of banlung, no further expla- 
nation of such concepts is necessary. In general, a knowledge engineer 
must understand the domain sufficiently to be able to communicate with 
the domain expert. 

The remaining factor to be considered is the expected yield to the 
bank. This is a problem that the bank has been worlung on for a while. 
Programs exist to give the yield of a particular client profile. The knowl- 
edge engineer can thus assume that the information mill be available in 
the desired form. 

Chas uses qualitative terms in speaking about these three factors: "The 
client had an excellent financial rating, or a good form of collateral. His 
venture would provide a reasonable yield," and so on. Even concepts that 
could be determined quantitatively are discussed in qualitative terms. 
The financial world is too complicated to be expressed only with the 
numbers and ratios constantly being calculated. In order to make judg- 
ments, experts in the financial domain tend to t hnk  in qualitative terms 
with whch they are more comfortable. To echo expert reasoning and to 
be able to interact with Chas further, qualitative reasoning must be mod- 
eled. 

On tallung to Chas, it became clear that a significant amount of the 
expert knowledge he described could be naturally expressed as a mixture 
of procedures and rules. On being pressed a little in the second and third 
interviews, Chas gave rules for determining ratings for collateral and 
financial records. These involved considerable calculations, and in fact, 
Chas admitted that to save lvmself work in the long term, he did a quick 
initial screening to see if the client was at all suitable. 

This information is sufficient to build a prototype. We show how these 
comments and observations are translated into a system. The top-level 
basic relation is credit (Client, Answer), where Answer is the reply 
given to the request by Client for credit. The code has three modules- 
collateral, f inancial-rating, and bank-yield-corresponding to the 
three factors the expert said were important. The initial screening to 
determine that the client is worth considering in the first place is per- 
formed by the predicate ok-prof ile(C1ient). The answer Answer is 
then determined with the predicate evaluate (Profile ,Answer), which 
evaluates the Profile built by the three modules. 

Being proud knowledge engineers, we stress the features of the top- 
level formulation in credit/2. The modularity is apparent. Each of the 
modules can be developed independently without affecting the rest of 
the system. Further, there is no commitment to any particular data struc- 
ture, i.e., data abstraction is used. For this example, a structure pro- 
file (C, F, Y) represents the profile of collateral rating C, the financial 
rating F, and the yield Y of a client. Ho\z,e\.er, nothing central depends 
on this decision, and it would be easy to change it. Let us consider some 
of the modular pieces. 

Let us look at the essential features of the collateral evaluation module. 
The relation collateral_rating/2 determines a rating for a particu- 
lar client's collateral. The first step is to determine an appropriate pro- 
file. This is done with the predicate collateral-prof ile, which classi- 
fies the client's collateral as first-class, second-class, or illiquid 
and gives the percentage each covers of the amount of credit the 
client requested. The relation uses facts in the database concerning 
both the bank and the client. In practice, there may be separate data- 
bases for the bank and the client. Sample facts shown in Program 
22.1 indicate, for example, that local currency deposits are first-class 
collateral. 

The profile is evaluated to give a rating by collateral-evaluation. It 
uses rules of thumb to give a qualitative rating of the collateral: excellent, 
good, etc. The first collateral-evaluation rule, for example, reads: 
"The rating is excellent if the coverage of the requested credit amount 
by first-class collateral is greater than or equal to 100 percent." 

Two features of the code bear comment. First, the terminology used 
in the program is the terminology of Chas. This makes the program (al- 
most) self-documenting to the experts and means they can modify it with 
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Credit Evaluation 

credit (Client,Answer) - 
Answer is the reply to a request by Client for credit. 

credit(Client,Answer) - 
ok-profile(Client), 
collateral~rating(C1ient,CollateralRating~, 
financial-rating(Client,FinancialRating), 
bank-yield(Client,Yield), 
evaluate (profile (~ollateral~atin~, ~inancialRating , Yield) ,Answer) 

The collateral rating module 

collateral-rating (Client,Rating) - 
Rating is a qualitative description assessing the collateral 
offered by Client to cover the request for credit. 

collateral-rating(C1ient ,Rating) - 
collateral~profile(Client,FirstClass,~econd~lass,Illiquid), 
collateral~evaluation(FirstClass,SecondClass,Illiquid,Rating). 

collateral~profile(Client,FirstClass,SecondClass,~lliquid~ - 
requested-credit(Client,Credit), 
collateral~percent(first~class,~lient,~redit,~irstCla~~~, 
collateral~percent(second~class,Client,~redit,~econdClass~, 
collateral~percent(illiquid,Client,~redit,Illiq~id~. 

collateral~percent(Type,Client,Total,Value~ - 
findall(X,(collatera1(Collateral,Type), 

amount (Collatera1,Client ,XI) ,Xs), 
sumlist (Xs, Sum) , 
Value is Sum*lOO/Total. 

Evaluation rules 

collateral~evaluation(FirstClass,SecondClass,~lliquid,ex~ellent~ - 
FirstClass 2 100. 

collateral~evaluation(FirstClass,SecondClass,~lliquid,e~cellent) - 
FirstClass > 70, FirstClass + SecondClass 2 100. 

collateral~evaluation(FirstClass,SecondClass,Illiq~id,g~~d~ - 
FirstClass + SecondClass > 60, 
FirstClass + SecondClass < 70, 
FirstClass + SecondClass + Illiquid 2 100. 

Bank data - classification of collateral 

collateral(local~currency~deposits,first~class~. 
collateral(foreign~currency~deposits,first~~la~~~. 
collateral(negotiate~instruments,second~cla~s). 
collateral(mortgage,illiquid). 

Financial rating 

financial-rating ( Client,Rating) - 
Rating is a qualitative description assessing the financial 
record offered by Client to support the request for credit. 

financial-rating(Client,Rating) - 
financial~factors(Factors), 
score(Factors,Client,O,Score), 
calibrate(Score,Rating). 

Financial evaluation rules 

calibrate(Score,bad) - Score < -500. 
calibrate(Score,medium) - -500 < Score, Score < 150. 
calibrate(Score,good) - 150 I Score, Score < 1000. 
calibrate(Score,excellent) - Score 2 1000. 

Bank data - weighting factors 

financial-factors([(net-worth_per_assets,5), 
(last-year-sales-growth, 1) , 
(gross~profits~on~sales,5), 

(short-term-debt-per_annual_sales,2) 1 ) .  
score([(Factor,Weight)lFactorsl,Client,Acc,Score) - 

value(Factor,Client,Value), 
Accl is Acc + WeighttValue, 
score(Factors,Client,Accl,Score). 

score([ l,Client,Score,Score). 

Final evaluation 

evaluate(Profile, Outcome) - 
Outcome is the reply to the client's Profile 

compare('=',Scale,Rating,Rating). 
compare ( ' > ' ,Scale, Rat ingl , Rating21 - 

precedes(Scale,Ratingl,Rating2). 
compare('>',Scale,Ratingl,Rating2) - 

precedes(Scale,Ratingl,Rating2) ; Rating1 = Rating2 

Program 22.1 (Continued) 
Program 22.1 A credit evaluation system 
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precedes( [Rl I Rs] ,R1 .R2) . 
precedes ( [R I Rs] ,R1 ,R2) - R f R2, precedes (Rs ,R1 ,R2) 

select-value (collateral ,prof ile(C ,F ,Y) ,C) . 
select-value(finances,profile(~,~,~),~). 
select-value(yield,profile(C,F,Y),Y). 

Utilities 

sumlist (XS, sum) - See Program 8.6b. 

Rank data and rules 

rule([condition(collateral,'~',excellent~, 
condition(finances,'2',good), 
condition(yield,'2',reasonable)] ,give-credit). 

rule( [condition(collateral, '=' ,good) ,condition(f inances, I = '  ,good), 
condition(yield,'L',reasonable)],consult~superi~~~. 

rule([condition(collateral,'~',moderate), 
condition(f inances, ' 5' ,medium)] , 
refuse-credit). 

Program 22.1 (Continued) 

little help from the knowledge engineer. Allowing people to think in do- 
main concepts also facilitates debugging and assists in using a domain- 
independent explanation facility as discussed in Section 17.4. Second, the 
apparent naivete of the evaluation rules is deceptive. A lot of knowledge 
and experience are hidden behnd these simple numbers. Choosing poor 
values for these numbers may mean suffering severe losses. 

The financial evaluation module evaluates the financial stability of the 
client. It uses items taken mainly from the balance and profit/loss sheets. 
The financial rating is also qualitative. A weighted sum of financial fac- 
tors is calculated by score and used by calibrate to determine the 
qualitative class. 

It should be noted that the modules giving the collateral rating and the 
financial rating both reflect the point of view and style of a particular 

expert, Chas Manhattan, rather than a universal truth. Withn the bank 
there is no consensus about the subject. Some people tend to be conser- 
vative and some are prepared to take considered risks. 

Programming the code for determining the collateral and financial rat- 
ings proceeded easily. The knowledge provided by the expert was more 
or less directly translated into the program. The module for the overall 
evaluation of the client, however, was more challenging. 

The major difficulty was formulating the relevant expert knowledge. 
Our expert was less forthcoming with general rules for overall evaluation 
than for rating the financial record, for example. He happily discussed 
the profiles of particular clients, and the outcome of their credit requests 
and loans, but was reluctant to generalize. He preferred to react to sug- 
gestions rather than volunteer rules. 

Ths  forced a close reevaluation of the exact problem we were solving. 
There were three possible answers the system could give: approve the 
request for credit, refuse the request, or ask for advice. There were three 
factors to be considered. Each factor had a qualitative value that was one 
of a small set of possibilities. For example, the financial rating could 
be bad, medium, good, or excellent. Further, the possible values were 
ranked on an ordinal scale. 

Our system clearly faced an instance of a general problem: Find an 
outcome from some ordinal scale based on the qualitative results of 
several ordinal scales. Rules to solve the problem were thus to give a 
conclusion based on the outcome of the factors. We pressed Chas with 
t h s  formulation, and he rewarded us with several rules. Here is a typical 
one: "If the client's collateral rating is excellent (or better), her financial 
rating good (or better), and her yield at least reasonable, then grant the 
credit request." 

An immediate translation of the rule is 

But this misses many cases covered by the rule, for example, when the 
client's profile is (excellent, good, excellent 1. All the cases for a given 
rule can be listed. It seemed more sensible, however, to build a more 
general tool to evaluate rules expressed in terms of qualitative values 
from ordinal scales. 
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There is potentially a problem with using ordinal scales because 
of the large number of individual cases that may need to be speci- 
fied. If each of the N modules have M possible outcomes, there are 
NM cases to be considered. In general, it is infeasible to have a sep- 
arate rule for each possibility. Not only is space a problem for so 
many rules but the search involved in finding the correct rule may 
be prohibitive. So instead we defined a small ad hoc set of rules. We 
hoped the rules defined, which covered many possibilities at once, 
would be sufficient to cover the clients the bank usually dealt with. 
We chose the structure rule(Conditions,Conclusion) for our rules, 
where Conditions is a list of conditions under whch the rule applies 
and Conclusion is the rule's conclusion. A condition has the form con- 
dition(Factor , Relation, Rating), insisting that the rating from the 
factor named by Factor bears the relation named by Relation to the 
rating given by Rating. 

The relation is represented by the standard relational operators: <, =, 
>, etc. The previously mentioned rule is represented as 

rule ( [condition(collateral, ' 2 ' ,excellent) , 
condition(f inances, ' 2 '  ,good), 
condition(yield, ' 2 ' ,reasonable)] ,give-credit) 

Another rule given by Chas reads: "If both the collateral rating and fi- 
nancial rating are good, and the yield is at least reasonable, then consult 
your superior." This is translated to 

rule ( [condition(collateral, '=' ,good) , 
condition (f inances , '=' ,good) , 
condition(yield, ' 2 ' ,reasonable)] , consult-s~~erior) . 

Factors can be mentioned twice to indicate they lie in a certain range or 
might not be mentioned at all. For example, the rule 

rule ( [condition(collateral, ' 5 ' ,moderate) , 
condition (f inances , ' 5 ' ,medium) 1 , 
ref use-credit) . 

states that a client should be refused credit if the collateral rating is no 
better than moderate and the financial rating is at best medium. The 
yield is not relevant and so is not mentioned. 

Client Data 

amount (mortgage, client 1,12000) . 
amount(documents,client1,14000) 

valuehet-worth-per-assets,clientl,40). 

value(last-year-sales-growth,clientl,20). 
value(gross-profits-on-sales,clientl,45). 
value (short- term-debt-per-anual-sales,  client l,9). 

Program 22.2 Test data for the credit evaluation system 

The interpreter for the rules is written nondeterministically. The pro- 
cedure is: "Find a rule and verify that its conditions apply," as defined 
by evaluate. The predicate verify (Conditions ,Profile) checks that 
the relation between the corresponding symbols in the rule and the ones 
that are associated with the Profile of the client is as specified by Con- 
ditions. For each Type that can appear, a scale is necessary to give 
the order of values the scale can take. Examples of scale facts in the 
bank database are scale (collateral, [excellent ,good,moderatel ) 
and scale (f inances , [excellent, good ,medium, bad1 ). The predicate 
select-value returns the appropriate symbol of the factor under the or- 
dinality test that is performed by compare. It is an access predicate, and 
consequently the only predicate dependent on the choice of data struc- 
ture for the profile. 

At t h s  stage, the prototype program is tested. Some data from real 
clients are necessary, and the answer the system gives on these individ- 
uals is tested against what the corresponding bank official would say. 
The data for clientl is given in Program 22.2. The reply to the query 
credit (client1 ,X) is X = give-credit. 

Our prototype expert system is a composite of styles and methods - 
not just a backward chaining system. Heuristic rules of thumb are used 
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to determine the collateral rating; an algorithm, albeit a simple one, is 
used to determine the financial rating; and there is a rule language, with 
an interpreter, for expressing outcomes in terms of values from discrete 
ordinal scales. The rule interpreter proceeds forward from conditions 
to conclusion rather than backward as in Prolog. Expert systems must 
become such composites in order to exploit the different forms of knowl- 
edge already extant. 

The development of the prototype was not the only activity of the 
knowledge engineers. Various other features of the expert system were 
developed in parallel. An explanation facility was built as an extension of 
Program 17.22. A simulator for rules based on ordinal scales was built 
to settle the argument among the knowledge engineers as to whether a 
reasonable collection of rules would be sufficient to cover the range of 
outcomes in the general case. 

Finally, a consistency checker for the rules was built. The following 
meta-rule is an obvious consistency principle: "If all of client A's factors 
are better than or equal to client B's, then the outcome of client A must 
be better than or equal to that of client B." 

2 2.2 Background 

More details on the credit evaluation system can be found in Ben-David 
and Sterling (1986). 

An Equation Solver 

A very natural area for Prolog applications is symbolic manipulation. For 
example, a Prolog program for symbolic differentiation, a typical symbol 
manipulation task, is just the rules of differentiation in different syntax, 
as shown in Program 3.30. 

In this chapter, we present a program for solving symbolic equations. It 
is a simplification of PRESS (PRolog Equation Solving System), developed 
in the mathematical reasoning group of the Department of Artificial In- 
telligence at the University of Edinburgh. PRESS performs at the level of 
a mathematics student in her final year of high school. 

The first section gives an overview of equation solving with some exam- 
ple solutions. The remaining four sections cover the four major equation- 
solving methods implemented in the equation solver. 

23.1 An Overview of Equation Solving 

The task of equation solving can be described syntactically. Given an 
equation Lhs = Rhs in an unknown X, transform the equation into an 
equivalent equation X = Rhsl, where Rhsl does not contain X. Thls final 
equation is the solution. Two equations are equivalent if one is trans- 
formed into the other by a finite number of applications of the axioms 
and rules of algebra. 

Successful mathematics students do not solve equations by blindly 
applying axioms of algebra. Instead they learn, develop, and use various 
methods and strategies. Our equation solver, modeling t h s  behavior, is 
accordingly a collection of methods to be applied to an equation to be 
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(i) cos(x) . (1 - 2 . sin(x)) = 0 

(ii) x 2 - 3 - x + 2 = 0  

(iii) 22'x - 5 - 2X+1 + 16 = 0 

Figure 23.1 Test equations 

solved. Each method transforms the equation by applying identities of 
algebra expressed as rewrite rules. The methods can and do take widely 
different forms. They can be a collection of rules for solving the class of 
equations to whlch the method is applicable, or algorithms implementing 
a decision procedure. 

Abstractly, a method has two parts: a condition testing whether the 
method is applicable, and the application of the method itself. 

The type of equations our program can handle are indicated by the 
three examples in Figure 2 3.1. They consist of algebraic functions of the 
unknown, that is +, -, *, /, and exponentiation to an integer power, and 
also trigonometric and exponential functions. The unknown is x in all 
three equations. 

We briefly show how each equation is solved. 
The first step in solving equation (i) in Figure 23.1 is factorization. The 

problem to be solved is reduced to solving cos(x) = 0 and 1 - 2 . sin(x) = 

0. A solution to either of these equations is a solution to the original 
equation. 

Both the equations cos(x) = 0 and 1 - 2 . sin(x) = 0 are solved by mak- 
ing x the subject of the equation. T h s  is possible because x occurs once 
in each equation. 

The solution to cos(x) = 0 is arccos(0). The solution of 1 - 2 . sin(x) = 

0 takes the following steps: 

In general, equations with a single occurrence of the unknown can be 
solved by an algorithrmc method called isolation. The method repeatedly 
applies an appropriate inverse function to both sides of the equation 

until the single occurrence of the unknown is isolated on the left-hand 
side of the equation. Isolation solves 1 - 2 . sin(x) = 0 by producing the 
preceding sequence of equations. 

Equation (ii) in Figure 23.1, x2 - 3 . x + 2 = 0, is a quadratic equation in 
x.  We all learn in high school a formula for solving quadratic equations. 
The discriminant, b2 - 4 . a .  c ,  is calculated, in this case (-3)2 - 4 . 1 . 2, 
which equals 1, and two solutions are given: x = ( - ( - 3) + JT) / 2, which 
equals 2, and x = (-(-3) - dl) 12, whch equals 1. 

The key to solving equation (iii) in Figure 23.1 is to realize that the 
equation is really a quadratic equation in ZX. The equation 2?.* - 5 . 
ZX+'  + 16 = 0 can be rewritten as (2X)2 - 5 . 2 . 2X + 16 = 0. This can be 
solved for 2X, giving two solutions of the form Z X  =Rhs, where Rhs is 
free of x. Each of these equations are solved for x to give solutions to 
equation (iii). 

PRESS was tested on equations taken from British A-level examinations 
in mathematics. It seems that examiners liked posing questions such 
as equation (iii), which involved the student's manipulating logarithmic, 
exponential, or other transcendental functions into forms where they 
could be solved as polynomials. A method called homogenization evolved 
to solve equations of these types. 

The aim of homogenization is to transform the equation into a poly- 
nomial in some term containing the unknown. (We simplify the more 
general homogenization of PRESS for didactic purposes.) The method 
consists of four steps, whch we illustrate for equation (iii). The equa- 
tion is first parsed and all maximal nonpolynomial terms containing the 
unknown are collected with duplicates removed. This set is called the of- 
fenders set. In the example, it is {Z2*, ZX+'}. The second step is finding a 
term, known as the reduced term. The result of homogenization is a poly- 
nomial equation in the reduced term. The reduced term in our example is 
ZX. The third step of homogenization is finding rewrite rules that express 
each of the elements of the offenders set as a polynomial in the reduced 
term. Finding such a set guarantees that homogenization will succeed. In 
our example the rewrite rules are 22X = ( 2 X ) 2  and ZX+'  = 2 . ZX. Finally, 
the rewrite rules are applied to produce the polynomial equation. 

We complete this section with a brief overview of the equation solver. 
The basic predicate is solve-equation (Equation, X ,  Solution). The re- 
lation is true if Solution is a solution to Equation in the unknown X. The 
complete code appears as Program 23.1. 

PROYECTO
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solve-equation (Equation, Unknown,Solution) - 
Solution is a solution to the equation Equation 
in the unknown Unknown. 

solve~equation(A*B=0,X,Solution) - 
! ,  
f actorize(A*B,X,Factors\ [ I ) , 
remove-duplicates (Factors, Factorsl) , 
solve~factors(Factorsl,X,Solution). 

solve~equation(Equation,X,Solution) - 
single-occurrence (X ,Equation) , 

solve~equation(Lhs=Rhs,X,Solution) - 
polynomial (Lhs ,X) , 
polynomial(Rhs,X), 

! 9 

polynomial-normal-form(Lhs-Rhs,X,PolyForm), 
solve~polynomial~equation(PolyForm,X,~oluti~n~. 

The factorization method 
factorize (Expression,Subterm,Factors) - 

Factors is a difference-list consisting of the factors of 
the multiplicative term Expression that contain the Subterm. 

solve- factors (Factors, Unknown,Solution) - 
Solution is a solution of the equation Factor = 0 in the 
Unknown for some Factor in the list of Factors. 

solve-f actors( [Factor l Factors] ,X, solution) - 
solve~equation(Factor=O,X,~oluti~n). 

solve-f actors( [Factor I Factors] ,~,~olution) - 
solve~factors(Factors,X,Solution). 

The isolation method 
maneuver-sides(1,Lhs = Rhs,Lhs = Rhs) - ! .  

maneuver-sides(2,Lhs = Rhs,Rhs = Lhs) +- ! .  

Axioms for isolation 

isolax(1,-Lhs = Rhs,Lhs = -Rhs). % Unary minus 
isolax(l,Terml+Term2 = Rhs,Terml = Rhs-Term2). % Addition 
isolax(2,Terml+Term2 = Rhs,Term2 = Rhs-Terml). % Addition 

isolax(1,Terml-Term2 = Rhs,Terml = Rhs+Term2). % Subtraction 
isolax(2,Terml-Term2 = Rhs,Term2 = Terml-Rhs). % Subtraction 
isolax(l,Terml*Term2 = Rhs,Terml = Rhs/Term2) - % Multiplication 

Term2 f 0 .  
isolax(2,Terml*Term2 = Rhs,Term2 = Rhs/Terml) - % Multiplication 

Term1 # 0 .  

isolax(l,Terml~Term2 = Rhs,Terml = RhsT(-Term2)). 
% Exponentiation 

isolax(2,TermllTerm2 = Rhs,Term2 = log(base(Terml),Rhs)). 
% Exponentiation 

% Sine 
% Sine 
% Cosine 
% Cosine 

The polynomial method 

polynomial(Term,X) - See Program 11.4. 

polynomial- normal-form (Expression, Term,PolyNormalForm) - 
PolyNormalk'orm is the polynomial normal form of 
Expression, which is a polynomial in Term. 

Program 23.1 A program for solving equations Program 23.1 (Continued) 
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polynomial-f orm(Term1-Term2, X, PolyForm) - 
polynomial-form(Term1,X,PolyForml), 
polynomial-form(~erm2,X,PolyForm2), 
subtract~polynomials(PolyForm1 ,PolyForm2 ,~olyForm) 

polynomial-f orm(~erml*Term2, X , ~ o l ~ ~ o r m )  - 
polynomial~form(~erml,~,~oly~orml), 
polynomial~form(~erm2,X,~oly~orm2), 
multiply-polynomials (PolyForml , PolyForm2, ~ o l ~ ~ o r m )  

polynomial-form(~erm~~,X,~ol~~orm) - ! ,  
polynomial-form(Term,X,PolyForml), 
binomial(PolyForml,N,PolyForm). 

polynomial-f orm(Term,X, [(Term,O)l) - 
free-of(X,Term), ! .  

remove-zero-terms ( [ (0, N) I Polyl ,Polyl) - 
! , remove-zero-terms(Po1y ,Polyl) . 

remove-zero-terms([(~,~) IPoly] ,[(c,N) I~olyll) - 
C f 0, ! , remove-zero-terms(~o1~ ,~olyl). 

remove-zero-terms ( [ I , C I ) . 
Polynomial manipulation routines 

add-polynomials (Polyl ,PolyZ,Poly) - 
Poly is the sum of Polyl and Poly2, where Polyl, 
PolyZ, and Poly are all in polynomial form. 

add-polynomials( [ 1 ,Poly,Poly) - ! . 
add-polynomials(P~ly,[ ],Poly) - ! . 
add-polynomials( [(Ai ,Ni) I Polyl] , [(Aj ,Nj) 1~01~21 , [(~i ,Nil l~olyl) - 

Ni > Nj , ! , add-polynomials(Poly1, [(Aj , ~ j )  1~01~21 ,~oly). 
add-polynomials( [(Ai ,Ni) I Polyl] , [(Aj ,Nj) ~ 0 1 ~ 2 1  , [(A,N~) 1~01~1) - 

Ni = : = Nj , ! , A is Ai+Aj , add-polynomials (Polyl ,pol@ ,~oly) . 
add-polynomials( [(Ai ,Ni) l Polyll , [(Aj ,Nj) lPoly21 , [(Aj ,Nj) lpolyl) + 

Ni < Nj , ! , add-polynomials( [(Ai ,Ni) 1 Polyll , P O ~ ~ ~ , P O ~ Y ) .  

subtract-polynomials (Polyl ,Poly2,Poly) - 
Poly is the difference of Polyl and PolyZ, where Polyl, 
Poly2, and Poly are all in poljnomial form. 

subtract-polynomials (Polyl ,Poly2 ,Poly) - 
multiply-single(Poly2, (-1 ,o) ,~oly3), 
add-polynomials(Polyi ,Poly3,~oly), ! . 

multiply-single(Polyl,Monomial,Poly) - 
Poly is the product of Polyl and Monomial, where Polyl 
and Poly are in polynomial form, and Monomial has the 
form ( C , N )  denoting the monomial C*X"'. 

multiply-single( C(C1 ,N1) IPolyl] , (C,N) , [(~2,~2) I~olyl) - 
C2 is Cl*C, N2 is Nl+N, multiply-single(Polyl, (c,N) ,~oly) 

multiply-single( [ I ,Factor, [ 1 ) . 

multiply-polynomials (Polyl ,PolyZ,Poly) - 
Poly is the product of Polyl and Poly2, where Polyl, 
Poly2, and Poly are all in polynomial form. 

Polynomial equation solver 

solve-polynomial-equation (Equation, Unknown,Solution) - 
Solution is a solution to the polynomial Equation in the unknown 
Unknown. 

The homogenization method 
homogenize(Equation,XEquation1 ,XI) - 

The Equation in X is transformed to the polynomial 
Equation1 in X 1  where X 1  contains X. 

Program 23.1 (Continued) 
Program 23.1 (Continued) 



Chapter 23 A n  Equation Solver 

offenders (Equation, Unknown,Offenders) - 
Offenders is the set of offenders of the Equation in the Unknown. 

offenders (Equation, X, Of f enders) - 
parse(~quation,X,Off endersl\ [ ] ) , 
remove-duplicates(Offendersl,Offenders), 
multiple(Offenders). 

reduced-term(x,Off enders,Type,Xl) - 
classify(Offenders,~,Type), 
candidate(Type,Offenders,X,Xl). 

Heuristics for exponential equations 

classify(Offenders,X,exponential) - 
exponential-offenders(Offenders,X). 

exponential~offenders([A~BlOffsI,X) - 
free-of (X,A), subterm(X,B) , exponential-off enders(0ff s ,XI. 

exponent ial-of f enders ( [ 1 , X) . 
candidate(exponential,Offenders,X,ATX) - 

base(Offenders,A), polynomial~exponents(~ffenders,X). 

base([AtBlOffs] ,A) - base(Offs,A). 
base([ I ,A). 
polynomial-exponents([ATBlOffsl,X) - 

polynomial(B,X), polynomial~exponents(Offs,X). 

polynomial-exponents([ ],XI. 

Parsing the equation and making substitutions 

parse(Expression, Term,Offenders) - 
Expression is traversed to produce the set of Offenders in Term, 
that is, the nonalgebraic subterms of Expression containing Term. 

parse(A+B,X,Ll\L2) - 
! , ~arse(A,X,Ll\L3), parse(B,X,L3\L2). 

~arse(~*~,X,Ll\L2) - 
! , parse(A,X,Ll\L3), parse(B,~,~3\~2). 

~arse(~-~,X,Ll\L2) - 
! ,  ~arse(A,X,Ll\L3), parse(B,X,L3\L2). 

parse(A=B,X,Ll\L2) - 
! , ~arse(A,X,Ll\L3), parse(B,X,LB\L2). 

parse(AlB,X,L) - 
integer(B1, ! ,  parse(A,X,L). 

parse(A,X,L\L) - 
f ree-of (X ,A) , ! . 

parse(A,X, [A ILI \L) - 
subterm(X,A), ! .  

Program 23.1 (Continued) 

substitute (Expression,Substitutions,Expression1) - 
The list of Substitutions is applied to Expression to produce 
Expressionl. 

Finding homogenization rewrite rules 

rewrite( [Off 1 Off s] ,Type ,Xl, [Off=Terml Rewrites] ) + 

homogenize-axiom(Type,Off,Xl,Term), 
rewrite(Offs,Type,Xl,Rewrites). 

rewrite([ 1 ,Type,X, C 1). 
Homogenization axioms 

homogenize~axiom(exponential,AT(N*X),A~X,~A~X)TN), 
homogenize-axiom(exponential,AT(-X),A~X,l/(ATX)). 
homogenize~axiom(exponential,Af(X+B),AfX,AtB*AfX). 

Utilities 

subterm(Sub , Term) - See Program 9.2. 

position(Term,Term, [ 1 ) - ! . 
position(Sub,Term,Path) - 

compound(Term) , functor(Term,F,N) , position(N,Sub,Term,Path) , ! . 

position(N,Sub,Term, [N I Path] ) - 
arg(N,Term,Arg) , position(Sub,Arg,Path) . 

position(N,Sub,Term,Path) - 
N > 1, N1 is N-1, position(Nl,Sub,Term,Path). 

occurrence(Term,Term,1) - ! .  
occurrence(Sub,Term,N) - 

compound(Term) , ! , functor (Term,F,M) , occurrence (M, Sub ,Term,O ,N) . 
occurrence (Sub,Term,O) - Term f Sub. 

Program 23.1 (Continued) 
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occurrence(M,Sub,Term,Nl,N2) - 
M > 0, ! , arg(M,Term,Arg) , occurrence(~ub,~r~,~), N3 is N+N1, 
M1 is M-1, occurrence(M1,Sub,Term,N3,N2). 

occurrence(O,Sub,Term,N,N). 

remove-duplicates(Xs ,Ys) - no-doubles (Xs ,Ys). 
no-doubles(xs ,YS) - See Program 7.9. 

multiple(~X1,X2~Xs~). 

Testing and data 

test-press(X,Y) - equation(X,E,U), s ~ l v e - e ~ u a t i o n ( ~ , ~ , ~ ) .  

equation(l,cos(x)*(l-2*sin(x))=O,x). 

equation(2,xt2-3*~+2=0,~). 

equation(3,2T(2*~)-5*2t(x+1)+16=0,~). 

Program 23.1 (Continued) 

Program 23.1 has four clauses for solve-equation, one for each of 
the four methods needed to solve the equations in Figure 23.1. More 
generally, there is a clause for each equation-solving method. The full 
PRESS system has several more methods. 

Our equation solver ignores several features that might be expected. 
There is no simplification of expressions, no rational arithmetic, no 
record of the last equation solved, no help facility, and so forth. PRESS 
does contain many of these facilities as discussed briefly in Section 23.6. 

2 3.2 Factorization 

Factorization is the first method attempted by the equation solver. Note 
that the test whether factorization is applicable is trivial, being unifica- 
tion with the equation A * B = 0. If the test succeeds, the simpler equa- 
tions are recursively solved. The top-level clause implementing factoriza- 
tion is 

The top-level clause in Program 23.1 has a cut as the first goal in the 
body. Thls is a green cut: none of the other methods depend on the 
success or failure of factorization. In general, we omit green cuts from 
clauses we describe in the text. 

23.3 Isolation 

A useful concept to locate and manipulate the single occurrence of the 
unknown is its position. The position of a subterm in a term is a list of 
argument numbers specifying where it appears. Consider the equation 
cos(x) = 0. The term cos(x) containing x is the first argument of the 
equation, and x is the first (and only) argument of cos(x). The position 
of x in cos(x) = 0 is therefore [1,1]. Thls is indicated in the diagram in 
Figure 23.2. The figure also shows the position of x in 1 - 2 . sin(x) = 0 
which is [1,2,2,1]. 

The clause defining the method of isolation is 

solve-equation(Equation,X,Solution) - 
single-occurrence (X, Equation) , 
position(X,Equation,[SidelPosition]), 
maneuver-sides (Side, Equation, Equationl) , 
isolate(Position,Equationl,Solution). 

/ \  
COS 0 

/ \ 
2 sin 

I 
X 

Figure 23.2 Position of subterms in terms 
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The condition characterizing when isolation is applicable is that there 
be a single occurrence of the unknown X in the equation, checked by 
single-occurrence. The method calculates the position of X with the 
predicate position. The isolation of X then proceeds in two stages. First, 
maneuver-sides ensures that X appears on the left-hand side of the 
equation, and second, isolate makes it the subject of the formula. 

It is useful to define single-occurrence in terms of the more general 
predicate occurrence (Subterm, Term, N) , which counts the number of 
times N that Subterm occurs in the term Term. Both occurrence and 
position are typical structure inspection predicates. Both are posed as 
exercises at the end of Section 9.2. Code for them appears in the utilities 
section of Program 23.1. 

The predicate maneuver-sides ( N ,  Equat ion, Equat ion11 consists of 
two facts: 

rnaneuver-sides (I, Lhs = Rhs , Lhs = Rhs) . 
maneuver-sides (2, Lhs = Rhs ,Rhs = Lhs) . 

Its effect is to ensure that the unknown appears on the left-hand side of 
Equationl. The first argument N, the head of the position list, indicates 
the side of the equation in which the unknown appears. A 1 means the 
left-hand side, and the equation is left intact. A 2 means the right-hand 
side, and so the sides of the equation are swapped. 

The transformation of the equation is done by isolate/3. It repeatedly 
applies rewrite rules until the position list is exhausted: 

isolate( [N [Position] , ~ ~ u a t i o n ,  ~solated~~uation) - 
isolax(N,Equation,Equationl) , 
isolate(Position,Equationl,~solated~quati~n~. 

isolate([ I ,Equation,Equation) . 

The rewrite rules, or isolation axioms, are specified by the predicate 
isolax (N ,Equation, Equat ionl) . Let us consider an example used in 
solving 1 - 2 . sin(x) = 0. An equivalence transformation on equations 
is adding the same quantity to both sides of an equation. We show its 
translation into an isolax axiom for manipulating equations of the form 
u - v = w. Note that rules need only simplify the left-hand side of equa- 
tions, since the unknown is guaranteed to be on that side. 

Two rules are necessary to cover the two cases whether the first or 
second argument of u - v contains the unknown. The term u - v = w 

can be rewritten to either u = w + v or Y = u - w. The first argument of 
isolax specifies whch argument of the sum contains the unknown. The 
Prolog equivalent of the two rewrite rules is then 

isolax(l,Terml-Term2 = Rhs,Terml = Rhs+Term2). 
isolax(2,Terml-Term2 = Rhs,Term2 = Terml-Rhs). 

Other isolation axioms are more complicated. Consider simplifying a 
product on the left-hand side of an equation. One of the expected rules 
would be 

If Term2 equals zero, however, the rewriting is invalid. A test is therefore 
added that prevents the axioms for multiplication being applied if the 
term by whch it divides is 0. For example, 

Isolation axioms for trigonometric functions illustrate another possi- 
bility that must be catered for - multiple solutions. An equation such as 
sin(x) = 112 that is reached in our example has two solutions between 0 
and 2 . n. The alternative solutions are handled by having separate iso- 
lax axioms: 

In fact, the equation has a more general solution. Integers of the form 
2 . n . n can be added to either solution for arbitrary values of n. The 
decision whether a particular or general solution is desired depends on 
context and on semantic information independent of the equation solver. 

Further examples of isolation axioms are given in the complete equa- 
tion solver, Program 23.1. 

The code described so far is sufficient to solve the first equation in Fig- 
ure 23.1, cos(x) . (1 - 2 . sin(x))  = 0. There are four answers arccos(O), 
- arccos(O), arcsin((1 - 0) 121, n - arcsin((1 - 0) 12). Each can be simpli- 
fied, for example, arcsin((1 - 0)/2)  to nI6,  but will not be unless the 
expression is explicitly evaluated. 

The usefulness of an equation solver depends on how well it can per- 
form such simplification, even though simplification is not strictly part 
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of the equation-solving task. Writing an expression simplifier is nontriv- 
ial, however. It is undecidable whether two expressions are equivalent in 
general. Some simple identities of algebra can be easily incorporated, for 
example, rewriting 0 + u to u. Choosing between other preferred forms, 
e.g., (1 + x ) b n d  1 + 3  . x + 3  . x2 + x3, depends on context. 

2 3.4 Polynomial 

Polynomial equations are solved by a polynomial equation solver, apply- 
ing various polynomial methods. Both sides of the equation are checked 
as to whether they are polynomials in the unknown. If the checks are 
successful, the equation is converted to a polynomial normal form by 
polynomial-normal-f orm, and the polynomial equation solver solve- 
polynomial-equation is invoked: 

solve~equation(Lhs=Rhs,X,Solution) - 
polynomial (Lhs , X) , 
polynomial (Rhs , X) , 
polynomial~normal~form(Lhs-Rhs,X,~ol~Form), 
solve~polynomial~equation(PolyForm,X,Sol~ti~~~. 

The polynomial normal form is a list of tuples of the form (A,,Ni), 
where A, is the coefficient of PI, which is necessarily nonzero. The tuples 
are sorted into strictly decreasing order of N,; for each degree there is at 
most one tuple. For example, the list [ ( I ,  2 ) ,  ( - 3 ,  l ) ,  (2 ,  O ) ]  is the normal 
form for x2 - 3  . x + 2. The leading term of the polynomial is the head of 
the list. The classic algorithms for handling polynomials are applicable to 
equations in normal form. Reduction to polynomial normal form occurs 
in two stages: 

The predicate polynomial-f orm(X ,Polynomial ,PolyForm) decom- 
poses the polynomial. PolyForm is a sorted list of coefficient-degree 
tuples, where tuples with zero coefficients may occur. 

It is convenient for many of the polynomial methods to assume that 
all the terms in the polynomial form have nonzero coefficients. There- 

fore the.fina1 step of polynomial-normal-f orm is removing those terms 
whose coefficients are zero. Ths  is acheved by a simple recursive proce- 
dure remove-zero-terms. 

The code for polynomial-f orm directly echoes the code for polyno- 
mial. For each clause used in the parsing process, there is a correspond- 
ing clause giving the resultant polynomial. For example, the polynomial 
form of a term xn is [ ( I ,  n)] ,  whch is expressed in the clause 

The recursive clauses for polynomial-f orm manipulate the polynomi- 
als in order to preserve the polynomial form. Consider the clause 

polynomial~form(Poly1+Poly2,X,PolyF~rm) - 
polynomial-f orm(Poly1, X ,PolyForml) , 
polynomial-f orm(Poly2 ,X, PolyForm2), 
add~polynomials(PolyForml,PolyForm2,PolyForm). 

The procedure add-polynomials contains an algorithm for adding poly- 
nomials in normal form. The code is a straightforward list of the possi- 
bilities that can arise: 

add-polynomials ( [ ] , Poly , Poly) . 
add-polynomials(Poly, [ 1 ,Poly) . 
add-polynomials( [(Ai ,Ni) IPolylI , [(Aj ,Nj) 1 Poly21 , [(Ai,Ni) IPoly]) - 

Ni > Nj , add-polynomials(Polyl, [(Aj ,Nj) lPoly21 ,Poly). 
add-polynomials( [(Ai ,Ni) (Polyll , [(Aj ,Nj) I Poly21 , [(A,Ni) IPoly] - 

Ni =:= Nj, A is Ai+Aj, add-polynomials(Poly1,Poly2,Poly). 
add-polynomials([(Ai,Ni) lPolyl], [(Aj,Nj) lPoly2], [(~j,Nj)~PolyI) - 

Ni < Nj, add-polynomials([(Ai,Ni) ~Polyl],Poly2,Poly). 

Similarly, the procedures subtract-polynomials, multiply-polyno- 
mials, and binomial are algorithms for subtracting, multiplying, and 
binomially expanding polynomials in normal form to produce results in 
normal form. The subsidiary predicate multiply-single(Poly1 ,Mono- 
mial, Poly2) multiplies a polynomial by a monomial (C,N) to produce a 
new polynomial. 

Once the polynomial is in normal form, the polynomial equation solver 
is invoked. The structure of the polynomial solver follows the structure 
of the overall equation solver. The solver is a collection of methods that 
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are tried in order to see whch is applicable and can be used to solve the 
equation. The predicate solve-polynomial-equation is the analogous 
relation to solve-equation. 

The second equation in Figure 23.1 is quadratic and can be solved with 
the standard formula. The equation solver mirrors the human method. 
The polynomial is identified as being suitable for the quadratic method 
by checking (with quadratic) if the leading term in the polynomial is of 
second degree. Since zero terms have been removed in putting the poly- 
nomial into its normal form, pad puts them back if necessary. The next 
two steps are familiar: calculating the discriminant, and returning the 
roots according to the value of the discriminant. Again multiple solutions 
are indicated by having multiple possibilities: 

solve~polynomial~equation(Poly,X,Solution~ - 
quadratic (Poly) , 
pad(Poly, [(A,2), (B, I), (C,0)1), 
discriminant(A,B,C,Discriminant), 
root(X,A,B,C,Discriminant,Solution). 

discriminant (A, B, C,D) - D is (B*B - 4*A*C) . 

Other clauses for solve-polynomial-equation constitute separate 
methods for solving different polynomial equations. Linear equations 
are solved with a simple formula. In PRESS, cubic equations are handled 
by guessing a root and then factoring, reducing the equation to a qua- 
dratic. Other tricks recognize obvious factors, or that quartic equations 
missing a cubic and a linear term are really disguised quadratics. 

23.5 Homogenization 

The top-level clause for homogenization reflects the transformation of 
the original equation into a new equation in a new unknown, which is 
recursively solved; its solution is obtained for the original unknown: 

The code for homogenize/4 implements the four stages of homoge- 
nization, described in Section 23.1. The offenders set is calculated by 
off enders/3, whch checks that there are multiple offenders. If there is 
only a single offender, homogenization will not be useful: 

homogenize(Equation,X,Equationl,Xl) - 
offenders (Equation, X, Of f enders) , 
reduced-term(X,Offenders,Type,Xl), 
rewrite(0ffenders,Type,X1,Substitutions), 
substitute(Equation,Substitutions,Equationl). 

The predicate reduced_term/4 finds a reduced term, that is, a candi- 
date for the new unknown. In order to structure the search for the re- 
duced term, the equation is classified into a type. This type is used in the 
next stage to find rewrite rules expressing each element of the offenders 
set as an appropriate function of the reduced term. The type of the exam- 
ple equation is exponential. PRESS encodes a lot of heuristic knowledge 
about finding a suitable reduced term. The heuristics depend on the type 
of the terms appearing in the offenders set. To aid the structuring (and 
retrieval) of knowledge, finding a reduced term proceeds in two stages - 
classifying the type of the offenders set, and finding a reduced term of 
that type: 

reduced-term(X, Of f enders, Type ,XI) + 

classif y(0f f enders ,X,Type) , 
candidate(Type,Offenders,X,Xl). 

We look at the set of rules appropriate to our particular equation. 
The offenders set is of exponential type because all the elements in the 
offenders set have the form AB, where A does not contain the unknown 
but B does. Standard recursive procedures check that thls is true. 

The heuristic used to select the reduced term in this example is that if 
all the bases are the same, A, and each exponent is a polynomial in the 
unknown, X, then a suitable reduced term is AX: 
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candidate(exponential,Offenders,X,AtX) - 
base (Offenders ,A) , polynomial-exponents (offenders , X) 

The straightforward code for base and polynomial-exponents is in the 
complete program. The heuristics in PRESS are better developed than the 
ones shown here. For example, the greatest common divisor of all the 
leading terms of the polynomials is calculated and used to choose the 
reduced term. 

The next step is checking whether each member of the offenders set 
can be rewritten in terms of the reduced term candidate. Ths  involves 
finding an appropriate rule. The collection of clauses for homogenize- 
axiom constitute the possibly applicable rewrite rules. In other words, 
relevant rules must be specified in advance. The applicable rules in t h s  
case are 

Substituting the term in the equation echoes the parsing process used 
by offenders as each part of the equation is checked to see whether it is 
the appropriate term to rewrite. 

Exercises for Chapter 23 

(i) Add isolation axioms to Program 23.1 to handle quotients on the 
left-hand side of the equation. Solve the equation x / 2  = 5 .  

(ii) Add to the polynomial equation solver the ability to solve disguised 
linear and disguised quadratic equations. Solve the equations 2 . 
x 3 - 8 = x 3 , a n d x 4 - 5 . x G 6 = 0 0 .  

(iii) The equation cos(2 . x )  - sin(x) = 0 can be solved as a quadratic 
equation in sin(x) by applying the rewrite rule cos(2 . x )  = 1 - 2 . 
sin2(x).  Add clauses to Program 23.1 to solve t h s  equation. You 
will need to add rules for identifying terms of type trigonometric, 
heuristics for finding trigonometric reduced terms, and appropriate 
homogenization axioms. 

(v) Modify Program 23.1 so that it solves simple simultaneous equa- 
tions. 

23.6 Background 

Symbolic manipulation was an early application area for Prolog. Early 
examples are programs for symbolic integration (Bergman and Kanoui, 
1973) and for proving theorems in geometry (Welham, 1976). 

The PRESS program, from whch Program 23.1 is adapted, owes a debt 
to many people. The original version was written by Bob Welham. Many 
of the researchers in the mathematical reasoning group worlung with 
Alan Bundy at the University of Edinburgh subsequently t~nkered with 
the code. Published descriptions of the program appear in Bundy and 
Welham (1981), Sterling et al. (1982), and Silver (1986). The last reference 
has a detailed discussion of homogenization. 

PRESS includes various modules, not discussed in t h s  chapter, that 
are interesting in their own right: for example, a package for inter- 
val arithmetic (Bundy, 1984), an infinite precision rational arithmetic 
package developed by Richard O'Keefe, and an expression simplifier 
based on difference-structures as described in Section 15.2, developed by 
Lawrence Byrd. The successful integration of all these modules is strong 
evidence for the practicality of Prolog for large programming projects. 

The development of PRESS showed up classic points of software engi- 
neering. For example, at one stage the program was being tuned prior 
to publishng some statistics. Profiling was done on the program, whch 
showed that the predicate most commonly called was f ree-of. Rewriting 
it as suggested in Exercise 23(iv) resulted in a speedup of 35 percent in 
the performance of PRESS. 

Program 23.1 is a considerably cleaned-up version of PRESS. Tidying 
the code enabled further research. Program 23.1 was easily translated to 
other logic programming languages, Concurrent Prolog and FCP (Sterling 
and Codish, 1986). Malung the conditions when methods were used more 
explicit enabled the writing of a program to learn new equation-solving 
methods from examples (Silver, 1986). 

(iv) Rewrite the predicate f ree-of (Term,X) so that it fails as soon as it 
finds an occurrence of X in Term. 



A Compiler 

Our final application is a compiler. The program is presented top-down. 
The first section outlines the scope of the compiler and gives its defini- 
tion. The next three sections describe the three major components: the 
parser, the code generator, and the assembler. 

-- - - - - -- -- - 

24.1 Overview of the Compiler 

The source language for the compiler is PL, a simplified version of Pascal 
designed solely for the purposes of this chapter. It contains an assign- 
ment statement, an if-then-else statement, a while statement, and simple 
1/0 statements. The language is best illustrated with an example. Fig- 
ure 24.1 contains a program for computing factorials written in PL. A 
formal definition of the syntax of the language is implicit in the parser 
in Program 24.1. 

The target language is a machine language typical for a one-accumu- 
lator computer. Its instructions are given in Figure 24.2. Each instruction 
has one (explicit) operand, which can be one of four things: an integer 
constant, the address of a storage location, the address of a program 
instruction, or a value to be ignored. Most of the instructions also have a 
second implicit operand, which is either the accumulator or its contents. 
In addition, there is a pseudoinstruction block that reserves a number of 
storage locations as specified by its integer operand. 

The scope of the compiler is clear from its behavior on our example. 
Figure 24.3 is the translation of the PL program in Figure 24.1 into ma- 
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program f a c t o r i a l ;  
begin 

read  va lue ;  
count := 1 ;  
r e s u l t  := 1; 
while  count < va lue  do 

begin 
count := count+l ;  
r e s u l t  :=  resu l t*count  

end ; 
w r i t e  r e s u l t  

end 

Figure 24.1 A PL program for computing factorials 

Ari thmetic  

L i t e r a l s  Memory 

addc add 

subc sub 

mulc mu1 

d i v c  d i v  

loadc load  

s t o r e  

Control  I/O, e t c .  

jumpeq read  

jumpne w r i t e  

jumplt h a l t  

j umpgt 
jumple 

j umpge 

jump 

Figure 24.2 Target language instructions 

chne language. The compiler produces the columns labeled Instruction 
and Operand. 

The task of compiling can be broken down into the five stages given 
in Figure 24.4. The first stage transforms a source text into a list of 
tokens. The list of tokens is parsed in the second stage, syntax analysis, 
to give a source structure. The thlrd and fourth stages transform the 
source structure into relocatable code and assemble the relocatable code 
into absolute object code, respectively. The final stage outputs the object 
program. 

Our compiler implements the middle three stages. Both the first stage 
of lexical analysis and the final output stage are relatively uninteresting 
and are not considered here. The top level of the code handles syntax 
analysis, code generation, and assembly. 

Symbol Address I n s t r u c t i o n  Operand Symbol 

1 
2 
3 
4 
5 

LABEL1 6 
7 
8 
9 

10 
11 
12 
13  
14 
15 

LABEL2 16 
17 
18 

COUNT 19 
RESULT 20 
VALUE 21 

READ 
LOADC 
STORE 
LOADC 
STORE 
LOAD 
SUB 
JUMPGE 
LOAD 
ADDC 
STORE 
LOAD 
MUL 
STORE 
JUMP 
LOAD 
WRITE 
HALT 
BLOCK 

21 VALUE 
1 

19 COUNT 
20 
20 RESULT 
19 COUNT 
21 VALUE 
16 LABEL2 
19 COUNT 
1 

19 COUNT 
20 RESULT 
19 COUNT 
20 RESULT 

6 LABEL 1 
20 RESULT 

0 
0 
3 

Figure 24.3 Assembly code version of a factorial program 

Object Object 

Structure 

Lexical Syntax Code Assembly - 
~ n a l ~ s i s ,  Analysis *  ene era ti on) 

Object 
Program 

Output c 
Figure 24.4 The stages of compilation 

The basic predicate compile(Tokens,ObjectCode) relates a list of to- 
kens Tokens to the Objectcode of the program the tokens represent. 
The compiler compiles correctly any legal PL program but does not han- 
dle errors; that is outside the scope of t h s  chapter. The list of tokens 
is assumed to be input from some previous stage of lexical analysis. 
The parser performing the syntax analysis, implemented by the predi- 
cate parse, produces from the Tokens an internal parse tree Structure. 

PROYECTO
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compile ( Tokens,ObjectCode) - 
Objectcode is the result of compilation of 
a list of Tokens representing a PL program. 

compile(~okens,ObjectCode) - 
parse(Tokens,Structure), 
encode(Structure,Dictionary,Code), 
assemble(Code,Dictionary,0bjectCode). 

The parser 

parse( Tokens,Structure) - 
Structure represents the successfully parsed list of Tokens. 

parse(Source,Structure) - 
pl~program(Structure,Source\[ I). 

pl-program(S) - [program] , identif ier(X) , [ ' ; ' I  , statement (S) . 

statement ((S; Ss)) - 
[begin], statement(S), rest-statements(Ss). 

statement(assign(X,V)) - 
identifier(X), [':='I, expression(V). 

statement(if(T,Sl,S2)) - 
[if] , test (TI , [then] , statement (S1) , [else] , statement (~2) . 

statement (while(T,S)) - 
[while] , test (T) , [do] , statement (S) . 

statement (read(X) - 
[read] , identifier (X) . 

statement(write(X)) - 
[write], expression(X) . 

rest-statements((S;Ss)) - [';'I, statement(S1, rest-statements(Ss) 
rest-statements(void) - [end] . 
expression(X) - pl-constant (X) . 
expression(expr(Op,X,Y)) - 

pl-constant(X), arithmetic-op(Op), expression(Y). 

arithmetic-op('+') - ['+'I. 
arithmetic-op('-') - ['-'I. 
arithmetic-op('*') - ['*'I. 
arithmetic-op('/') - ['/'I. 
pl-constant(name(l0 - identifier()(). 
pl-constant(number(X)) - pl-integer()(). 
identif ier(X) - [XI ,   atom(^)}. 
pl-integer()() - [XI , {integer(x)}. 
test(compare(Op,X,Y)) - 

expression(X) , comparison-op(Op), expression(Y) . 

The codegenerator 
encode(Structure,Dictionary,RelocatableCode) - 

RelocatableCode is generated from the parsed Structure 
building a Dictionary associating variables with addresses. 

encode((X;Xs),D,(Y;Ys)) - 
encode(X,D,Y), encode(Xs,D,Ys). 

encode(void,D,no-op). 
encode(assign(Name,E),D,(Code; instr(store,Address))) - 

lookup(Name,D,Address), encode-expression(E,D,Code). 
encode(if(Test,Then,Else),D, 

(TestCode; Thencode; instr(jump,L2) ; 
label(L1); Elsecode; label(L2))) - 

encode-test(Test,Ll,D,TestCode), 
encode(Then,D,ThenCode), 
encode(Else,D,ElseCode). 

encode(while(Test,Do),D, 
(label(L1); TestCode; DoCode; instr(jump,Ll); label(L2))) - 

encode-test(Test,L2,D,TestCode), encode(Do,D,DoCode). 
encode(read(X),D,instr(read,Address)) - 

lookup(X,D,Address). 
encode(write(E),D,(Code; instr(write,O))) - 

encode-expression(E,D,Code). 

encode-expression (Expression,Dictionary, Code) - 
Code corresponds to an arithmetic Expression. 

encode~expression(expr(Op,E1,E2),D,Code) - 
not single~instruction(0p,E2,D,Instruction), 
single-operation(Op,EI,D,E2Code,Code), 
encode-expression(E2,D,E2Code). 

Program 24.1 (Continued) 

Program 24.1 A compiler from PL to machine language 
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single-instruction(0p ,number (C) ,D, instr (0p~ode ,C)) - 
literal-operation(Op,OpCode). 

single-instruction(Op,name (XI ,D, instr(0pCode ,A)) - 
memory-operation(Op,OpCode), lookup(X,D,A). 

single~operation(0p,E,D,Code,(Code;Instruction~~ - 
commutative(Op), single~instruction(Op,E,D,~nstruction). 

single-operation(Op,E,D,Code, 
(Code; instr(store,Address) ;Load; instr(0pCode Address ) )  + 

not commutative(Op), 
lookup('$temp',D,Address), 
encode-expression(E,D,Load), 
op-code(E,Op,OpCode). 

op-code (number (C) , Op ,OpCode) - literal-operation(Op, OpCode) . 
op-code (name (X) , Op, OpCode) - memory-operation(Op, OpCode) . 
literal-operation( ' + '  , addc) . memory-operation( '+'  ,add). 
literal-operation('-',subc). memory-operation('-',sub). 
literal~operation('*',mulc). memory-operation('*',mul). 
literal-operation('/' ,divc) . memory-operation('/' ,div) . 

commutative('+'). commutative ( ' * ' . 
encode-test(compare(Op,El,E2),Label,D, 

(Code;instr(OpCode,Label))) - 
comparison~opcode(0p,OpCode), 
encode-expression(expr ( '-' ,El ,E2) ,D ,Code). 

comparison-opcode('=' , jumpne) . comparison-opcode( f ' , jumpeq) . 
comparison~opcode('>',jumple). comparison~opcode('2',jumplt). 
comparison-opcode ( ' < ' , jumpge) . comparison-opcode( ' I ' , jumpgt) . 
lookup(Name,Dictionary,Address) - See Program 15.9. 

The assembler 
assemble( Code,Dictionary, TidyCode) - 

TidyCode is the result of assembling Code removing 
no-ops and labels, and filling in the Dictionary. 

assemble(Code,Dictionary,TidyCode) - 
tidy-and-count (Code, 1 ,N,TidyCode\(instr(halt ,O) ;block(L))), 
N1 is N+1, 
allocate(Dictionary,Nl,N2), 
L is N2-N1, ! .  

tidy-and-count ( (Codel ;Code2) ,M,N,TCodel\TCode2) - 
tidy~and~count(Codel,M,M1,TCodel\Rest), 
tidy-and-count(Code2,M1,N,Rest\TCode2). 

tidy-and-count(instr(X,Y),N,Nl,(instr(~,~);~ode)\Code) - 
N1 is N+1. 

tidy-and-count (label (N) ,N ,N,Code\Code) . 
tidy-and-count(no-op,N,N,Code\Code). 

Program 24.1 (Continued) 

allocate(void,N,N). 
allocate(dict (Name,Nl ,Bef ore, After) ,NO,N) - 

allocate (Bef ore ,NO ,Nil, 
N2 is N1+1, 
allocate(After ,N2,N) . 

Program 24.1 (Continued) 

program(f actorial, 
[program,factorial,';' 
,begin 

,read,value,';' 
,count,':=',l,';' 
,result,':=',l,';' 
,while,count,'~',value,do 

,begin 
,count,':=',count,'+',l,';' 
,result,':=',result,'*',count 

end,'; ' 
,write,result 

, end] ) . 

Program 24.2 Test data 

The structure is used by the code generator encode to produce relocat- 
able code Code. A dictionary associating variable locations to memory 
addresses and keeping track of labels is needed to generate the code. 
This is the second argument of encode. Finally, the relocatable code is 
assembled into object code by assemble with the aid of the constructed 
Dictionary. 

The testing data and instructions for the program are given as Pro- 
gram 24.2. The program factorial is the PL program of Figure 24.1 trans- 
lated into a list of tokens. The two small programs consist of a single 
statement each, and test features of the language not covered by the 
factorial example. The program test1 tests compilation of a nontrivial 
arithmetic expression, and test2 checks the if-then-else statement. 
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24.2 The Parser 
statement ((S;Ss)) - 

[begin] , statement (S) , rest-statements (Ss) . 

The parser proper is written as a definite clause grammar, as described 
in Chapter 19. The predicate parse as given in Program 24.1 is just an 
interface to the DCG, whose top-level predicate is pl-program. The DCG 
has a single argument, the structure corresponding to the statements, as 
described later. A variant of Program 18.9 is assumed to translate the 
DCG into Prolog clauses. The convention of that program is that the last 
argument of the predicates defined by the DCG is a difference-list: 

parse (Source, Structure) - 
pl-program(Structure, Source\ [ 1 . 

The first statement of any PL program must be a program statement. A 
program statement consists of the word program followed by the name 
of the program. We call words that must appear for rules of the grammar 
to apply standard identifiers, the word program being an example. The 
name of the program is an identifier in the language. What constitutes 
identifiers, and more generally constants, is discussed in the context of 
arithmetic expressions. The program name is followed by a semicolon, 
another standard identifier, and then the program proper begins. The 
body of a PL program consists of statements or, more precisely, a sin- 
gle statement that may itself consist of several statements. All thls is 
summed up in the top-level grammar rule: 

pl-program(S) - 
[program] , identifier (XI, [ '  ; 'I , statement (S) . 

The structure returned as the output of the parsing is the statement 
constituting the body of the program. For the purpose of code genera- 
tion, the top-level program statement has no significance and is ignored 
in the structure built. 

The first statement we describe is a compound statement. Its syntax 
is the standard identifier begin followed by the first statement, S, say, 
in the compound statement, and then the remaining statements Ss. The 
structure returned for a compound statement is (S; Ss), where ; is used 
as a two-place infix functor. Note that S, Ss, or both may be compound 
statements or contain them. The semicolon is chosen as functor to echo 
its use in PL for denoting sequencing of statements: 

Statements in PL are delimited by semicolons. The rest of the state- 
ments are accordingly defined as a semicolon followed by a nonempty 
statement, and recursively the remaining statements: 

rest-statements( (S;Ss)) - 
[' ; '1 , statement (S) , rest-statements(Ss) . 

The end of a sequence of statements is indicated by the standard iden- 
tifier end. The atom void is used to mark the end of a statement in the 
internal structure. The base case of rest-statements is therefore 

rest-statements (void) - [end] . 
The above definition of statements precludes the possibility of empty 

statements. Programs and compound statements in PL cannot be empty. 
The next statement to discuss is the assignment statement. It has a 

simple syntactic definition - a left-hand side, followed by the standard 
identifier is, followed by the right-hand side. The left-hand side is re- 
stricted to being a PL identifier, and the right-hand side is any arithmetic 
expression whose definition is to be given: 

statement (assign(X,E) ) - 
identif ier(X), [ '  :='I , expression(E) . 

The structure returned by the successful recognition of an assignment 
statement has the form assign(X, E) . The (Prolog) variable E represents 
the structure of the arithmetic expression, and X is the name of the 
(PL) variable to be assigned the value of the expression. It is implicitly 
assumed that X will be a PL identifier. 

For simplicity of both code and explanation, we restrict ourselves to 
a subclass of arithmetic expressions. Two rules define the subclass. An 
expression is either a constant or a constant followed by an arithmetic 
operator and recursively an arithmetic expression. Examples of expres- 
sions in the subclass are x, 3, 2 . t and x + y - 212, the expression in the 
first test case in Program 24.2: 

expression()o - pl-constant (X) . 
expression(expr (Op,X,Y)) - 

pl-constant (X) , arithmetic-op(Op), expression(Y) . 
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T h s  subclass of expressions does not respect the standard precedence 
of arithmetic operators. The expression x . 2  + y is parsed as x . (2 + y ) .  
On the other hand, the expression x + y - 212 is interpreted unambigu- 
ously as x + (y - (212) ) .  

For this example, we restrict ourselves to two types of constants in PL: 
identifiers and integers. The specification of pl-constant duly consists 
of two rules. Whch of the two is found is reflected in the structure 
returned. For identifiers X, the structure name (X) is returned, whereas 
number (X) is returned for the integer X: 

pl-constant (name (X) ) - identifier (X) . 
pl-constant (number (XI ) - pl-integer (X) 

For simplicity we assume that PL integers and PL identifiers are Prolog 
integers and atoms, respectively. This allows the use of Prolog system 
predicates to identify the PL identifiers and integers. Recall that the curly 
braces notation of DCGs is used to specify Prolog goals: 

identifier (x) - [XI , {atom(X) 1 .  
pl-integer (XI - [XI , {integer(X) 1 .  

In fact, all grammar rules that use PL identifiers and constants could 
be modified to call the Prolog predicates directly if greater efficiency is 
needed. 

A list of arithmetic operators is necessary to complete the definition 
of arithmetic expressions. The form of the statement for addition, repre- 
sented by +, follows. The grammar rules for subtraction, multiplication, 
and division are analogous, and appear in the full parser in Program 24.1: 

The next statement to be discussed is the conditional statement, or 
if-then-else. The syntax for conditionals is the standard identifier if fol- 
lowed by a test (to be defined). After the test, the standard identifier then 
is necessary, followed by a statement constituting the then part, the stan- 
dard identifier else and a statement constituting the else part, in that 
order. The structure built by the parser is if (T,Sl,S2), where T is the 
test, S1 is the then part, and S2 is the else part: 

statement(if (T,SI,S2)) - 
[if] , test (T) , [then] , statement (S1) , 
[else] , statement (S2). 

A Compiler 

Tests are defined to be an expression followed by a comparison oper- 
ator and another expression. The structure returned has the form com- 
pare (Op , X , Y) , where Op is the comparison operator, and X and Y are the 
left-hand and right-hand expressions in the test, respectively: 

test (compare(Op,X,Y)) - 
expression(X) , comparison-op(Op), expression(Y) 

The definition of comparison operators using the predicate compari- 
son-op is analogous to the use of arithmetic-op to define arithmetic 
operators. Program 24.1 contains definitions for =, f ,  >, <, 2, and I. 

While statements consist of a test and the action to take if the test is 
true. The structure returned is while (T, S), where T is the test and S is 
the action. The syntax is defined by the following rule: 

statement (while(T, S) ) - 
[while] , test (TI, [do] , statement (S) . 

1/0 is handled in PL with a simple read statement and a simple write 
statement. The input statement consists of the standard identifier read 
followed by a PL identifier; it returns the structure reado(), where X is 
the identifier. Write statements are similar: 

statement (reado() ) - [read] , identifier (X) . 
statement(write(X)) - [write], expression(X) 

Collecting the various pieces of the DCG just described gives a parser 
for the language. Note that ignoring the arguments in the DCG gives a 
formal BNF grammar for PL. 

Let us consider the behavior of the parser on the test data in Pro- 
gram 24.2. The parsed structures produced for the two single statement 
programs have the form (structure);void, where (structure) repre- 
sents the parsed statement. The write statement is translated to 

write (expr (+ ,name (x) , expr (- ,name(y) ,expr(/yname(~) 
number(2) > > , 

and the if-then-else statement is translated to 

if (compare (> ,name (a) ,name (b) ) , assign(max , name (a) ) 3 

assign(max ,name (b) 1 ) . 

The factorial program is parsed into a sequence of five statements fol- 
lowed by void. The output after parsing for all three test programs is 
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Program test1 : 

Program test2 : 

Program test3 : 

Figure 24.5 Output from parsing 

given in Figure 24.5. This is the input for the second stage of compila- 
tion, code generation. 

24.3 The Code Generator 

'The basic relation of the code generator is encode (Structure, Dict io- 
nary, Code), which generates Code from the Structure produced by the 
parser. This section echoes the previous one. The generated code is de- 
scribed for each of the structures produced by the parser representing 
the various PL statements. 
Dictionary relates PL variables to memory locations, and labels to 

instruction addresses. The dictionary is used by the assembler to resolve 
locations of labels and identifiers. Throughout t h s  section D refers to 
this dictionary. An incomplete ordered binary tree is used to implement 
i t ,  as described in Section 15.3. The predicate lookup (Name, D, Value) 
(Program 15.9) is used for accessing the incomplete binary tree. 

The structure corresponding to a compound statement is a sequence 
of its constituent structures. This is translated into a sequence of blocks 
of code, recursively defined by encode. The functor ; is used to denote 
sequencing. The empty statement denoted by void is translated into a 
null operation, denoted no-op. When the relocatable code is traversed 
during assembly this "pseudoinstruction" is removed. 

The structure produced by the parser for the general PL assignment 
statement has the form assign(Name ,Expression), where Expression 
is the expression to be evaluated and assigned to the PL variable Name. 
The corresponding compiled form calculates the expression followed 
by a store instruction whose argument is the address corresponding 
to Name. The representation of individual instructions in the compiled 
code is the structure instr (X,Y), where X is the instruction and Y is the 
operand. The appropriate translation of the assign structure is there- 
fore (Code ; instr (store, Address) ), where Code is the compiled form 
of the expression, whch, after execution, leaves the value of the ex- 
pression in the accumulator. It is generated by the predicate encode- 
expression(Expression, D, Expressioncode). Encoding the assignment 
statement is performed by the clause 

This clause is a good example of Prolog code that is easily understood 
declaratively but hides complicated procedural bookkeeping. Logically, 
relations have been specified between Name and Address, and between 
Expression and Code. From the programmer's point of view it is irrele- 
vant when the final structure is constructed, and in fact the order of the 
two goals in the body of this clause can be swapped without changing 
the behavior of the overall program. Furthermore, the lookup goal, in re- 
lating Name with Address, could be making a new entry or retrieving a 
previous one, where the final instantiation of the address happens in the 
assembly stage. None of this bookkeeping needs explicit mention by the 
programmer. It goes on correctly in the background. 

There are several cases to be considered for compiling the expression. 
Constants are loaded directly; the appropriate machine instruction is 
loadc C, where C is the constant. Similarly identifiers are compiled into 
the instruction load A, where A is the address of the identifier. The two 
corresponding clauses of encode-expression are 

encode-expression(number ( C )  , D, instr (loadc , C )  ) . 
encode-expression(name(x) ,D, instr (load,Address) - 

lookup(X ,D ,Address) . 
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The general expression is the structure expr (Op ,El ,E2), where Op is 
the operator, El is a PL constant, and E2 is an expression. The form 
of the compiled code depends on E2. If it is a PL constant, then the 
final code consists of two statements: an appropriate load instruction 
determined recursively by encode-expression and the single instruction 
corresponding to Op. Again, it does not matter in whch order the two 
instructions are determined. The clause of encode-expression is 

The nature of the single instruction depends on the operator and 
whether the PL constant is a number or an identifier. Numbers refer 
to literal operations, and identifiers refer to memory operations: 

single~instruction(0p,number(C),D,instr(Opcode,C~~ - 
literal-operation(Op,Opcode). 

single~instruction(Op,name(X),D,instr(Op~~d~,A~~ - 
memory-operation(Op, Opcode) , lookup (X ,D ,A) . 

A separate table of facts is needed for each sort of operation. The 
respective form of the facts is illustrated for +: 

A separate calculation is necessary when the second expression is not 
a constant and cannot be encoded in a single instruction. The form of the 
compiled code is determined from the compiled code for calculating E2, 
and the single operation is determined by Op and El: 

encode~expression(expr(Op,E1,E2),D,Code) - 
not single-instruction(Op,E2,D,1nstruction), 
single-operation(Op,El ,D, E2Code, Code) , 
encode-expression(E2, D, E2Code) . 

In general, the result of calculating E2 must be stored in some tempo- 
rary location, called $temp in the following code. The sequence of instruc- 
tions is then the code for E2, a store instruction, a load instruction for 
El, and the appropriate memory operation addressing the stored con- 
tents. The predicates shown previously are used to construct the final 
form of the code: 

single-operation(Op,E,D,Code, 

(Code ; 
instr(store,Address) ; 
Load ; 
instr(0pCode ,Address) ) 

1 - 
not commutative (0p) , 
lookup('$temp' ,D,Address) , 
encode-expression (E, D, Load) , 
op-code(E,Op,OpCode). 

An optimization is possible if the operation is commutative, e.g., ad- 
dition or multiplication, whch circumvents the need for a temporary 
variable. In t h s  case, the memory or literal operation can be performed 
on El, assuming that the result of computing E2 is in the accumulator: 

The next statement is the conditional if-then-else parsed into the struc- 
ture if (Test, Then, Else). To compile the structure, we have to intro- 
duce labels to which instructions can jump. For the conditional we need 
two labels marking the beginning and end of the else part respectively. 
The labels have the form label (N), where N is the address of the instruc- 
tion. The value of N is filled in during the assembling stage, when the 
label statement itself is removed. The schematic of the code is given by 
the thrd  argument of the following encode clause: 

encode(if (Test ,Then,Else) ,D, 

(Testcode ; 
ThenCode ; 
instr(jump,L2) ; 
label (Ll) ; 
ElseCode ; 
label (L2) ) 

> - encode~test(Test,Ll,D,TestCode), 

encode (Then, D , ThenCode) , 
encode ( ~ l s e  ,D, ElseCode) . 
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In order to compare two arithmetic expressions, we subtract the sec- 
ond from the first and make the jump operation appropriate to the par- 
ticular comparison operator. For example, if the test is whether two ex- 
pressions are equal, we circumvent the code if the result of subtracting 
the two is not equal to zero. Thus comparison~opcode ( '=' , jumpne) is a 
fact. Note that the label that is the second argument of encode-test is 
the address of the code following the test. 

encode-test (compare (Op,E1 ,E2) ,Label ,D, 
(Code; instr(OpCode,Label))) - 

comparison~opcode (0p , OpCode) , 
encode~expression(expr('-',EI,E2),D,Code~. 

The next statement to consider is the while statement. The statement is 
parsed into the structure while (Test ,Statements). A label is necessary 
before the test, then the test code is given as for the if-then-else state- 
ment, then the body of code corresponding to Statements and a jump 
to reperform the test. A label is necessary after the jump instruction for 
when the test fails. 

encode (while (Test, Do) ,D, 
(label (L1) ; 
TestCode ; 
DoCode ; 
instr(jump,Ll) ; 
label (L2) ) 

) - 
encode-test (Test, L2 ,D, ~estCode) , 
encode (Do, D , DoCode) . 

The 1/0 statements are straightforward. The parsed structure for in- 
put, read(X), is compiled into a single read instruction, and the table is 
used to get the correct address: 

encode (read(X) ,D, instr (read, ~ddress) ) - 
lookup(X,D,Address). 

The output statement is translated into encoding an expression and then 
a write instruction: 

encode(write (E) ,D, (Code; instr (write ,0)))  + 

encode-expression(E,D,Code). 

Program test1 : 

((((instr(load,~);instr(divc,2));instr(~tore,~emp~; 
instr(load,Y) ; instr(sub,Temp)) ; instr(add,X)) ; 
instr(write,O));no-op 

Program test2 : 
(((instr(load,A) ; instr(sub,B)) ; instr(jumple,L1)) ; 
(instr(load ,A) ; instr (store ,Max)) ; instr( jmp,L2) ; label(L1) ; 
(instr(load,B) ; instr(store,Max)) ; label(L2)) ;nO-OP 

Program factorial : 

instr(read,Value);(in~tr(l~adc,l);instr(~t~re,C~~nt)); 
(instr(loadc,l);instr(~t0re,~es~lt));(label(~1); 
((instr(load,Count) ; instr(sub,Value)) ; instr(jmpge ,L2)) ; 
(((instr(load,Count) ;instr(addc, 1)) ; instr(store,~ount)) ; 
((instr(load,~esult);instr(mul,~~unt));instr(store,~esult)); 
no-op) ; instr(jump,Ll) ;label(~2)) ; (instr(load,~esult) ; 
instr(write,O));no-op 

Figure 24.6 The generated code 

Figure 24.6 contains the relocatable code after code generation and be- 
fore assembly for each of the three examples of Program 24.2. Mnemonic 
variable names have been used for easy reading. 

24.4 The Assembler 

The final stage performed by the compiler is assembling the relocatable 
code into absolute object code. The predicate assemble (Code ,Dictio- 
nary, Obj ectCode) takes the Code and Dictionary generated in the pre- 
vious stage and produces the object code. There are two stages in the as- 
sembly. During the first stage, the instructions in the code are counted, at 
the same time computing the addresses of any labels created during code 
generation and removing unnecessary null operations. This tidied code 
is further augmented by a halt instruction, denoted by instr (halt, 0) , 
and a block of L memory locations for the L PL variables and tempo- 
rary locations in the code. The space for memory locations is denoted 
by block(L). In the second stage, addresses are created for the PL and 
temporary variables used in the program: 

PROYECTO
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assemble(Code,Di~ti~nary,TidyCode) - 
tidy-and-count (Code, 1 ,~,~idy~ode\(instr(halt ,o) ;block(L) 1) 3 

N1 is N+1, 
allocate(Dictionary ,N1 ,N2) , 
L is N2-N1, ! .  

The predicate t idy-and-count (Code, M , N , TidyCode) tidies the Code 
into TidyCode, where the correct addresses of labels have been filled 
in and the null operations have been removed. Procedurally, executing 
tidy-and-count constitutes a second pass over the code. M is the ad- 
dress of the beginning of the code, and N is 1 more than the address of 
the end of the original code. Thus the number of actual instructions in 
Code is N+1-M. TidyCode is represented as a difference-structure based 
on ; . 

The recursive clause of tidy-and-count demonstrates both standard 
difference-structure technique and updating of numeric values: 

tidy~and~count((Code1;Code2),M,N,~~odel\~~ode2~ + 

tidy-and-count (Code1 ,M,MI ,TCodel\Rest) , 
tidy-and-count(Code2,Ml,N,Rest\TCode2). 

Three types of primitives occur in the code: instructions, labels, and 
no-ops. Instructions are handled routinely. The address counter is incre- 
mented by 1, and the instruction is inserted into a difference-structure: 

tidy-and_count(instr(X,Y) ,N,NI, (instr (x,Y) ;Code)\Code) + 

N1 is N+1. 

Both labels and no-ops are removed without updating the current ad- 
dress or adding an instruction to the tidied code: 

Declaratively, the clauses are identical. Procedurally, the unification of 
the label number with the current address causes a major effect in the 
program. Every reference to the label address is filled in. This program is 
another illustration of the power of the logical variable. 

The predicate allocate (Dict ionary , M , N) has primarily a procedu- 
ral interpretation. During the code generation as the dictionary is con- 
structed, storage locations are associated with each of the PL variables 

Program test1 : 

Program test2 : 

instr(load, 10) ; instrcsub, 11) ; instr(jumple ,7) ;instr(load,l~) ; 
instr(store,12) ;instr(jump,9) ;instr(load,ll) ;instr(store,l2); 
instr (halt, 0) ; block(3) 

Program factorial : 

instr(read,21) ; instr(loadc, 1) ; instr (store, 19) ; instr(loadc, 1) ; 
instr(store ,20) ; instr(load, 19) ; instr(sub,21) ; instr(jumpge, 16) ; 
instr(load,l9);instr(addc,l);instr(store,19);instr(load,20); 
instr(mul,19);instr(store,20);instr(jump,6);instr(load,20); 
instr(write ,0) ; instr(ha1t ,0) ;block(3) 

Figure 24.7 The compiled object code 

in the program, plus any temporary variables needed for computing ex- 
pressions. The effect of allocate is to assign actual memory locations 
for the variables and to fill in the references to them in the program. 

The variables are found by traversing the Dictionary. M is the address 
of the memory location for the first variable, and N is 1 more than the 
address of the last. The order of variables is alphabetic corresponding to 
their order in the dictionary. The code also completes the dictionary as a 
data structure. 

allocate (void, N, N) . 
allocate(dict (Name,Nl ,Before,After) ,NO,N - 

allocate(Bef ore ,NO ,Nil, 
N2 is Nl+l, 
allocate(After,N2,N). 

Because the dictionary is an incomplete data structure, the predicate 
allocate can succeed many times. The variables at the end of the tree 
match both the fact and the recursive clause. For the compiler, the easi- 
est way to stop multiple solutions is to add a cut to the clause for assem- 
ble/3, which commits to the first (and minimal) assignment of memory 
locations for variables. 

The compiled versions of the test programs given in Program 24.2 
appear in Figure 24.7. 
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Exercises for Chapter 24 

(i) Extend the compiler so that it handles repeat loops. The syntax is 
repeat (statement) until ( test) .  Extensions to both the parser and 
the compiler need to be made. Test the program on the following: 

program repeat  ; 
begin 

i := 1;  
repeat  
i begin 
ii w r i t e ( i )  ; 
11 1 : =  i + l  
i end 
u n t i l  i = I1 

end. 

(ii) Extend the definition of arithmetic expressions to allow arbitrary 
ones. In the encoder, you will have to cater for the possibility of 
needing several temporary variables. 

24.5 Background 

The compiler described is based on a delightful paper by Warren (1980). 

Operators 

An operator is defined by its name, specifier, and priority. The name is 
usually an atom. The priority is an integer between 1 and 1200 inclusive. 
The specifier is a mnemonic that defines two things, class and asso- 
ciativity. There are three classes of operators: prefix, infix, and postfix. 
Associativity, which determines how to associate terms containing mul- 
tiple operators, can be one of three possibilities: left-associative, right- 
associative, and non-associative. 

There are seven possible operator types, whlch are given in Table A.1. 
A left-associative prefix operator is not possible, nor is a right-associative 
postfix operator. An operator specifier yfy does not make sense as it 
would lead to ambiguity. Consequently Standard Prolog does not allow 
such a specifier. 

To explain the associativity, consider a term a :: b :: c. If the infix 
operator :: was left-associative, the term would be read as (a :: b) :: c. If 
the operator :: was right-associative, the term would be read as a :: (b :: c). 
If the operator :: was non-associative, the term would be illegal. 

If uncertain about priorities when using operators, terms can always be 
bracketed. If you prefer not to bracket terms, you must take into account 
the associativity of the operatorb) involved and the priorities of terms. 
For example, the following three rules apply. 

1. An operand with the same priority as a non-associative operator 
must be bracketed to avoid a syntax error by the Prolog reader. 

2 .  An operator with the same (or smaller) priority as a right-associative 
operator that follows that operator need not be bracketed. 

3. An operator with smaller priority than a left-associative operator 
that precedes that operator need not be bracketed. 
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Table A.l  
Types of Operators in Standard Prolog 

Specifier Class Associativity 

fx prefix non-associative 
fy prefix right-associative 
xfx infix non-associative 
xfy infix right-associative 
~ f x  infix left-associative 
x f postfuc non-associative 
Y f postfuc left-associative 

Table A.2 
Predefined Operators in Standard Prolog 

Priority Specifier Operator(s) 

xfx 
fx 

xf) 
xfy 
xfx 
xfx 
xfx 
xfx 
yfx 
yfx 
xfy 

fl' 

Standard Prolog specifies some predefined operators. The priorities 
and specifiers of the operators which have been used in the text are given 
in Table A.2. 

New operators are added with the directive 

The system of operator declarations in Prolog is straightforward and 
can be used effectively for applications. The reader should be aware, 
however, that there are some subtle semantic anomalies in how opera- 
tors are defined and handled. The anomalies, best discovered by trial and 
error, should not cause problems and can be "programmed around." 

where X is the priority, Y is the operator specifier, and Z is the operator 
name. These were used in Chapter 17 when defining a new rule language. 
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