

- -

Leon Sterling
Ehud Shapiro
with a foreword by David H. D. Warren

The Art of Prolog
Advanced Programming Techniques
Second Edition

The MIT Press
Cambridge, Massachusetts
London, England

PROYECTO

PROYECTO

PROYECTO

Third printing. 1999

O 1986, 1994 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

Thls book was composed and typeset by Paul C. Anagnostopoulos and Joe
Snowden using ZZTEX. The typeface is Lucida Bright and Lucida New Math
created by Charles Bigelow and Kris Holmes specifically for scientific and
electronic publishing. The Lucida letterforms have the large x-heights and
open interiors that aid legibility in modern printing technology, but also echo
some of the rhythms and calligraphc details of lively Renaissance handwrit-
ing. Developed in the 1980s and 1990s, the extensive Lucida typeface family
includes a wide variety of mathematical and techmcal symbols designed to
harmonize with the text faces.

This book was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data
Sterling, Leon

The art of Prolog : advanced programming techniques / Leon
Sterling, Ehud Shapiro ; with a foreword by David H. D. Warren.

p. cm. - (MIT Press series in logic programming)
Includes bibliographical references and index.
ISBN 0-262-19338-8
1. Prolog (Computer program language) I. Shapiro, Ehud Y.

11. Title. 111. Series.
QA76.73.P76S74 1994
005.13'3-dc20 93-49494

To Ruth, Miriam, Michal, Danya, and Sara

CIP

PROYECTO

Contents

Figures xiii

Programs xvii

Series Foreword xxv

Foreword xxvii

Preface xxxi

Preface to First Edition xxxv

-.

Introduction 1

I Logic Programs 9

1 Basic Constructs 11

1.1 Facts 11

1.2 Queries 1 2

1.3 The Logical Variable, Substitutions, and Instances 13

1.4 Existential Queries 14

1.5 Universal Facts 1 5

1.6 Conjunctive Queries and Shared Variables 16

1.7 Rules 18

PROYECTO

Contents ix Contents

1.8 A Simple Abstract Interpreter 22

1.9 The Meaning of a Logic Program 25

1.10 Summary 27

2 Database Programming 29

2.1 Simple Databases 29

2.2 Structured Data and Data Abstraction 35

2.3 Recursive Rules 39

2.4 Logic Programs and the Relational Database Model 42

2.5 Background 44

3 Recursive Programming 45

3.1 Arithmetic 45

3.2 Lists 56

3.3 Composing Recursive Programs 65

3.4 Binary Trees 72

3.5 Manipulating Symbolic Expressions 78

3.6 Background 84

4 The Computation Model of Logic Programs 87

4.1 Unification 87

4.2 An Abstract Interpreter for Logic Programs 91

4.3 Background 98

5 Theory of Logic Programs 101

5.1 Semantics 101

5.2 Program Correctness 105

5.3 Complexity 108

5.4 Search Trees 110

5.5 Negation in Logic Programming 1 13

5.6 Background 115

II The Prolog Language 1 1 7

6 Pure Prolog 119
6.1 The Execution Model of Prolog 1 19

6.2 Comparison to Conventional Programming Languages 124

6.3 Background 127

7 Programming in Pure Prolog 129

7.1 Rule Order 129

7.2 Termination 131

7.3 Goal Order 133

7.4 Redundant Solutions 136

7.5 Recursive Programming in Pure Prolog 139

7.6 Background 147

8 Arithmetic 149
8.1 System Predicates for Arithmetic 149

8.2 Arithmetic Logic Programs Revisited 152

8.3 Transforming Recursion into Iteration 154

8.4 Background 162

9 Structure Inspection 163
9.1 Type Predicates 163

9.2 Accessing Compound Terms 167

9.3 Background 174

10 Meta-Logical Predicates 175

10.1 Meta-Logical Type Predicates 176

10.2 Comparing Nonground Terms 180

10.3 Variables as Objects 182

10.4 The Meta-Variable Facility 185

10.5 Background 186

PROYECTO

nafta
Note
Accepted set by nafta

nafta
Note
MigrationConfirmed set by nafta

Contents Contents

1 1 Cuts and Negation 189

11.1 Green Cuts: Expressing Determinism 189

1 1.2 Tail Recursion Optimization 195

11.3 Negation 198

11.4 Red Cuts: Omitting Explicit Conditions 202

1 1.5 Default Rules 206

11.6 Cuts for Efficiency 208

11.7 Background 21 2

12 Extra-Logical Predicates 2 15

12.1 Input/Output 2 15

12.2 Program Access and Manipulation 2 19

12.3 Memo-Functions 22 1

12.4 Interactive Programs 223

1 2.5 Failure-Dri\>en Loops 2 29

12.6 Background 231

13 Program Development 233

1 3.1 Programming Style and Layout 233

13.2 Reflections on Program Development 23 5

13.3 Systematizing Program Construction 238

13.3 Background 244

III Advanced Prolog Programming Techniques 24 7

14 Nondeterministic Programming 249

14.1 Generate-and-Test 249

13.2 Don't-Care and Don't-Know Nondeterminism 263

14.3 Artificial Intelligence Classics: ANALOGY, ELIZA, and
McSAM 270

14.4 Background 280

15 Incomplete Data Structures 283

15.1 Difference-Lists 283

15.2 Difference-Structures 291

1 5.3 Dictionaries 293

15.4 Queues 297

15.5 Background 300

16 Second-Order Programming 301

16.1 All-Solutions Predicates 301

16.2 Applications of Set Predicates 305

16.3 Other Second-Order Predicates 3 14

16.4 Background 317

17 Interpreters 319

17.1 Interpreters for Finite State Machines 319

17.2 Meta-Interpreters 323

17.3 Enhanced Meta-Interpreters for Debugging 33 1

17.4 An Explanation Shell for Rule-Based Systems 341

17.5 Background 354

18 Program Transformation 3 57

18.1 Unfold/Fold Transformations 3 5 7

18.2 Partial Reduction 360

18.3 Code Wallung 366

18.4 Background 373

19 Logic Grammars 375

19.1 Definite Clause Grammars 375

19.2 A Grammar Interpreter 380

19.3 Application to Natural Language Understanding 382

19.4 Background 388

20 Search Techniques 389

20.1 Searchng State-Space Graphs 389

20.2 Searching Game Trees 401

20.3 Background 407

xii Contents

ZV Applications 409 Figures

2 1 Game-Playing Programs 4 1 1

21.1 Mastermind 411

21.2 Nim 415

21.3 Kalah 420

21.4 Background 423

22 A Credit Evaluation Expert System 429

22.1 Developing the System 429

22.2 Background 438

23 An Equation Solver 439

2 3.1 An Overview of Equation Solving 439

2 3.2 Factorization 448

23.3 Isolation 449

23.4 Polynomial 452

23.5 Homogenization 454

23.6 Background 457

24 A Compiler 459

24.1 Overview of the Compiler 459

24.2 The Parser 466

24.3 The Code Generator 470

24.4 The Assembler 475

24.5 Background 478

A Operators 479

References 483

Index 497

An abstract interpreter to answer ground queries with respect
to logic programs 22

Tracing the interpreter 23

A simple proof tree 25

Defining inequality 3 1

A logical circuit 3 2

Still-life objects 34

A simple graph 41

Proof trees establishing completeness of programs 47

Equivalent forms of lists 57

Proof tree verifying a list 58

Proof tree for appending two lists 61

Proof trees for reversing a list 63

Comparing trees for isomorphsm 74

A binary tree and a heap that preserves the tree's shape 77

A unification algorithm 90

An abstract interpreter for logic programs 93

Tracing the appending of two lists 94

Different traces of the same solution 95

Solving the Towers of Hanoi 97

A nonterminating computation 97

PROYECTO

xiv Figures Figures

A nonterrninating computation 107

Two search trees 11 1

Search tree with multiple success nodes 112

Search tree with an infinite branch 11 3

Tracing a simple Prolog computation 12 1

Multiple solutions for splitting a list 122

Tracing a quicksort computation 123

A nonterminating computation 132

Variant search trees 139

Tracing a reverse computation 146

Computing factorials iteratively 15 5

Basic system type predicates 164

Tracing the substitute predicate 171

The effect of cut 191

Template for a specification 243

A solution to the 4 queens problem 253

A map requiring four colors 255

Directed graphs 265

Initial and final states of a blocks world problem 267

A geometric analogy problem 2 71

Sample conversation with ELIZA 273

A story filled in by McSAM 276

Three analogy problems 2 79

Concatenating difference-lists 285

Tracing a computation using difference-lists 287

Unnormalized and normalized sums 292

Power of Prolog for various searching tasks 307

The problem of Lee routing for VLSI circuits 308

Input and output for keyword in context (KWIC) problem 3 12

Second-order predicates 3 15

A simple automaton 321

Tracing the meta-interpreter 325

Fragment of a table of builtin predicates 327

Explaining a computation 3 5 1

A context-free grammar for the language a*b*c* 371

The water jugs problem 393

A simple game tree 405

A starting position for Nim 41 5

Computing nim-sums 419

Board positions for Kalah 42 1

Test equations 440

Position of subterms in terms 449

A PL program for computing factorials 460

Target language instructions 460

Assembly code version of a factorial program 361

The stages of compilation 461

Output from parsing 470

The generated code 475

The compiled object code 477

PROYECTO

Programs

A biblical family database 12

Biblical family relationshps 2 3

Defining family relationships 3 1

A circuit for a logical and-gate 33

The circuit database with names 36

Course rules 37

The ances tor relationship 39

A directed graph 41

The transitive closure of the edge relation 41

Defining the natural numbers 46

The less than or equal relation 48

Addition 49

Multiplication as repeated addition 5 1

Exponentiation as repeated multiplication 5 1

Computing factorials 5 2

The minimum of two numbers 52

A nonrecursive definition of modulus 53

A recursive definition of modulus 53

Ackermann's function 54

The Euclidean algorithm 54

Defining a list 57

PROYECTO

Programs xix Programs

Membershp of a list 58

Prefixes and suffutes of a list 59

Determining sublists of lists 60

Appending two lists 60

Reversing a list 62

Determining the length of a list 64

Deleting all occurrences of an element from a list 67
Selecting an element from a list 67

Permutation sort 69

Insertion sort 70

Quicksort 70

Defining binary trees 73

Testing tree membershlp 73

Determining when trees are isomorphic 74

Substituting for a term in a tree 75
Traversals of a binary tree 76

Adjusting a binary tree to satisfy the heap property 77
Recognizing polynomials 79

Derivative rules 80

Towers of Hanoi 82

Satisfiability of Boolean formulae 83

Yet another family example 102

Yet another family example 130

Merging ordered lists 138

Checking for list membershlp 139

Selecting the first occurrence of an element from a list 140
Nonmembershp of a list 141

Testing for a subset 142

Testing for a subset 142

Translating word for word 143

Removing duplicates from a list 145

Reversing with no duplicates 146

Computing the greatest common divisor of two integers 152

Computing the factorial of a number 153

An iterative factorial 15 5

Another iterative factorial 156

Generating a range of integers 157

Summing a list of integers 157

Iterative version of summing a list of integers using an accumu-
lator 157

Computing inner products of vectors 158

Computing inner products of vectors iteratively 158

Computing the area of polygons 159

Finding the maximum of a list of integers 160

Checking the length of a list 160

Finding the length of a list 161

Generating a list of integers in a given range 161

Flattening a list with double recursion 165

Flattening a list using a stack 166

Finding subterms of a term 168

A program for substituting in a term 170

Subterm defined using univ 172

Constructing a list corresponding to a term 173

Constructing a term corresponding to a list 174

Multiple uses for p l u s 176

A multipurpose length program 177

A more efficient version of grandparent 178

Testing if a term is ground 178

Unification algorithm 180

Unification with the occurs check 181

Occurs in 182

Numbering the variables in a term 185

Programs xxi Programs

Logical disjunction 186

Merging ordered lists 190

Merging with cuts 192

minimum with cuts 193

Recognizing polynomials 193

Interchange sort 195

Negation as failure 198

Testing if terms are variants 200

Implementing f 201

Deleting elements from a list 204

Deleting elements from a list 204

If-then-else statement 205

Determining welfare payments 207

Determining welfare payments 207

Writing a list of terms 2 16

Reading in a list of words 217

Towers of Hanoi using a memo-function 222

Basic interactive loop 223

Alineeditor 224

An interactive shell 226

Logging a session 228

Basic interactive repeat loop 230

Consulting a file 230

Finding the union of two lists 241

Finding the intersection of two lists 241

Finding the union and intersection of two lists 241

Finding parts of speech in a sentence 251

Naive generate-and-test program solving N queens 253

Placing one queen at a time 2 5 5

Map coloring 2 56

Test data for map coloring 257

A puzzle solver 259

A description of a puzzle 260

Connectivity in a finite DAG 265

Finding a path by depth-first search 266

Connectivity in a graph 266

A depth-first planner 268

Testing the depth-first planner 269

A program solving geometric analogies 272

Testing ANALOGY 2 73

ELIZA 275

McSAM 277

Testing McSAM 278

Concatenating diff erence-lists 2 8 5

Flattening a list of lists using difference-lists 286

Reverse with difference-lists 288

Quicksort using difference-lists 289

A solution to the Dutch flag problem 290

Dutch flag with difference-lists 291

Normalizing plus expressions 292

Dictionary lookup from a list of tuples 294

Dictionary lookup in a binary tree 295

Melting a term 296

A queue process 297

Flattening a list using a queue 298

Sample data 302

Applying set predicates 303

Implementing an all-solutions predicate using difference-lists,
asser t , and r e t r ac t 304

Testing connectivity breadth-first in a DAG 306

Testing connectivity breadth-first in a graph 307

Lee routing 3 10

Producing a keyword in context (KWIC) index 31 3

PROYECTO

xxii Programs

Second-order predicates in Prolog 3 16

An interpreter for a nondeterministic finite automaton (NDFA)
320

An NDFA that accepts the language (ab) * 321

An interpreter for a nondeterministic pushdown automaton
(NPDA) 322

An NPDA for palindromes over a finite alphabet 322

A meta-interpreter for pure Prolog 324

A meta-interpreter for pure Prolog in continuation style 326

A tracer for Prolog 328

A meta-interpreter for building a proof tree 329

A meta-interpreter for reasoning with uncertainty 330

Reasoning with uncertainty with threshold cutoff 33 1

A meta-interpreter detecting a stack overflonl 333

A nonterminating insertion sort 334

An incorrect and incomplete insertion sort 3 3 5

Bottom-up diagnosis of a false solution 336

Top-down diagnosis of a false solution 338

Diagnosing missing solution 340

Oven placement rule-based system 342

A skeleton two-level rule interpreter 343

An interactive rule interpreter 345

A two-level rule interpreter carrying rules 347

A two-level rule interpreter with proof trees 348

Explaining a proof 3 50

An explanation shell 3 5 2

A program accepting palindromes 3 59

A meta-interpreter for determining a residue 361

A simple partial reduction system 362

Specializing an NPDA 363

Specializing a rule interpreter 364

Composing two enhancements of a skeleton 368

xxiii Programs

Testing program composition 370

A Prolog program parsing the language a* b*c* 371

Translating grammar rules to Prolog clauses 372

Enhancing the language a* b*c* 377

Recognizing the language aN I?NcN 3 77

Parsing the declarative part of a Pascal block 378

A definite clause grammar (DCG) interpreter 381

A DCG interpreter that counts words 382

A DCG context-free grammar 383

A DCG computing a parse tree 384

A DCG with subject/object number agreement 38 5

A DCG for recognizing numbers 387

A depth-first state-transition framework for problem solving
3 90

Solving the wolf, goat, and cabbage problem 392

Solving the water jugs problem 394

Hill climbing framework for problem solving 397

Test data 398

Best-first framework for problem solving 399

Concise best-first framework for problem solving 400

Framework for playing games 402

Choosing the best move 403

Choosing the best move with the minimax algorithm 406

Choosing a move using minimax with alpha-beta pruning 407

Playing mastermind 4 13

A program for playing a winning game of Nim 4 17

A complete program for playing Kalah 424

A credit evaluation system 432

Test data for the credit evaluation system 437

A program for solving equations 442

A compiler from PL to machine language 462

Test data 465

Series Foreword

The logic programming approach to computing investigates the use of
logic as a programming language and explores computational models
based on controlled deduction.

The field of logic programming has seen a tremendous growth in the
last several years, both in depth and in scope. Thls growth is reflected in
the number of articles, journals, theses, books, workshops, and confer-
ences devoted to the subject. The MIT Press series in logic programming
was created to accommodate t h s development and to nurture it. It is
dedicated to the publication of hgh-quality textbooks, monographs, col-
lections, and proceedings in logic programming.

Ehud Shapiro
The Weizmann Institute of Science
Rehovot, Israel

Foreword

Programming in Prolog opens the mind to a new way of loolung at com-
puting. There is a change of perspective which every Prolog programmer
experiences when first getting to know the language.

I shall never forget my first Prolog program. The time was early 1974.
I had learned about the abstract idea of logic programming from Bob
Kowalski at Edinburgh, although the name "logic programming" had not
yet been coined. The main idea was that deduction could be viewed as a
form of computation, and that a declarative statement of the form

P if Q and R and S .

could also be interpreted procedurally as

To solve P, solve Q and R and S.

Now I had been invited to Marseilles. Here, Alain Colmerauer and his col-
leagues had devised the language Prolog based on the logic programming
concept. Somehow, this realization of the concept seemed to me, at first
sight, too simpleminded. However, Gerard Battani and Henri Meloni had
implemented a Prolog interpreter in Fortran (their first major exercise in
programming, incidentally). Why not give Prolog a try?

I sat at a clattering teletype connected down an ordinary telephone line
to an IBM machine far away in Grenoble. I typed in some rules defining
how plans could be constructed as sequences of actions. There was one
important rule, modeled on the SRI planner Strips, whlch described how
a plan could be elaborated by adding an action at the end. Another rule,
necessary for completeness, described how to elaborate a plan by insert-
ing an action in the middle of the plan. As an example for the planner to

xxviii Foreword Foreword

work on, I typed in facts about some simple actions in a "blocks world"
and an initial state of t h s world. I entered a description of a goal state to
be acheved. Prolog spat back at me:

meaning it couldn't find a solution. Could it be that a solution was not
deducible from the axioms I had supplied? Ah, yes, I had forgotten to
enter some crucial facts. I tried again. Prolog was quiet for a long time
and then responded:

DEBORDEMENT DE PILE

Stack overflow! I had run into a loop. Now a loop was conceivable since
the space of potential plans to be considered was infinite. However, I had
taken advantage of Prolog's procedural semantics to organize the axioms
so that shorter plans ought to be generated first. Could somethng else
be wrong? After a lot of head scratching, I finally realized that I had
rnistyped the names of some variables. I corrected the mistakes, and
tried again.

Lo and behold, Prolog responded almost instantly with a correct plan
to achieve the goal state. Magic! Declaratively correct axioms had assured
a correct result. Deduction was being harnessed before my very eyes
to produce effective computation. Declarative programming was truly
programming on a higher plane! I had dimly seen the advantages in
theory. Now Prolog had made them vividly real in practice. Never had I
experienced such ease in getting a complex program coded and running.

Of course, I had taken care to formulate the axioms and organize them
in such a way that Prolog could use them effectively. I had a general
idea of how the axioms would be used. Nevertheless it was a surprise
to see how the axioms got used in practice on particular examples. It
was a delightful experience over the next few days to explore how Prolog
actually created these plans, to correct one or two more bugs in my facts
and rules, and to further refine the program.

Since that time, Prolog systems have improved significantly in terms of
debugging environments, speed, and general robustness. The techniques
of using Prolog have been more fully explored and are now better un-
derstood. And logic programming has blossomed, not least because of
its adoption by the Japanese as the central focus of the Fifth Generation
project.

After more than a decade of growth of interest in Prolog, it is a great
pleasure to see the appearance of ths book. Hitherto, knowledge of how
to use Prolog for serious programming has largely been communicated
by word of mouth. T h s textbook sets down and explains for the first
time in an accessible form the deeper principles and techniques of Prolog
programming.

The book is excellent for not only conveying what Prolog is but also ex-
plaining how it should be used. The key to understanding how to use
Prolog is to properly understand the relationship between Prolog and
logic programming. This book takes great care to elucidate the relation-
s hip.

Above all, the book conveys the excitement of using Prolog-the thrill
of declarative programming. As the authors put it, "Declarative program-
ming clears the mind." Declarative programming enables one to concen-
trate on the essentials of a problem without getting bogged down in
too much operational detail. Programming should be an intellectually
rewarding activity. Prolog helps to make it so. Prolog is indeed, as the
authors contend, a tool for thinking.

David H. D. Warren
Manchester, England, September 1986

Preface

Seven years have passed since the first edition of The Ar t of Prolog was
published. In that time, the perception of Prolog has changed markedly.
While not as widely used as the language C, Prolog is no longer regarded
as an exotic language. An abundance of books on Prolog have appeared.
Prolog is now accepted by many as interesting and useful for certain
applications. Articles on Prolog regularly appear in popular magazines.
Prolog and logic programming are part of most computer science and
engineering programs, although perhaps in a minor role in an artificial
intelligence or programming languages class. The first conference on
Practical Applications of Prolog was held in London in April 1992. A
standard for the language is likely to be in place in 1994. A future for
Prolog among the programming languages of the world seems assured.

In preparing for a second edition, we had to address the question of
how much to change. I decided to listen to a request not to make the new
edition into a new book. This second edition is much like the first, al-
though a number of changes are to be expected in a second edition. The
typography of the book has been improved: Program code is now in a dis-
tinctive font rather than in italics. Figures such as proof trees and search
trees are drawn more consistently. We have taken the opportunity to be
more precise with language usage and to remove minor inconsistencies
with hyphenation of words and similar details. All known typograph-
cal errors have been fmed. The background sections at the end of most
chapters have been updated to take into account recent, important re-
search results. The list of references has been expanded considerably.
Extra, more advanced exercises, whch have been used successfully in my
Prolog classes, have been added.

PROYECTO

Let us take an overview of the specific changes to each part in turn.
Part IV, Applications, is unchanged apart from minor corrections and
tidylng. Part I, Logic Programs, is essentially unchanged. New programs
have been added to Chapter 3 on tree manipulation, including heapifying
a binary tree. Extra exercises are also present.

Part 11, The Prolog Langauge, is primarily affected by the imminence of
a Prolog standard. We have removed all references to Wisdom Prolog in
the text in preparation for Standard Prolog. It has proved impossible to
guarantee that this book is consistent with the standard. Reaching a stan-
dard has been a long, difficult process for the members of the committee.
Certain predicates come into favor and then disappear, making it difficult
for the authors of a text to know what to write. Furthermore, some of the
proposed I/O predicates are not available in current Prologs, so it is im-
possible to run all the code! Most of the difficulties in reaching a Prolog
standard agreeable to all interested parties have been with builtin or sys-
tem predicates. This book raises some of the issues involved in adding
builtins to Prolog but largely avoids the concerns by using pure Prolog as
much as possible. We tend not to give detailed explanations of the con-
troversial nonlogical behaviors of some of the system predicates, and we
certainly do not use odd features in our code.

Part 111, Advanced Programming Techniques, is the most altered in this
second edition, whlch perhaps should be expected. A new chapter has
been added on program transformation, and many of the other chapters
have been reordered. The chapters on Interpreters and Logic Grammars
have extensive additions.

Many people provided us feedback on the first edition, almost all of
it very positive. I thank you all. Three people deserve special thanks
for talung the trouble to provide long lists of suggestions for improve-
ments and to point out embarrassingly long lists of typos in the first
edition: Norbert Fuchs, Harald Sclndergaard, and Stanley Selkow. The
following deserve mention for pointing out mistakes and typos in the
various printings of the first edition or making constructive comments
about the book that led to improvements in later printings of the first
edition and for t h s second edition. The list is long, my memory some-
times short, so please forgive me if I forget to mention anyone. Thanks
to Hani Assiryani, Tim Boemker, Jim Brand, Bill Braun, Pu Chen, Yves
Deville, George Ernst, Claudia Giinther, Ann Halloran, Sundar Iyengar,
Gary Kacmarcik, Mansoor Khan, Sundeep Kumar, Arun Lakhotia, Jean-

Louis Lassez, Charlie Linville, Per Ljung, David Maier, Fred Mailey, Martin
Marshall, Andre Mesarovic, Dan Oldham, Scott Pierce, Lynn Pierce, David
Pedder, S. S. Ramakrishnan, Chet Ramey, Marry Silverstein, Bill Sloan, Ron
Taylor, Rodney Topor, R. J. Wengert, Ted Wright, and Nan Yang. For the
former students of CMPS411, I hope the extra marks were sufficient re-
ward.

Thanks to Sarah Fliegelmann and Venkatesh Srinivasan for help with
entering changes to the second edition and TeXing numerous drafts.
Thanks to Phil Gannon and Zoe Sterling for helpful discussions about the
figures, and to Joe Gelles for drawing the new figures. For proofreading
the second edition, thanks to Kathy Kovacic, David Schwartz, Ashish Jain,
and Venkatesh Srinivasan. Finally, a warm thanks to my editor, Terry
Ehling, who has always been very helpful and very responsive to queries.

Needless to say, the support of my family and friends is the most
important and most appreciated.

Leon Sterling
Cleveland, January 1993

Preface to First Edition

The origins of this book lie in graduate student courses aimed at teach-
ing advanced Prolog programming. A wealth of techniques has emerged
in the fifteen years since the inception of Prolog as a programming lan-
guage. Our intention in this book has been to make accessible the pro-
gramming techniques that kindled our okvn excitement, imagination, and
involvement in this area.

The book fills a general need. Prolog, and more generally logic pro-
gramming, has received wide publicity in recent years. Currently avail-
able books and accounts, however, typically describe only the basics. All
but the simplest examples of the use of Prolog have remained essentially
inaccessible to people outside the Prolog community.

We emphasize throughout the book the distinction between logic pro-
gramming and Prolog programming. Logic programs can be understood
and studied, using two abstract, machine-independent concepts: truth
and logical deduction. One can ask whether an axiom in a program is
true, under some interpretation of the program symbols; or whether a
logical statement is a consequence of the program. These questions can
be answered independently of any concrete execution mechanism.

On the contrary, Prolog is a programming language, borrowing its basic
constructs from logic. Prolog programs have precise operational mean-
ing: they are instructions for execution on a computer-a Prolog ma-
chine. Prolog programs in good style can almost always be read as log-
ical statements, thus inheriting some of the abstract properties of logic
programs. Most important, the result of a computation of such a Pro-
log program is a logical consequence of the axioms in it. Effective Prolog

Preface to First Edition

programming requires an understanding of the theory of logic program-
ming.

The book consists of four parts: logic programming, the Prolog lan-
guage, advanced techniques, and applications. The first part is a self-
contained introduction to logic programming. It consists of five chapters.
The first chapter introduces the basic constructs of logic programs. Our
account differs from other introductions to logic programming by ex-
plaining the basics in terms of logical deduction. Other accounts explain
the basics from the background of resolution from which logic program-
ming originated. we have found the former to be a more effective means
of teaching the material, which students find intuitive and easy to under-
stand.

The second and thlrd chapters of Part I introduce the two basic styles
of logic programming: database programming and recursive program-
ming. The fourth chapter discusses the computation model of logic pro-
gramming, introducing unification, while the fifth chapter presents some
theoretical results hithout proofs. In developing t h ~ s part to enable the
clear explanation of advanced techniques, we have introduced new con-
cepts and reorganized others, in particular, in the discussion of types
and termination. Other issues such as complexity and correctness are
concepts whose consequences ha\re not yet been fullj. del~eloped in the
logic programming research communitj..

The second part is an introduction to Prolog. It consists of Chapters 6
through 13. Chapter 6 discusses the computation model of Prolog in
contrast to logic programming, and gi\.es a comparison between Prolog
and conventional programming languages such as Pascal. Chapter 7 dis-
cusses the differences between composing Prolog programs and logic
programs. Examples are gi\,en of basic programming techniques.

The next fi\re chapters introduce system-provided predicates that are
essential to make Prolog a practical programming language. We clas-
sify Prolog system predicates into four categories: those concerned
with efficient arithmetic, structure inspection, meta-logical predicates
that discuss the state of the computation, and extra-logical predicates
that achieve side effects outside the computation model of logic pro-
gramming. One chapter is devoted to the most notorious of Prolog
extra-logical predicates, the cut. Basic techniques using these system
predicates are explained. The final chapter of the section gives assorted
pragmatic programming tips.

Preface to First Edition

The main part of the book is Part 111. We describe advanced Prolog
programming techniques that have evolved in the Prolog programming
community, illustrating each with small yet powerful example programs.
The examples typify the applications for which the technique is useful.
The six chapters cover nondeterministic programming, incomplete data
structures, parsing with DCGs, second-order programming, search tech-.
niques, and the use of meta-interpreters.

The final part consists of four chapters that show how the material in
the rest of the book can be combined to build application programs. A
common request of Prolog n e ~ ~ o m e r s is to see larger applications. They
understand how to write elegant short programs but have difficulty in
building a major program. The applications covered are game-playing
programs, a prototype expert system for evaluating requests for credit, a
symbolic equation solver, and a compiler.

During the development of the book, it has been necessary to reorga-
nize the foundations and basic examples existing in the folklore of the
logic programming community. Our structure constitutes a novel frame-
work for the teaching of Prolog.

Material from this book has been used successfully for several courses
on logic programming and Prolog: in Israel, the United States, and Scot-
land. The material more than suffices for a one-semester course to first-
year graduate students or advanced undergraduates. There is consider-
able scope for instructors to particularize a course to suit a special area
of interest.

A recommended division of the book for a 13-week course to senior un-
dergraduates or first-year graduates is as follows: 4 weeks on logic pro-
gramming, encouraging students to develop a declarative style of writing
programs, 4 weeks on basic Prolog programming, 3 weeks on advanced
techniques, and 2 weeks on applications. The advanced techniques
should include some discussion of nondeterminism, incomplete data
structures, basic second-order predicates, and basic meta-interpreters.
Other sections can be covered instead of applications. Application areas
that can be stressed are search techniques in artificial intelligence, build-
ing expert systems, writing compilers and parsers, symbol manipulation,
and natural language processing.

There is considerable flexibility in the order of presentation. The ma-
terial from Part I should be covered first. The material in Parts I11 and IV
can be interspersed with the material in Part I1 to show the student how

PROYECTO

xxxviii Preface to First Edition
Preface to First Edition

larger Prolog programs using more advanced techniques are composed
in the same style as smaller examples.

Our assessment of students has usually been 50 percent by homework
assignments throughout the course, and 50 percent by project. Our expe-
rience has been that students are capable of a significant programming
task for their project. Examples of projects are prototype expert systems,
assemblers, game-playing programs, partial evaluators, and implementa-
tions of graph theory algorithms.

For the student who is studying the material on her own, we strongly
advise reading through the more abstract material in Part I. A good Pro-
log programming style develops from thinking declaratively about the
logic of a situation. The theory in Chapter 5, however, can be skipped
until a later reading.

The exercises in the book range from very easy and well defined to
difficult and open-ended. Most of them are suitable for homework exer-
cises. Some of the more open-ended exercises were submitted as course
projects.

The code in this book is essentially in Edinburgh Prolog. The course has
been given where students used several different variants of Edinburgh
Prolog, and no problems were encountered. All the examples run on
Wisdom Prolog, whlch is discussed in the appendixes.

We acknowledge and thank the people who contributed directly to the
book. We also thank, collectively and anonymously, all those who indi-
rectly contributed by influencing our programming styles in Prolog. Im-
provements were suggested by Lawrence Byrd, Oded Maler, Jack Minker,
Richard O'Keefe, Fernando Pereira, and several anonymous referees.

We appreciate the contribution of the students who sat through
courses as material from the book was being debugged. The first author
acknowledges students at the University of Edinburgh, the Weizmann
Institute of Science, Tel Aviv University, and Case Western Reserve Uni-
versity. The second author taught courses at the Weizmann Institute and
Hebrew University of Jerusalem, and in industry.

We are grateful to many people for assisting in the technical aspects
of producing a book. We especially thank Sarah Fliegelmann, who pro-
duced the various drafts and camera-ready copy, above and beyond the
call of duty. Thls book might not have appeared without her tremendous
efforts. Arvind Bansal prepared the index and helped with the references.
Yehuda Barbut drew most of the figures. Max Goldberg and Shmuel Safra

prepared the appendix. The publishers, MIT Press, were helpful and sup-
portive.

Finally, we acknowledge the support of family and friends, without
which nothmg would get done.

Leon Sterling
1986

Introduction

The inception of logic is tied with that of scientific thinking. Logic pro-
vides a precise language for the explicit expression of one's goals, knowl-
edge, and assumptions. Logic provides the foundation for deducing
consequences from premises; for studying the truth or falsity of state-
ments given the truth or falsity of other statements; for establishing the
consistency of one's claims; and for \,erif>.ing the validity of one's argu-
ments.

Computers are relati\rely new in our intellectual history. Similar to
logic, they are the object of scientific study and a powerful tool for
the advancement of scientific endeavor. Like logic, computers require
a precise and explicit statement of one's goals and assumptions. Un-
like logic, which has developed with the power of human thinking as the
only external consideration, the development of computers has been gov-
erned from the start by severe technological and engineering constraints.
Although computers were intended for use by humans, the difficul-
ties in constructing them were so dominant that the language for
expressing problems to the computer and instructing it how to solve
them was designed from the perspective of the engineering of the com-
puter alone.

Almost all modern computers are based on the early concepts of von
Neumann and his colleagues, which emerged during the 1940s. The von
Neumann machine is characterized by a large uniform store of memory
cells and a processing unit with some local cells, called registers. The
processing unit can load data from memory to registers, perform arith-
metic or logical operations on registers, and store values of registers
back into memory. A program for a von Neumann machine consists of

Introduction lnrroduction

a sequence of instructions to perform such operations, and an additional
set of control instructions, which can affect the next instruction to be
executed, possibly depending on the content of some register.

As the problems of building computers were gradually understood and
solved, the problems of using them mounted. The bottleneck ceased to
be the inability of the computer to perform the human's instructions but
rather the inability of the human to instruct, or program, the computer.
A search for programming languages convenient for humans to use be-
gan. Starting from the language understood directly by the computer,
the machine language, better notations and formalisms were developed.
The main outcome of these efforts was languages that were easier for
humans to express themselves in but that still mapped rather directly
to the underlying machine language. Although increasingly abstract, the
languages in the mainstream of development, starting from assembly
language through Fortran, Algol, Pascal, and Ada, all carried the mark
of the underlying machine-the von Neumann architecture.

To the uninitiated intelligent person who is not familiar with the en-
gineering constraints that led to its design, the von Neumann machine
seems an arbitrary, even bizarre, device. Thinking in terms of its con-
strained set of operations is a nontrivial problem, which sometimes
stretches the adaptiveness of the human mind to its limits.

These characteristic aspects of programming von Neumann computers
led to a separation of work: there were those who thought how to solve
the problem, and designed the methods for its solution, and there were
the coders, who performed the mundane and tedious task of translating
the instructions of the designers to instructions a computer can use.

Both logic and programming require the explicit expression of one's
knowledge and methods in an acceptable formalism. The task of making
one's knowledge explicit is tedious. However, formalizing one's knowl-
edge in logic is often an intellectually rewarding activity and usually
reflects back on or adds insight to the problem under consideration. In
contrast, formalizing one's problem and method of solution using the
von Neumann instruction set rarely has these beneficial effects.

We believe that programming can be, and should be, an intellectu-
ally rewarding activity; that a good programming language is a powerful
conceptual tool-a tool for organizing, expressing, experimenting with,
and even communicating one's thoughts; that treating programming as

"coding," the last, mundane, intellectually trivial, time-consuming, and
tedious phase of solving a problem using a computer system, is perhaps
at the very root of what has been known as the "software crisis."

Rather, we think that programming can be, and should be, part of
the problem-solving process itself; that thoughts should be organized as
programs, so that consequences of a complex set of assumptions can be
investigated by "running1' the assumptions; that a conceptual solution to
a problem should be developed hand-in-hand with a working program
that demonstrates it and exposes its different aspects. Suggestions in
this direction have been made under the title "rapid prototyping."

To achieve this goal in its fullest-to become true mates of the human
thinking process-computers have still a long way to go. However, we
find it both appropriate and gratifying from a historical perspective that
logic, a companion to the human thinking process since the early days of
human intellectual history, has been discovered as a suitable stepping-
stone in this long journey.

Although logic has been used as a tool for designing computers and for
reasoning about computers and computer programs since almost their
beginning, the use of logic directly as a programming language, termed
logic programming, is quite recent.

Logic programming, as well as its sister approach, functional program-
ming, departs radically from the mainstream of computer languages.
Rather then being derived, by a series of abstractions and reorganiza-
tions, from the von Neumann machine model and instruction set, it is
derived from an abstract model, which has no direct relation to 'or de-
pendence on to one machine model or another. It is based on the belief
that instead of the human learning to think in terms of the operations
of a computer that which some scientists and engineers at some point
in history happened to find easy and cost-effective to build, the com-
puter should perform instructions that are easy for humans to provide.
In its ultimate and purest form, logic programming suggests that even
explicit instructions for operation not be given but rather that the knowl-
edge about the problem and assumptions sufficient to solve it be stated
explicitly, as logical axioms. Such a set of axioms constitutes an alterna-
tive to the conventional program. The program can be executed by pro-
viding it with a problem, formalized as a logical statement to be proved,
called a goal statement. The execution is an attempt to solve the prob-

lntroduction

lem, that is, to prove the goal statement, given the assumptions in the
logic program.

A distinguishing aspect of the logic used in logic programming is that
a goal statement typically is existentially quantified: it states that there
exist some individuals with some property. An example of a goal state-
ment is, "there exists a list X such that sorting the list [3,1,21 gives X."
The mechanism used to prove the goal statement is constructive. If suc-
cessful, it provides the identity of the unknown individuals mentioned in
the goal statement, which constitutes the output of the computation. In
the preceding example, assuming that the logic program contains appro-
priate axioms defining the sort relation, the output of the computation
would be X = [l , 2 ,3] .

These ideas can be summarized in the following two metaphorical
equations:

program = set of axioms.

computation = constructive proof of a goal statement from the progrum.

The ideas behind these equations can be traced back as far as intuition-
istic mathematics and proof theory of the early twentieth century. They
are related to Hilbert's program, to base the entire body of mathemati-
cal knowledge on logical foundations and to provide mechanical proofs
for its theories, starting from the axioms of logic and set theory alone.
It is interesting to note that the failure of this program, from which en-
sued the incompleteness and undecidability results of Godel and Turing,
marks the beginning of the modern age of computers.

The first use of this approach in practical computing is a sequel to
Robinson's unification algorithm and resolution principle, published in
1965. Se\-era1 hesitant attempts were made to use this principle as a basis
of a computation mechanism, but they did not gain any momentum.
The beginning of logic programming can be attributed to Kowalski and
Colmerauer. Kowalski formulated the procedural interpretation of Horn
clause logic. He showed that an axiom

A if BI and B2 and . . . and B,

can be read and executed as a procedure of a recursive programming
language, where A is the procedure head and the B, are its body. In

lntroduction

addition to the declarative reading of the clause, A is true if the B, are
true, it can be read as follows: To solve (execute) .4, solve (execute) B1 and
B, and . . . and B,,. In this reading, the proof procedure of Horn clause
logic is the interpreter of the language, and the unification algorithm,
which is at the heart of the resolution proof procedure, performs the
basic data manipulation operations of variable assignment, parameter
passing, data selection, and data construction.

At the same time, in the early 1970s, Colmerauer and his group at
the University of Marseilles-Aix developed a specialized theorem prover,
written in Fortran, which they used to implement natural language pro-
cessing systems. The theorem pro\,er, called Prolog (for Programmation
en Logique), embodied Kowalski's procedural interpretation. Later, van
Emden and Kowalski de\.eloped a formal semantics for the language of
logic programs, showing that its operational, model-theoretic, and fix-
point semantics are the same.

In spite of all the theoretical work and the exciting ideas, the logic pro-
gramming approach seemed unrealistic. At the time of its inception, re-
searchers in the United States began to recognize the failure of the "next-
generation .41 languages," such as Micro-Planner and Conniver, which de-
veloped as a substitute for Lisp. T'he main claim against these languages
was that they were hopelessl~, inefficient, and very difficult to control.
Given their bitter experience with logic-based high-level languages, it is
no great surprise that IJ.S. artificial intelligence scientists, when hearing
about Prolog, thought that the Europeans were o\.er-excited o\er what
they, the Americans, had already suggested, tried, and disco~~ered not to
work.

In that atmosphere the Prolog-10 compiler was almost an imaginary
being. Developed in the mid to late 1!370s by D a ~ i d H. Ll. Warren and
his colleagues, this efhcient implementation of Prolog dispelled all the
myths about the impracticality of logic programming. That compiler, still
one of the finest implementations of Prolog around, delivered on pure
list-processing programs a performance comparable to the best Lisp sys-
tems available at the time. Furthermore, the compiler itself was written
almost entirely in Prolog, suggesting that classic programming tasks, not
just sophisticated A1 applications, could benefit from the power of logic
programming.

PROYECTO

Introduction Introduction

The impact of this implementation cannot be overemphasized. Without
it, the accumulated experience that has led to this book would not have
existed.

In spite of the promise of the ideas, and the practicality of their im-
plementation, most of the Western computer science and A1 research
community was ignorant, openly hostile, or, at best, indifferent to logic
programming. By 1980 the number of researchers actively engaged in
logic programming were only a few dozen in the United States and about
one hundred around the world.

No doubt, logic programming would have remained a fringe activity
in computer science for quite a while longer hadit not been for the an-
nouncement of the Japanese Fifth Generation Project, which took place
in October 1981. Although the research program the Japanese presented
was rather baggy, faithful to their tradition of achieving consensus at
almost any cost, the important role of logic programming in the next
generation of computer systems was made clear.

Since that time the Prolog language has undergone a rapid transition
from adolescence to maturity. There are numerous commercially avail-
able Prolog implementations on most computers. A large number of Pro-
log programming books are directed to different audiences and empha-
size different aspects of the language. And the language itself has more
or less stabilized, having a de facto standard, the Edinburgh Prolog fam-
ily.

The maturity of the language means that it is no longer a concept for
scientists yet to shape and define but rather a given object, with vices
and virtues. It is time to recognize that, on the one hand, Prolog falls
short of the high goals of logic programming but, on the other hand, is a
powerful, productive, and practical programming formalism. Given the
standard life cycle of computer programming languages, the next few
years will reveal whether these properties show their merit only in the
classroom or prove useful also in the field, where people pa)- money to
solve problems the)- care about.

What are the current active subjects of research in logic programming
and Prolog? Answers to this question can be found in the regular sci-
entific journals and conferences of the field; the Logic Programming
Journal, the Journal of New Generation Computing, the International
Conference on Logic Programming, and the IEEE Symposium on Logic

Programming as well as in the general computer science journals and
conferences.

Clearly, one of the dominant areas of interest is the relation between
logic programming, Prolog, and parallelism. The promise of parallel com-
puters, combined with the parallelism that seems to be available in the
logic programming model, have led to numerous attempts, still ongoing,
to execute Prolog in parallel and to devise novel concurrent program-
ming languages based on the logic programming computation model.
This, however, is a subject for another book.

I Logic Programs

A logic program is a set of axioms, or rules, defining relations between
objects. A computation of a logic program is a deduction of conse-
quences of the program. A program defines a set of consequences, whlch
is its meaning. The art of logic programming is constructing concise and
elegant programs that have the desired meaning.

Leonardo Da Vinci. Old Man thinking. Pen and ink (slightly enlarged). About
1 5 10. Windsor Castle, Royal Library.

Basic Constructs

The basic constructs of logic programming, terms and statements, are
inherited from logic. There are three basic statements: facts, rules, and
queries. There is a single data structure: the logical term.

- -- - - - -- -- - --

1.1 Facts

The simplest kind of statement is called a fact. Facts are a means of
stating that a relation holds between objects. An example is

father (abraham, isaac)

This fact says that Abraham is the father of Isaac, or that the relation fa-
ther holds between the individuals named abraham and isaac. Another
name for a relation is a predicate. Names of individuals are known as
atoms. Similarly, plus (2 , 3 , 5) expresses the relation that 2 plus 3 is 5.
The familiar plus relation can be realized via a set of facts that defines
the addition table. An initial segment of the table is

plus (O,O, 0) . plus (0, I, I) . plus (0,2,2) . plus (0,3,3) .
plus(I,O,l). plus(l,l,2). plus(1,2,3). plus(1,3,4).

A sufficiently large segment of this table, which happens to be also a
legal logic program, will be assumed as the definition of the plus relation
throughout this chapter.

The syntactic conventions used throughout the book are introduced as
needed. The first is the case convention. It is significant that the names

Chapter 1

father (terach, abraham)
father (terach ,nachor) .
f ather(terach,haran) .
f ather(abraham, isaac) .
father(haran,lot) .
f ather(haran,milcah) .
father(haran, yiscah) .

mother (sarah, isaac) .

male (terach) .
male (abraham) .
male (nachor) .
male (haran) .
male(isaac).
male(1ot).

female (sarah) .
female (milcah) .
female(yiscah).

Program 1.1 A biblical family database

of both predicates and atoms in facts begin \vith a lowercase letter rather
than an uppercase letter.

A finite set of facts constitutes a program. This is the simplest form
of logic program. A set of facts is also a description of a situation. This
insight is the basis of database programming, to be discussed in the next
chapter. ,4n example database of famil) relationships from the Bible is
given as Program 1.1. The predicates fa ther , mother, male, and female
express the obvious relationships.

--

Queries

The second form of statement in a logic program is a query. Queries are
a means of retrieving information from a logic program. A query asks
whether a certain relation holds between objects. For example, the query
father(abraham, isaac)? asks whether the fa ther relationship holds
between abraham and isaac. Given the facts of Program 1.1, the answer
to this query is yes.

Syntactically, queries and facts look the same, but they can be distin-
guished by the context. When there is a possibility of confusion, a termi-
nating period will indicate a fact, while a terminating question mark will
indicate a query. We call the entity without the period or question mark
a goal. A fact P. states that the goal P is true. A query P? asks whether
the goal P is true. A simple query consists of a single goal.

Answering a query with respect to a program is determining whether
the query is a logical consequence of the program. We define logical

Basic Constructs

consequence incrementally through this chapter. Logical consequences
are obtained by applying deduction rules. The simplest rule of deduction
is identity: from P deduce P. A query is a logical consequence of an
identical fact.

Operationally, answering simple queries using a program containing
facts like Program 1.1 is straightforward. Search for a fact in the program
that implies the query. If a fact identical to the query is found, the answer
is yes.

The answer no is given if a fact identical to the query is not found,
because the fact is not a logical consequence of the program. This answer
does not reflect on the truth of the query; it merely says that we failed to
prove the query from the program. Both the queries female (abraham) ?

and plus (I , I, 2) ? will be answered no with respect to Program 1.1.

- - -- - - - -- - -

1.3 The Logical Variable, Substitutions, and Instances

A logical variable stands for an unspecified individual and is used ac-
cordingly. Consider its use in queries. Suppose we want to know of
whom abraham is the father. One way is to ask a series of queries,
f ather(abraham, l o t) ? , f ather(abraham,milcah)?, . . . , fa ther
(abraham, isaac)?, . . . until an answer yes is given. A variable allows
a better way of expressing the query as fa ther (abraham, X) ?, to which
the answer is X=isaac. Used in this way, variables are a means o f sum-
marizing many queries. A query containing a variable asks whether there
is a value for the variable that makes the query a logical consequence of
the program, as explained later.

Variables in logic programs behave differently from variables in con-
ventional programming languages. They stand for an unspecified but sin-
gle entity rather than for a store location in memory.

Having introduced variables, we can define a term, the single data
structure in logic programs. The definition is inductive. Constants and
variables are terms. Also compound terms, or structures, are terms.
A compound term comprises a functor (called the principal functor
of the term) and a sequence of one or more arguments, which are
terms. A functor is characterized by its name, which is an atom, and
its arity, or number of arguments. Syntactically, compound terms have

PROYECTO

Chapter 1 Basic Constructs

the form f (t l , tz , . . .,t,), where the functor has name f and is of arity
n, and the t, are the arguments. Examples of compound terms include
s(O), hot(milk), name(john,doe), list(a,list(b,nil)), foo(X), and
tree(tree(nil,3,nil), 5 , R) .

Queries, goals, and more generally terms where variables do not occur
are called ground. Where variables do occur, they are called nonground.
For example, f oo (a, b) is ground, whereas bar (XI is nonground.

Definition
A substitution is a finite set (possibly empty) of pairs of the form XI = t i ,
where XI is a variable and t, is a term, and X, # X, for every i f j, and XI
does not occur in t,, for any i and j.

An example of a substitution consisting of a single pair is {X=isaac}.
Substitutions can be applied to terms. The result of applying a substi-
tution 19 to a term A, denoted by A8 , is the term obtained by replacing
every occurrence of X by t in A, for every pair X = t in 8 .

The result of applying {X=isaac} to the term father (abraham, X) is
the term father (abraham, isaac).

Definition
A is an instance of B if there is a substitution 8 such that A = B e . w

The goal father (abraham, isaac) is an instance of father (abraham,
X) by this definition. Similarly, mother (sarah, isaac) is an instance of
mother (X,Y) under the substitution {X=sarah,Y=isaac}.

- -- -

1.4 Existential Queries

Logically speaking, variables in queries are existentially quantified, which
means, intuitively, that the query father (abraham, X) ? reads: "Does
there exist an X such that abraham is the father of X?" More generally,
a query p(T,,Tl,. . .,T,)?, which contains the variables XI,&,. . .,Xk reads:
"Are there XI,XZ,. . .,Xk such that p(Tl,T2,. . .,T,)?" For convenience, exis-
tential quantification is usually omitted.

The next deduction rule we introduce is generalization. An existential
query P is a logical consequence of an instance of it, PO, for any substi-
tution 8 . The fact father (abraham, isaac) implies that there exists an X
such that father (abraham, X) is true, namely, X=isaac.

Operationally, to answer a nonground query using a program of facts,
search for a fact that is an instance of the query. If found, the answer,
or solution, is that instance. A solution is represented in this chapter by
the substitution that, if applied to the query, results in the solution. The
answer is no if there is no suitable fact in the program.

In general, an existential query may have several solutions. Program
1.1 shows that Haran is the father of three children. Thus the query
father (haran,)()? has the solutions {X=lot}, {X=milcah), {X=yiscah}.
Another query with multiple solutions is plus (X, Y, 4) ? for finding num-
bers that add up to 3. Solutions are, for example, {X=O, Y=4} and {X=l,
Y=3}. Note that the different variables X and Y correspond to (possibly)
different objects.

An interesting variant of the last query is plus (X ,X ,4)?, which insists
that the two numbers that add up to 4 be the same. It has a unique
answer {X=2}.

1.5 Universal Facts

Variables are also useful in facts. Suppose that all the biblical characters
like pomegranates. Instead of including in the program an appropriate
fact for every individual,

a fact 1 ikes (X, pomegranates) can say it all. Used in this way, variables
are a means of summarizing many facts. The fact times (0, X , 0) summa-
rizes all the facts stating that 0 times some number is 0.

Variables in facts are implicitly universally quantified, which means,
intuitively, that the fact likes(X,pomegranates) states that for all X,
X likes pomegranates. In general, a fact p(Tl,. . .,T,) reads that for all
XI,. . .,Xk, where the X, are variables occurring in the fact, p(Tl,. . .,T,)
is true. Logically, from a universally quantified fact one can deduce
any instance of it. For example, from likes (X, pomegranates), deduce
likes(abraham,pomegranates).

Chupter 1

This is the third deduction rule, called instantiation. From a universally
quantified statement P, deduce an instance of it, P Q , for any substitution
0.

As for queries, two unspecified objects, denoted by variables, can be
constrained to be the same by using the same variable name. The fact
p l u s (0 , X, X) expresses that 0 is a left identity for addition. It reads that
for all values of X, 0 plus X is X. A similar use occurs when translating the
English statement "Everybody likes himself" to l i k e s (X, X).

Answering a ground query with a universally quantified fact is straight-
forward. Search for a fact for which the query is an instance. For example,
the answer to p l u s (0 , 2 , 2) ? is yes, based on the fact p lus (0 ,X, X I . An-
swering a nonground quer)? using a nonground fact involves a new defi-
nition: a common instance of two terms.

Definition
C is a common instance of '4 and B if it is an instance of A and an instance
of B, in other words, if there are substitutions 0 , and 0, such that C=AOI
is syntactically identical to B O l .

For example, the goals p l u s (O,3, Y) and p lus (0 , X , X) have a com-
mon instance p l u s (0 , 3 , 3) . When the substitution {Y=31 is applied to
p l u s (0 , 3 , Y) and the substitution {X=3) is applied to p lus (0 , X, X I , both
yield p l u s (0 , 3 , 3) .

In general, to ansn,er a query using a fact, search for a common in-
stance of the querj. and fact. The anslver is the common instance, if one
exists. Otherwise the answer is no.

Answering an existential querJr ~vith a universal fact using a common
instance invol~~es two logical deductions. The instance is deduced from
the fact by the rule of instantiation, and the query is deduced from the
instance b ~ . the rule of generalization.

-- pp - - -- -- - -

1.6 Conjunctive Queries and Shared Variables

An important extension to the queries discussed so far is conjunctive
queries. Conjunctive queries are a conjunction of goals posed as a query,
for example, f a t h e r (te rach ,X) , f a t h e r (X ,Y)? or in general, a,. . .,a?.
Simple queries are a special case of conjunctive queries when there is a

single goal. Logically, it asks whether a conjunction is deducible from the
program. We use "," throughout to denote logical and. Do not confuse
the comma that separates the arguments in a goal with commas used to
separate goals, denoting conjunction.

In the simplest conjunctive queries all the goals are ground, for exam-
ple, f a t h e r (abraham, i s a a c) , male (l o t) ?. The answer to this query us-
ing Program 1 . I is clearly yes because both goals in the query are facts in
the program. In general, the query a,. . .,&?, where each a is a ground
goal, is answered yes with respect to a program P if each is implied by
P. Hence ground conjunctive queries are not very interesting.

Conjunctive queries are interesting when there are one or more shared
variables, variables that occur in two different goals of the query. An ex-
ample is the query f a t h e r (haran , X) ,male (XI ?. The scope of a variable
in a conjunctive query, as in a simple query, is the whole conjunction.
Thus the quer)? p(X),q(X)P reads: "Is there an X such that both p(X) and
q (X) ? "

Sharcd variables arc used as a means of constraining a simple query
by restricting the range of a variable. We have already seen an example
cvith the query p lus (X , X ,4)?, where the solution of numbers adding
up to 4 was restricted to the numbers being the same. Consider the
querl, f a t h e r (haran , X) ,male (XI ?. Here solutions to the query f a -
t h e r (haran , X) ? are restricted t o children that are male. Program 1.1
shows there is only one solution, iX=lotl . Alternatively, this query can
be viewed as restricting solutions to the query male (XI ? to individuals
n7ho have Haran for a father.

A slightly different use of a shared variable can be seen in the query
f a t h e r (te rach ,X) , f a t h e r (X,Y)?. On the one hand, it restricts the sons
of t e r a c h to those who are themselves fathers. On the other hand, it con-
siders individuals Y, whose fathers are sons of t e r ach . There are several ,
solutions, for example, 1 X=abraham, Y=isaac} and {X=haran, Y=lot 1. j

A conjunctive query is a logical consequence of a program P if all the !
goals in the conjunction are consequences of P, where shared variables
are instantiated to the same values in different goals. A sufficient condi-
tion is that there be a ground instance of the query that is a consequence
of P. This instance then deduces the conjuncts in the query via general-
ization.

The restriction to ground instances is unnecessary and will be lifted in
Chapter 4 when we discuss the computation model of logic programs.

PROYECTO

Chapter 1

We employ this restriction in the meantime to simplify the discussion in
the coming sections.

Operationally, to solve the conjunctive query A1,A2,. . .,A,? using a pro-
gram P, find a substitution B such that AIB and . . . and A,B are ground
instances of facts in P. The same substitution applied to all the goals en-
sures that instances of variables are common throughout the query. For
example, consider the query f a t h e r (haran, X) ,male (XI ? with respect
to Program 1.1. Applying the substitution {X=lot) to the query gives
the ground instance f a t h e r (ha ran , lo t) ,male(lo t)? , which is a conse-
quence of the program.

Interesting conjunctive queries are defining relationships in their own
right. The query f a t h e r (haran,X) ,male(X)? is asking for a son of Ha-
ran. The query f a t h e r (t e rach , X) , f a t h e r (X , Y) ? is asking about grand-
children of Terach. This brings us to the third and most important state-
ment in logic programming, a rule, which enables us to define new rela-
tionships in terms of existing relationships.

Rules are statements of the form:

where n 2 0. The goal A is the head of the rule, and the conjunction of
goals B,,. . .,B, is the body of the rule. Rules, facts, and queries are also
called Horn clauses, or clauses for short. Note that a fact is just a special
case of a rule when n = 0. Facts are also called unit clauses. We also
have a special name for clauses with one goal in the body, namely, when
n = 1. Such a clause is called an iterative clause. As for facts, variables
appearing in rules are universally quantified, and their scope is the whole
rule.

A rule expressing the son relationship is

SOII(X, Y) - f a t h e r (Y ,X) , male (X) .

Similarly one can define a rule for the daughter relationship:

daughter (x , Y) - f a t h e r (Y , X) , female (X)

Basic Constructs

A rule for the grandfather relationship is

Rules can be viewed in two ways. First, they are a means of ex-
pressing new or complex queries in terms of simple queries. A query
son (X , haran) ? to the program that contains the preceding rule for son
is translated to the query f a ther(haran, X) ,male (X)? according to the
rule, and solved as before. A new query about the son relationship has
been built from simple queries involving f a t h e r and male relationships.
Interpreting rules in this way is their procedural reading. The procedural
reading for the grandfather rule is: "To answer a query Is X the grand-
father o f Y?, answer the conjunctive query Is X the father o f Z and Z the
father o f Y?."

The second view of rules comes from interpreting the rule as a logical
axiom. The backward arrow -is used to denote logical implication. The
son rule reads: "X is a son of Y if Y is the father of X and X is male."
In this view, rules are a means of defining new or complex relationships
using other, simpler relationships. The predicate son has been defined in
terms of the predicates f a t h e r and male. The associated reading of the
rule is known as the declarative reading. The declarative reading of the
grandfather rule is: "For all X, Y , and Z , X is the grandfather of Y if X
is the father of Z and Z is the father of Y."

Although formally all variables in a clause are universally quantified,
we will sometimes refer to variables that occur in the body of the clause,
but not in its head, as if they are existentially quantified inside the body.
For example, the grandfather rule can be read: "For all X and Y , X is the
grandfather of Y if there exists a Z such that X is the father of Z and Z
is the father of Y." The formal justification of this verbal transformation
will not be given, and we treat it just as a convenience. Whenever it is a
source of confusion, the reader can resort back to the formal reading of a
clause, in which all variables are universally quantified from the outside.

To incorporate rules into our framework of logical deduction, we need
the law of modus ponens. Modus ponens states that from B and A - B
we can deduce A.

Definition
The law of universal modus ponens says that from the rule

R = (A - B1,B2,. . .,B,)

Chapter 1

and the facts

A' can be deduced if

is an instance of R.

[Jniversal modus ponens includes identity and instantiation as special
cases.

We are now in a position to give a complete definition of the concept
of a logic program and of its associated concept of logical consequence.

Definition
A logic program is a finite set of rules.

Definition
An existentially quantified goal G is a logical consequence of a program P
if there is a clause in P with a ground instance A - B1, . . . , B n , n 2 0 such
that B,,. . .,B, are logical consequences of P, and A is an instance of G.

Note that the goal G is a logical consequence of a program P if and only
if G can be deduced from P by a finite number of applications of the rule
of universal modus ponens.

Consider the query son(S,haran)? with respect to Program 1.1 aug-
mented by the rule for son. The substitution {X=lot ,Y=haran} applied
to the rule gives the instance son(1ot ,haran) - f a t h e r (haran , l o t) ,
male(1ot) . Both the goals in the body of this rule are facts in Pro-
gram 1.1. Thus universal modus ponens implies the quer)? with answer
{S=lot}.

Operationally, answering queries reflects the definition of logical con-
seauence. Guess a ground instance of a goal, and a ground instance of -

a rule, and recursively answer the conjunctive query corresponding to
the body of that rule. To solve a goal A with program P, choose a rule
A, -B1,B2,. . .,Bn in P, and guess substitution t) such that A = AlO, and

Basic Constructs

B,O is ground for 1 I i I n. Then recursively solve each B,8. This pro-
cedure can int~olve arbitrail). long chains of reasoning. It is difficult in
general to guess the correct ground instance and to choose the right rule.
We show in Chapter 4 how the guessing of an instance can be removed.

The rule given for son is correct but is an incomplete specification of
the relationship. For example, we cannot conclude that Isaac is the son
of Sarah. What is missing is that a child can be the son of a mother as
well as the son of a father. A new rule expressing this relationship can be
added, namely,

'To define the relationship grandparent correctly would take four rules
to include both cases of f a t h e r and mother:

grandparent(X,Y) - f a t h e r (X , Z) , f a the r (Z ,Y) .
grandparent (X, Y) - f a t h e r (X, Z) , mother (2 , Y) .
grandparent (X ,Y) - mother(X, Z) , f a t h e r (Z ,Y) .
grandparent (X ,Y) - mother (X, Z) , mother (Z , Y) .

There is a better, more compact, n-a), of expressing these rules. \Ve need
to define the auxiliary relationship pa ren t as being a father or a mother.
Part of the art of logic programming is deciding on what intermediate
predicates to define to achie\,e a complete, elegant axiomatization of a
relationship. The rules defining parent are straightforward, capturing
the definition of a parent being a father or a mother. Logic programs
can incorporate a1ternatik.e definitions, or more technically disjunction,
by haking alternative rules, as for parent :

parent (X,Y) - - f ather(X,Y) .
parent (X, Y) - mother (X,Y) .
Rules for son and grandparent are non, respectively,

son(X,Y) - parent (Y ,X) , male(X) .
grandparent (X , Y) - parent (X, Z) , parent (Z, Y) .

A collection of rules with the same predicate in the head, such as
the pair of parent rules, is called a procedure. We shall see later that
under the operational interpretation of these rules by Prolog, such a
collection of rules is indeed the analogue of procedures or subroutines
in conventional programming languages.

Chapter 1

- - - -- -- p- - - - - - -- -

1.8 A Simple Abstract Interpreter

An operational procedure for answering queries has been informally de-
scribed and progressively developed in the previous sections. In this
section, the details are fleshed out into an abstract interpreter for logic
programs. In keeping with the restriction of universal modus ponens to
ground goals, the interpreter only answers ground queries.

The abstract interpreter performs yes/no computations. It takes as
input a program and a goal, and answers yes if the goal is a logi-
cal consequence of the program and no otherwise. The interpreter is
given in Figure 1.1. Note that the interpreter may fail to terminate if
the goal is not deducible from the program, in which case no answer is
given.

The current, usually conjunctive, goal at any stage of the computation
is called the resolvent. A trace of the interpreter is the sequence of resol-
vents produced during the computation. Figure 1.2 is a trace of answer-
ing the query son(lot ,har+n)? with respect to Program 1.2, a subset of
the facts of Program 1.1 together with rules defining son and daughter.
For clarit)., Figure 1.2 also explicitly- states the choice of goal and clause
made at each iteration of the abstract interpreter.

Each iteration of the while loop of the abstract interpreter corresponds
to a single application of modus ponens. This is called a reduction.

Input: ;Z ground goal (; and a program P

Output: ,v~,r i f (; is a log~cal consequence of P.

no othenz~se

Algorithm: Initialize the resolvent to G.

while the resolvent is not empt) do
choose a goal A from the resolvent
choose a ground instance of a clause .A' -B,, . . .,B,, from P

such that A and A' are identical
(if no such goal and clause exist, exit the while loop)

replace A by B,,. . .,B,, in the resolvent
If' the resolLent is ernptJ., thcn output yes, else output no.

Figure 1.1 An abstract interpreter to answer ground queries with respect to
logic programs

Basic Constructs

Input: son (lot, haran) ? and Program 1.2
Resolvent is son (lot, haran)

Resolvent is not empty

choose son(1ot ,haran) (the only choice)
chooseson(lot,haran) - father(haran,lot), male(1ot)
new resolvent is f ather(haran,lot) , male(1ot)

Resolvent is not empty
choose father (haran, lot)

choose father (haran, lot) .
new resolvent is male (lot)

Resolvent is not empty

choosemale(lot)

choose male (lot) .
new resolvent is empty

Output: yes

Figure 1.2 Tracing the interpreter

father(abraham,isaac). malecisaac) .
father(haran,lot). male(1ot).
father(haran,milcah). female (milcah) .
father(haran,yiscah). female(yiscah).

Program 1.2 Biblical family relationships

Definition
A reduction of a goal G by a program P is the replacement of G by the
body of an instance of a clause in P, whose head is identical to the chosen
goal.

A reduction is the basic computational step in logic programming. The
goal replaced in a reduction is reduced, and the new goals are derived.
In this chapter, we restrict ourselves to ground reductions, where the
goal and the instance of the clause are ground. Later, in Chapter 4, we
consider more general reductions where unification is used to choose the
instance of the clause and make the goal to be reduced and the head of
the clause identical.

Chapter 1

The trace in Figure 1.2 contains three reductions. The first reduces the
goal son(1ot ,haran) and produces two derived goals, f a the r (ha ran ,
l o t) and male (l o t) . The second reduction is of f a t h e r (haran, l o t and
produces no derived goals. The third reduction also produces no derived
goals in reducing male (l o t) .

There are two unspecified choices in the interpreter in Figure 1.1. The
first is the goal to reduce from the resolvent. The second choice is the
clause (and an appropriate ground instance) to reduce the goal. These
two choices have very different natures.

The selection of the goal to be reduced is arbitrary. In any given resol-
vent, all the goals must be reduced. It can be shown that the order of
reductions is immaterial for answering the query.

In contrast, the choice of the clause and a suitable instance is criti-
cal. In general, there are several choices of a clause, and infinitely many
ground instances. The choice is made nondeterministically. The concept
of nondeterministic choice is used in the definition of many computa-
tion models, e.g., finite automata and Turing machines, and has proven
to be a powerful theoretic concept. A nondeterministic choice is an un-
specified choice from a number of alternatives, which is supposed to be
made in a "clairvoyant" way. If only some of the alternatives lead to a
successful computation, then one of them is chosen. Formally, the con-
cept is defined as follows. A computation that contains nondeterministic
choices succeeds if there is a sequence of choices that leads to success.
Of course, no real machine can directly implement this definition. How-
ever, it can be approximated in a useful way, as done in Prolog. This is
explained in Chapter 6.

The interpreter given in Figure 1.1 can be extended to answer non-
ground existential queries by an initial additional step. Guess a ground
instance of the query. This is identical to the step in the interpreter of
guessing ground instances of the rules. It is difficult in general to guess
the correct ground instance, since that means knowing the result of the
computation before performing it.

A new concept is needed to lift the restriction to ground instances and
remove the burden of guessing them. In Chapter 4, we show how the
guess of ground instances can be eliminated, and we introduce the com-
putational model of logic programs more fully. IJntil then it is assumed
that the correct choices can be made.

Basic Constructs

Figure 1.3 A simple proof tree

A trace of a query implicitly contains a proof that the query follows
from the program. A more convenient representation of the proof is with
a proof tree. A proof tree consists of nodes and edges that represent the
goals reduced during the computation. The root of the proof tree for a
simple query is the query itself. The nodes of the tree are goals that are
reduced during the computation. There is a directed edge from a node
to each node corresponding to a derived goal of the reduced goal. The
proof tree for a conjunctive query is just the collection of proof trees for
the individual goals in the conjunction. Figure 1.3 gives a proof tree for
the program trace in Figure 1.2.

An important measure provided by proof trees is the number of nodes
in the tree. It indicates how many reduction steps are performed in a
computation. This measure is used as a basis of comparison between
different programs in Chapter 3.

- -- --
-

1.9 The Meaning of a Logic Program

How can we know if a logic program says what we wanted it to say? If
it is correct, or incorrect? In order to answer such questions, we have
to define what is the meaning of a logic program. Once defined, we can
examine if the program means what we have intended it to mean.

Definition
The meaning of a logic program P, M(P), is the set of ground goals
deducible from P.

From this definition it follows that the meaning of a logic program
composed just of ground facts, such as Program 1.1, is the program it-
self. In other words, for simple programs, the program "means just what

PROYECTO

Chapter 1 2 7 Basic Constructs

it says." Consider Program 1.1 augmented with the two rules defining
the parent relationship. What is its meaning? It contains, in addition
to the facts about fathers and mothers, mentioned explicitly in the pro-
gram, all goals of the form parent(X,Y) for every pair X and Y such
that fa ther (X , Y) or mother (X , Y) is in the program. This example shows
that the meaning of a program contains explicitly whatever the program
states implicitly.

Assuming that we define the intended meaning of a program also to
be a set of ground goals, we can ask what is the relation between the
actual and the intended meanings of a program. We can check whether
everything the program says is correct, or whether the program says
everything we wanted it to say.

Informally, we say that a program is correct with respect to some
intended meaning M if the meaning of P, M(P), is a subset of M. That is,
a correct program does not say things that were not intended. A program
is complete with respect to M if M is a subset of M(P). That is, a complete
program says everything that is intended. It follows that a program P is
correct and complete with respect to an intended meaning M if M = M (P) .

Throughout the book, when meaningful predicate and constant names
are used, the intended meaning of the program is assumed to be the one
intuitively implied by the choice of names.

For example, the program for the son relationship containing only
the first axiom that uses fa ther is incomplete with respect to the in-
tuitively understood intended meaning of son, since it cannot deduce
son(isaac, sarah). If we add to Program 1.1 the rule

it would make the program incorrect with respect to the intended mean-
ing, since it deduces son(sarah, isaac).

The notions of correctness and completeness of a logic program are
studied further in Chapter 5.

Although the notion of truth is not defined fully here, we will say
that a ground goal is true with respect to an intended meaning if it is
a member of it, and false otherwise. We will say it is simply true if it is a
member of the intended meaning implied by the names of the predicate
and constant symbols appearing in the program.

- - --. - -

1.10 Summary

We conclude this section with a summary of the constructs and concepts
introduced, filling in the remaining necessary definitions.

The basic structure in logic programs is a term. A term is a constant,
a variable, or a compound term. Constants denote particular individuals
such as integers and atoms, while variables denote a single but unspec-
ified individual. The symbol for an atom can be any sequence of char-
acters, which is quoted if there is possibility of confusion with other
symbols (such as variables or integers). Symbols for variables are distin-
guished by beginning with an uppercase letter.

A compound term comprises a functor (called the principal functor
of the term) and a sequence of one or more terms called arguments. A
functor is characterized by its name, which is an atom, and its arity or
number of arguments. Constants are considered functors of arity 0. Syn-
tactically, compound terms have the form f (t l ,tL,. . .,tn) where the functor
has name f and is of arity n, and the t, are the arguments. A functor
f of arity n is denoted f/n. Functors with the same name but different
arities are distinct. Terms are ground if they contain no variables; other-
wise they are nonground. Goals are atoms or compound terms, and are
generally nonground.

A substitution is a finite set (possibly empty) of pairs of the form X = t ,
where X is a variable and t is a term, with no variable on the left-hand
side of a pair appearing on the right-hand side of another pair, and no
two pairs having the same variable as left-hand side. For any substitution
O = {XI = t , , X , = t i , . . . , X , = t ,} and term s, the term so denotes the
result of simultaneously replacing in s each occurrence of the variable
XI by t,, 1 I i r n; the term sB is called an instance of s. More will be said
on this restriction on substitutions in the background to Chapter 4.

A logic program is a finite set of clauses. A clause or rule is a univer-
sally quantified logical sentence of the form

where A and the B, are goals. Such a sentence is read declaratively: "A is
implied by the conjunction of the Bi," and is interpreted procedurally "To
answer query A, answer the conjunctive query B1,B2,. . .,Bk." A is called the
clause's head and the conjunction of the B, the clause's body. If k = 0,

Chapter 1

the clause is known as a fact or unit clause and written A., meaning A
is true under the declarative reading, and goal A is satisfied under the
procedural interpretation. If k = 1, the clause is known as an iterative
clause.

A query is a conjunction of the form

A, ,..., A,? n>0,

where the A, are goals. Variables in a query are understood to be existen-
tially quantified.

A computation of a logic program P finds an instance of a given query
logically deducible from P. A goal G is deducible from a program P if
there is an instance A of G where A -B1,. . .,Bn, n r 0, is a ground instance
of a clause in P , and the B, are deducible from P. Deduction of a goal
from an identical fact is a special case.

The meaning of a program P is inductively defined using logical de-
duction. The set of ground instances of facts in P are in the meaning. A
ground goal G is in the meaning if there is a ground instance G -BJ , . . .,Bn
of a rule in P such that B, ,. . .,B, are in the meaning. The meaning consists
of the ground instances that are deducible from the program.

An intended meaning M of a program is also a set of ground unit goals.
A program P is correct with respect to an intended meaning M if M (P) is
a subset of M . It is complete with respect to M if M is a subset of M (P) .
Clearly, it is correct and complete with respect to its intended meaning,
which is the desired situation, if M = M (P) .

A ground goal is true with respect to an intended meaning if it is a
member of it, and false otherwise.

Logical deduction is defined syntactically here, and hence also the
meaning of logic programs. In Chapter 5 , alternative ways of describing
the meaning of logic programs are presented, and their equivalence with
the current definition is discussed.

Database Programming

There are two basic styles of using logic programs: defining a logical
database, and manipulating data structures. This chapter discusses data-
base programming. A logic database contains a set of facts and rules.
We show how a set of facts can define relations, as in relational data-
bases. We show how rules can define complex relational queries, as in
relational algebra. A logic program composed of a set of facts and rules
of a rather restricted format can express the functionalities associated
with relational databases.

- - -- - - - - --

2.1 Simple Databases

We begin by revising Program 1.1, the biblical database, and its aug-
mentation with rules expressing family relationships. The database
itself had four basic predicates, fa ther /2 , mother/2, male/l, and f e -
male/l. We adopt a convention from database theory and give for
each relation a relation scheme that specifies the role that each po-
sition in the relation (or argument in the goal) is intended to repre-
sent. Relation schemes for the four predicates here are, respectively,
f a t h e r (Father, Child), mother (Mother ,Child), male (Person), and
female (Person). The mnemonic names are intended to speak for them-
selves.

Variables are given mnemonic names in rules, but usually X or Y when
discussing queries. Multiword names are handled differently for vari-
ables and predicates. Each new word in a variable starts with an upper-
case letter, for example, NieceOrNephew, while words are delimited by

PROYECTO

Chapter 2

underscores for predicate and function names, for example, schedule-
c o n f l i c t .

New relations are built from these basic relationships by defining suit-
able rules. Appropriate relation schemes for the relationships introduced
in the previous chapter are son (Son, Pa ren t) , daughter (Daughter,

Pa ren t) , parent (Pa ren t , Chi ld) , and grandparent (Grandparent,
Grandchild). From the logical viewpoint, it is unimportant which re-
lationships are defined by facts and which by rules. For example, if the
available database consisted of pa ren t , male and female facts, the rules
defining son and grandparent are still correct. New rules must be writ-
ten for the relationships no longer defined by facts, namely, f a t h e r and
mother. Suitable rules are

f a t h e r (Dad, Child) - parent (Dad, Child) , male at ad) .
mother (Mum, Child) - parent (~ u m , c h i l d) , female (~ u m) .

Interesting rules can be obtained by making relationships explicit that
are present in the database only implicitly. For example, since we know
the father and mother of a child, we know which couples produced off-
spring, or to use a Biblical term, procreated. This is not given explicitly in
the database, but a simple rule can be written recovering the information.
The relation scheme is procreated(Man, Woman).

procreated(Man, Woman) -
f a t h e r (Man, Child) , mother (woman, Child) .

This reads: "Man and Woman procreated if there is a Child such that Man
is the father of Child and Woman is the mother of Child."

Another example of information that can be recovered from the simple
information present is sibling relationships - brothers and sisters. We
give a rule for b ro the r (Brother , S i b l i n g) .

b ro the r (Bro the r ,S ib) -
paren t (Parent ,Bro the r) , parent (Parent , S i b) , male (Brother) .

This reads: "Brother is the brother of S i b if Parent is a parent of both
Brother and Sib, and Brother is male."

There is a problem with this definition of brother. The query b ro the r
(X,X)? is satisfied for any male child X, which is not our understanding
of the brother relationship.

In order to preclude such cases from the meaning of the program,

Database Programming

abraham f isaac. abraham f haran. abraham f lot.
abraham # milcah. abraham f yiscah. isaac f haran.
isaac f lot. isaac f milcah. isaac f yiscah.
haran f lot. haran f milcah. haran f yiscah.
lot f milcah. lot f yiscah. milcah f yiscah.

Figure 2.1 Defining inequality

uncle(Uncle,Person) -
brother(Uncle,Parent), parent(Parent,Person).

sibling(Sibl,Sib2) -
parent (Parent ,Sib11 , parent (Parent ,Sib2), Sib1 f Sib2

cousin(Cousinl,Cousin2) -
parent (Parent 1, Cousinl) ,
parent(Parent2,Cousin2),
sibling(Parentl,Parent2).

Program 2.1 Defining family relationships

we introduce a predicate # (Terml , Term2). It is convenient to write this
predicate as an i n k operator. Thus Terml f Term2 is true if Term1 and
Term2 are different. For the present it is restricted to constant terms.
It can be defined, in principle, by a table X f Y for every two different
individuals X and Y in the domain of interest. Figure 2.1 gives part of
the appropriate table for Program 1.1.

The new brother rule is

b ro the r (Brother , S ib) -
~ a r e n t (Pa ren t , Brother) ,
parent (Parent , S ib) ,
male (Brother) ,
Brother f S i b .

The more relationshps that are present, the easier it is to define com-
plicated relationships. Program 2.1 defines the relationships
uncle(Uncle,Person), s i b l i n g (S i b l , S i b 2) , and cousin(Cousin1,
Cousin2). The definition of uncle in Program 2.1 does not define the
husband of a sister of a parent to be an uncle. This may or may not be
the intended meaning. In general, different cultures define these family
relationshps differently. In any case, the logic makes clear exactly what
the programmer means by these family relationshps.

Chapter 2 Database Programming

Another relationship implicit in the family database is whether a
woman is a mother. This is determined by using the mother/2 relation-
shp . The new relation scheme is mother (Woman), defined by the rule

mother (Woman) - mother (Woman, Child) .
Ths reads: "Woman is a mother if she is the mother of some Child." Note
that we have used the same predicate name, mother, to describe two
different mother relationshps. The mother predicate takes a different
number of arguments, i.e., has a different arity, in the two cases. In
general, the same predicate name denotes a different relation when it has
a different arity.

We change examples, lest the example of family relationships become
incestuous, and consider describing simple logical circuits. A circuit can
be viewed from two perspectives. The first is the topological layout of
the physical components usually described in the circuit diagram. The
second is the interaction of functional units. Both views are easily ac-
commodated in a logic program. The circuit diagram is represented by
a collection of facts, while rules describe the functional components.

Program 2.2 is a database ghing a simplified view of the logical and-
gate drawn in Figure 2.2. The facts are the connections of the particular
resistors and transistors comprising the circuit. The relation scheme
for resistors is resistor (Endl, End2) and for transistors transis-
tor(Gate,Source,Drain).

P o w e r

Figure 2.2 A logical circuit

inverter (Input,Output) -
Output is the inversion of Input.

nand-gate(Input1 ,lnput2,Output) -
Output is the logical nand of Inputl and Input2.

and-gate(lnputl,lnputZ,Output) -
Output is the logical and of Inputl and Inputi'.

Program 2.2 A circuit for a logical and-gate

The program demonstrates the style of commenting of logic programs
we will follow throughout the book. Each interesting procedure is pre-
ceded by a relation scheme for the procedure, shown in italic font, and by
English text defining the relation. We recommend this style of comment-
ing, whch emphasizes the declarative reading of programs, for Prolog
programs as well.

Particular configurations of resistors and transistors fulfill roles cap-
tured via rules defining the functional components of the circuit. The
circuit describes an and-gate, which takes two input signals and pro-
duces as output the logical and of these signals. One way of building
an and-gate, and how this circuit is composed, is to connect a nand-gate
with an inverter. Relation schemes for these three components are and-
gate(Inputl,Input2,0utput), nand-gate(Inputl,Input2,0utput),
and inverter (Input, Output).

Chapter 2 I
3 5 Database Programming

To appreciate Program 2.2, let us read the inverter rule. Ths states that
an inverter is built up from a transistor with the source connected to the
ground, and a resistor with one end connected to the power source. The
gate of the transistor is the input to the inverter, whde the free end of the
resistor must be connected to the drain of the transistor, whlch forms
the output of the inverter. Sharing of variables is used to insist on the
common connection.

Consider the query and-gate (In1 , I d , Out) ? to Program 2.2. It has
the solution {Inl=n3, In2=n5,Out=nl]. Ths solution confirms that the
circuit described by the facts is an and-gate, and indicates the inputs and
output.

2.1.1 Exercises for Section 2.1

(i) Modify the rule for brother on page 21 to give a rule for sister,
the rule for uncle in Program 2.1 to give a rule for niece, and
the rule for sibling in Program 2.1 so that it only recognizes full
siblings, i.e., those that have the same mother and father.

(11) Using a predicate married-couple (Wif e ,Husband), define the rela-
tionships mother-in-law, brother-in-law, and son-in-law.

(iii) Describe the layout of objects in Figure 2.3 with facts using the
predicates left-of (ObjectI,Object2) and above(0bjectl ,Ob-
j ect2). Define predicates right-of (Object1 , Object2) and below
(Object l,Object2) in terms of lef t-of and above, respectively.

Figure 2.3 Still-life objects

2.2 Structured Data and Data Abstraction

A limitation of Program 2.2 for describing the and-gate is the treatment
of the circuit as a black box. There is no indication of the structure of the
circuit in the answer to the and-gate query, even though the structure
has been implicitly used in finding the answer. The rules tell us that
the circuit represents an and-gate, but the structure of the and-gate is
present only implicitly. We remedy this by adding an extra argument to
each of the goals in the database. For uniformity, the extra argument
becomes the first argument. The base facts simply acquire an identifier.
Proceeding from left to right in the diagram of Figure 2.2, we label the
resistors rl and r2, and the transistors tl, t2, and t3.

Names of the functional components should reflect their structure. An
inverter is composed of a transistor and a resistor. To represent ths ,
we need structured data. The technique is to use a compound term,
inv (T , R) , where T and R are the respective names of the inverter's com-
ponent transistor and rcsistor. Analogously, the name of a nand-gate will
be nand(T1 ,T2 ,R), where TI, T2, and R name the two transistors and re-
sistor that comprise a nand-gate. Finally, an and-gate can be named in
terms of an inverter and a nand-gate. The modified code containing the
names appears in Program 2.3.

The query and-gate (G, In1 , In2, Out)? has solution {G=and(nand(t2,
t3,r2) ,inv(tl ,rl)), Inl=n3, In2=n5,Out=nl}. Inl, In2, and Out have
their previous values. The complicated structure for G reflects accurately
the functional composition of the and-gate.

Structuring data is important in programming in general and in logic
programming in particular. It is used to organize data in a meaningful
way. Rules can be written more abstractly, ignoring irrelevant details.
More modular programs can be achieved this way, because a change of
data representation need not mean a change in the whole program, as
shown by the following example.

Consider the following two ways of representing a fact about a lecture
course on complexity given on Monday from 9 to 11 by David Hare1 in
the Feinberg building, room A:

and

Chapter 2

resistor (R,Nodel ,Node2) -
R is a resistor between Node1 and Node2.

resistor(rl,power,nl).
resistor(r2,power,n2).

transistor (T,Gate,Source,Drain) -
T is a transistor whose gate is Gate,
source is Source, and drain is Drain.

inverter (l,lnput,Output) -
I is an inverter that inverts Input to Output

inverter(inv(T,R) ,input ,Output) -
transistor(~,~nput,ground,Outp~t),
resistor(R,power,Output).

nand-gate(Nand,Inputl,Input2,Output) -
Nand is a gate forming the logical nand, Output,
of lnputl and Input2.

nand-gate (nand (TI ,T2, R) , Input1, Input2, Output) '
transistor (TI ,Input1 ,X,output),
transistor (T2, Input2 ,ground ,X) ,
resistor(R,power,Output).

and-gate(And,Inputl ,lnput2Output) -
And is a gate forming the logical and, Output,
of Input1 and Input2.

and-gate(and(N,I) ,Input1,1nput:!,Output) '
nand-gate (N ,Input 1, Input2 ,X) ,
inverter(I,X,Output).

Program 2.3 The circuit database with names

Database Programming

The first fact represents course as a relation between eight items - a
course name, a day, a starting hour, a finishng hour, a lecturer's first
name, a lecturer's surname, a building, and a room. The second fact
makes course a relation between four items - a name, a time, a lecturer,
and a location with further qualification. The time is composed of a day,
a starting time, and a finishing time; lecturers have a first name and
a surname; and locations are specified by a building and a room. The
second fact reflects more elegantly the relations that hold.

The four-argument version of course enables more concise rules to
be written by abstracting the details that are irrelevant to the query.
Program 2.4 contains examples. The occupied rule assumes a predicate
less than or equal, represented as a binary infix operator I .

Rules not using the particular values of a structured argument need
not "know" how the argument is structured. For example, the rules for
duration and teaches represent time explicitly as time(Day,Start,
Finish) because the Day or Start or Finish times of the course are de-
sired. In contrast, the rule for lecturer does not. T h s leads to greater
modularity, because the representation of time can be changed without
affecting the rules that do not inspect it.

We offer no definitive advice on when to use structured data. Not using
structured data allows a uniform representation where all the data are
simple. The advantages of structured data are compactness of represen-
tation, which more accurately reflects our perspective of a situation, and

duration(Course,Length) -
course (Course, time (Day, Start ,Finish) ,Lecturer, Location) ,
plus(Start,Length,Finish).

occupied(Room,Day,Time) -
course (Course, time(Day, Start ,Finish) ,Lecturer ,Room),
Start 5 Time, Time 5 Finish.

Program 2.4 Course rules

Chapter 2 39 Database Programming

modularity. We can relate the discussion to conventional programming
languages. Facts are the counterpart of tables, whle structured data cor-
respond to records with aggregate fields.

We believe that the appearance of a program is important, particularly
when attempting difficult problems. A good structuring of data can make
a difference when programming complex problems.

Some of the rules in Program 2.4 are recovering relations between two
individuals, binary relations, from the single, more complicated one.
All the course information could have been written in terms of binary
relations as follows:

day (complexity ,monday) .
start-time(complexity,9) .
f inish-time (complexity, 11) .
lecturer (complexity,harel) .
building(complexity,feinberg).
room(complexity , a) .

Rules would then be expressed differently, reverting to the previous style
of malung implicit connections explicit. For example,

teaches (Lecturer ,Day) -
lecturer (Course, Lecturer) , day (course, Day)

2.2.1 Exercises for Section 2.2

(i) Add rules defining the relations location(Course,~uilding),
busy (Lecturer, Time), and cannot-meet (Lecturer1 , ~ecturer2).
Test with your own course facts.

(ii) Possibly using relations from Exercise (i), define the relation sched-
ule-conf lict (Time ,Place ,Course1 ,Course2).

(iii) Write a program to check if a student has met the requirements for
a college degree. Facts will be used to represent the courses that the
student has taken and the grades obtained, and rules will be used
to enforce the college requirements.

(iv) Design a small database for an application of your own choice. Use
a single predicate to express the information, and invent suitable
rules.

2.3 Recursive Rules

The rules described so far define new relationshps in terms of existing
ones. An interesting extension is recursive definitions of relationshps
that define relationships in terms of themselves. One way of viewing
recursive rules is as generalization of a set of nonrecursive rules.

Consider a series of rules defining ancestors - grandparents, great-
grandparents, etc:

grandparent (Ancestor, Descendant) -
parent(Ancestor,Person), parent(Person,Descendant).

greatgrandparent(Ancestor,Descendant) -
parent(Ancestor,Person), grandparent(Person,Descendant).

greatgreatgrandparent(Ancestor,Descendant) -
parent (Ancestor ,person), greatgrandparent (Person,

Descendant).

A clear pattern can be seen, which can be expressed in a rule defining the
relationship ancestor (Ancestor ,Descendant) :

This rule is a generalization of the previous rules.
A logic program for ancestor also requires a nonrecursive rule, the

choice of which affects the meaning of the program. If the fact ances-
tor (X , X) is used, defining the ancestor relationship to be reflexive, peo-
ple will be considered to be their own ancestors. This is not the intuitive
meaning of ancestor. Program 2.5 is a logic program defining the ances-
tor relationship, where parents are considered ancestors.

ancestor (Ancestor,Descendant) -
Ancestor is an ancestor of Descendant.

Program 2.5 The ancestor relationship

Chapter 2 Database Programming

The ancestor relationshp is the transitive closure of the parent re-
lationship. In general, finding the transitive closure of a relationship is
easily done in a logic program by using a recursive rule.

Program 2.5 defining ancestor is an example of a linear recursive pro-
gram. A program is linear recursive if there is only one recursive goal in
the body of the recursive clause. The linearity can be easily seen from
considering the complexity of proof trees solving ancestor queries. A
proof tree establishing that two individuals are n generations apart given
Program 2.5 and a collection of parent facts has 2 . n nodes.

There are many alternative ways of defining ancestors. The declarative
content of the recursive rule in Program 2.5 is that Ancestor is an ances-
tor of Descendant if Ancestor is a parent of an ancestor of Descendant.
Another way of expressing the recursion is by observing that Ancestor
would be an ancestor of Descendant if Ancestor is an ancestor of a par-
ent of Descendant. The relevant rule is

ancestor(Ancestor,Descendant) -
ancestor (Ancestor, Person) , parent (Person, ~escendant) .

Another version of defining ancestors is not linear recursive. A pro-
gram identical in meaning to Program 2.5 but with two recursive goals in
the recursive clause is

ancestor(Ancestor,Descendant) -
parent (Ancestor ,Descendant) .

ancestor(Ancestor,Descendant) -
ancestor (Ancestor ,Person) , ancestor (~erson,~escendant) .

,
Consider the problem of testing connectivity in a directed graph. A

directed graph can be represented as a logic program by a collection i
of facts. A fact edge (Node1 ,Node2) is present in the program if there 1
is an edge from Node1 to Node2 in the graph. Figure 2.4 shows a graph;
Program 2.6 is its description as a logic program. i

Two nodes are connected if there is a series of edges that can be tra- I
versed to get from the first node to the second. That is, the relation con-
nected(Node1 ,Node2), which is true if Node1 and Node2 are connected,

I

is the transitive closure of the edge relation. For example, a and e are
1
1

connected in the graph in Figure 2.4, but b and f are not. Program 2.7
defines the relation. The meaning of the program is the set of goals con-

I
I

Figure 2.4 A simple graph

Program 2.6 A directed graph

connected(Node1 ,Node2) -
N o d e 1 is connected to Node2 in the
graph defined by the edge/2 relation.

connected(Node,Node).
connected(Nodel,Node2) - edge(Nodel,Link), connected(Link,Node2)

Program 2.7 The transitive closure of the edge relation

nected(X,Y), where X and Y are connected. Note that connected is a
transitive reflexive relation because of the choice of base fact.

2.3.1 Exercises for Section 2.3

(i) A stack of blocks can be described by a collection of facts on
(Blockl,Block2), whch is true if Blockl is on Block2. Define a
predicate above(Blockl,Block2) that is true if Blockl is above
Block2 in the stack. (Hint: above is the transitive closure of on.)

Chapter 2

(ii) Add recursive rules for left-of and above from Exercise 2.l(iii) on
p. 34. Define higher (Objectl , Object2), which is true if Objectl is
on a line hlgher than Object2 in Figure 2.3. For example, the bicycle
is hgher than the fish in the figure.

(iii) How many nodes are there in the proof tree for connected(a,e)
using Programs 2.6 and 2.7? In general, using Program 2.6 and a
collection of edge/2 facts, how many nodes are there in a proof tree
establishing that two nodes are connected by a path containing n
intermediate nodes?

2.4 Logic Programs and the Relational Database Model

Logic programs can be viewed as a powerful extension to the relational
database model, the extra power coming from the ability to specify rules.
Many of the concepts introduced haire meaningful analogues in terms of
databases. The converse is also true. The basic operations of the rela-
tional algebra are easily expressed within logic programming.

Procedures composed solely of facts correspond to relations, the arity
of the relation being the arity of the procedure. Five basic operations
define the relational algebra: union, set difference, Cartesian product,
projection, and selection. We show how each is translated into a logic
program.

The union operation creates a relation of arity n from two relations r
and s, both of arity n. The new relation, denoted here r-union-s, is the
union of r and s. It is defined directly as a logic program by two rules:

Set difference involves negation. We assume a predicate not. Intu-
itively, a goal not G is true with respect to a program P if G is not a
logical consequence of P. Negation in logic programs is discussed in
Chapter 5, where limitations of the intuitive definition are indicated. The
definition is correct, however, if we deal only with ground facts, as is the
case with relational databases.

The definition of r-diff -s of arity n, where r and s are of arity n, is

Database Programming

r-diff-s(X1, . . . ,Xn) -- XI, . . . ,Xn), not S O , , . . . ,x,) .

Cartesian product can be defined in a single rule. If r is a relation of
arity m, and s is a relation of arity n, then r-x-s is a relation of arity
m + n defined by

Projection involves forming a new relation comprising'only some of
the attributes of an existing relation. This is straightforward for any
particular case. For example, the projection r13 selecting the first and
third arguments of a relation r of arity 3 is

Selection is similarly straightforward for any particular case. Consider
a relation consisting of tuples whose third components are greater than
their second, and a relation where the first component is Smith or Jones.
In both cases a relation r of arity 3 is used to illustrate. The first example
creates a relation rl:

The second example creates a relation r2, which requires a disjunctive
relationship, smith-or- j ones:

r2(X1 ,X2 ,X3) - XI ,X2,X3), smith-or-jones(X,).
smith-or-jones (smith) .
smith-or- j ones (j ones) .

Some of the derived operations of the relational algebra are more
closely related to the constructs of logic programming. We mention two,
intersection and the natural join. If r and s are relations of arity n, the
intersection, r-meet-s is also of arity n and is defined in a single rule.

A natural join is precisely a conjunctive query with shared variables.

44 Chapter 2

2.5 Background

Readers interested in pursuing the connection between logic program-
ming and database theory are referred to the many papers that have
been written on the subject. A good starting place is the review paper by
Gallaire et al. (1984). There are earlier papers on logic and databases in
Gallaire and Minker (1978). Another interesting book is about the imple-
mentation of a database query language in Prolog (Li, 1984). Our discus-
sion of relational databases follows Ullman (1982). Another good account
of relational databases can be found in Maier (1983).

In the seven years between the appearance of the first edition and the
second edition of t h s book, the database community has accepted logic
programs as extensions of relational databases. The term used for a data-
base extended with logical rules is logic database or deductive database.
There is now a wealth of material about logic databases. The rewritten
version of Ullman's text (1989) discusses logic databases and gives point-
ers to the important literature.

Perhaps the major difference between logic databases as taught from
a database perspective and the view presented here is the way of evalu-
ating queries. Here we implicitly assume that the interpreter from Figure
4.2 will be used, a top-down approach. The database community prefers
a bottom-up evaluation mechanism. Various bottom-up strategies for an-
swering a query with respect to a logic database are given in Ullman
(1989).

In general, an n-ary relation can be replaced by n + 1 binary relations,
as shown by Kowalski (1979a). If one of the arguments forms a key for
the relation, as does the course name in the example in Section 2.2, n
binary relations suffice.

The addition of an extra argument to each predicate in the circuit,
as discussed at the beginning of Section 2.2, is an example of an en-
hancement of a logic program. The technique of developing programs
by enhancement is of growing importance. More will be said about this
in Chapter 13.

Recursive Programming

The programs of the previous chapter essentially retrieve information
from, and manipulate, finite data structures. In general, mathematical
power is gained by considering infinite or potentially infinite structures.
Finite instances then follow as special cases. Logic programs harness this
power by using recursive data types.

Logical terms can be classified into types. A type is a (possibly infinite)
set of terms. Some types are conveniently defined by unary relations. A
relation p/l defines the type p to be the set of X's such that p (X) .

For example, the male/l and f emale/l predicates used previously de-
fine the male and female types.

More complex types can be defined by recursive logic programs. Such
types are called recursive types. Types defined by unary recursive pro-
grams are called simple recursive types. A program defining a type is
called a w p e definition.

In this chapter, m7e show logic programs defining relations over simple
recursive types, such as integers, lists, and binary trees, and also pro-
grams over more complex types, such as polynomials.

3.1 Arithmetic

The simplest recursive data type, natural numbers, arises from the foun-
dations of mathematics. Arithmetic is based on the natural numbers.
This section gives logic programs for performing arithmetic.

In fact, Prolog programs for performing arithmetic differ considerably
from their logical counterparts, as we will see in later chapters. How-
ever, it is useful to spend time discussing the logic programs. There are

Chapter 3

natural-number (XI -
X is a natural number.

Program 3.1 Defining the natural numbers

two main reasons. First, the operations of arithmetic are usually thought
of functionally rather than relationally. Presenting examples for such a
familiar area emphasizes the change in thmlung necessary for compos-
ing logic programs. Second, it is more natural to discuss the underlying
mathematical issues, such as correctness and completeness of programs.

The natural numbers are built from two constructs, the constant sym-
bol 0 and the successor function s of arity 1. All the natural numbers are
then recursively given as 0, s (O), s (s (0)) , s (s (s (0)) 1, We adopt
the convention that sn(0) denotes the integer n, that is, n applications
of the successor function to 0.

As in Chapter 2, we give a relation scheme for each predicate, together
with the intended meaning of the predicate. Recall that a program P
is correct with respect to an intended meaning M if the meaning of
P is a subset of M. It is complete if M is a subset of the meaning of
P. It is correct and complete if its meaning is identical to M. Proving
correctness establishes that everythng deducible from the program is
intended. Proving completeness establishes that everythng intended is
deducible from the program. Two correctness and completeness proofs
are given in t h s section.

The simple type definition of natural numbers is neatly encapsulated
in the logic program, shown as Program 3.1. The relation scheme used
is natural-number (X), with intended meaning that X is a natural num-
ber. The program consists of one unit clause and one iterative clause (a
clause with a single goal in the body). Such a program is called minimal
recursive.

Proposition
Program 3.1 is correct and complete with respect to the set of goals
natural-number (si (0)), for i > 0.

Proof (1) Completeness. Let n be a natural number. We show that the
goal natural-number(n) is deducible from the program by giving an
explicit proof tree. Either n is 0 or of the form sn(0). The proof tree
for the goal natural-number(0) is trivial. The proof tree for the goal

Recursive Programming

. . .
Figure 3.1 Proof trees establishing completeness of programs

natural-number (s (. . .s (0). . .)) contains n reductions, using the rule in
Program 3.1, to reach the fact natural-number (O), as shown in the left
half of Figure 3.1.

(2) Correctness. Suppose that natural-number(X) is deducible from
Program 3.1, in n deductions. We prove that natural-number (X) is in
the intended meaning of the program by induction on n. If n = 0, then
the goal must have been proved using a unit clause, whlch implies that X
= 0. If n > 0, then the goal must be of the form natural-number (s (X') 1,
since it is deducible from the program, and further, natural-number (X')
is deducible in n - 1 deductions. By the induction hypothesis, X' is in the
intended meaning of the program, i.e., X'=sk (01 for some k 2 0.

The natural numbers have a natural order. Program 3.2 is a logic pro-
gram defining the relation less than or equal to according to the order.
We denote the relation with a binary infuc symbol, or operator, I, accord-
ing to mathematical usage. The goal 0 I X has predicate symbol I of
arity 2, has arguments 0 and X, and is syntactically identical to ' I) (0, X) .

Chapter 3
Recursive Programming

X 5 Y -
X and Y are natural numbers,
such that X is less than or equal to Y.

0 I X - natural-number (XI .
s(X) I s(Y) - X 2 Y.

natural-number (X) - See Program 3.1 .

Program 3.2 The less than or equal relation

The relation scheme is Nl r NZ. The intended meaning of Program 3.2
is all ground facts X 5 Y, where x and Y are natural numbers and X is
less than or equal to Y. Exercise (ii) at the end of this section is to prove
the correctness and completeness of Program 3.2.

The recursive definition of 5 is not computationally efficient. The proof
tree establishing that a particular N is less than a particular M has M + 2
nodes. We usually think of testing whether one number is less than
another as a unit operation, independent of the size of the numbers.
Indeed, Prolog does not define arithmetic according to the axioms pre-
sented in this section but uses the underlpng arithmetic capabilities of
the computer directly.

Addition is a basic operation defining a relation between two natural
numbers and their sum. In Section 1.1, a table of the plus relation was
assumed for all relevant natural numbers. A recursive program captures
the relation elegantly and more compactly, and is given as Program 3.3.
The intended meaning of Program 3.3 is the set of facts plus(X,Y ,Z),
where X, Y, and Z are natural numbers and X+Y=Z.

Proposition
Programs 3.1 and 3.3 constitute a correct and complete axiomatization
of addition with respect to the standard intended meaning of plus/3.

Proof (1) Completeness. Let X, Y, and z be natural numbers such that
X+Y=Z. We give a proof tree for the goal p lus (X ,Y, Z) . If X equals 0, then
Y equals Z. Since Program 3.1 is a complete axiomatization of the natural
numbers, there is a proof tree for natural-nmber(Y), which is easily
extended to a proof tree for p lus (0 , Y ,Y) . Otherwise. X equals sn (0) for
some n. If Y equals sm (O), then z equals ~ " ' ~ (0) . The proof tree in the
right half of Figure 3.1 establishes completeness.

~ I u s (X , Y , Z) -
X , Y , and Z are natural numbers
such that Z is the sum of X and Y

plus (0 ,X, X) - natural-number (X) .
plus(s()o,Y,s(z)) - plus(X,Y,z).
natural-number (X) - See Program 3.1 .

Program 3.3 Addition

(2) Correctness. Let plus(X,Y ,Z) be in the meaning. A simple induc-
tive argument on the size of X, similar to the one used in the previous
proposition, establishes that X+Y=Z.

8

Addition is usually considered to be a function of two arguments
rather than a relation of arity 3. Generally, logic programs corresponding
to functions of n arguments define relations of arity n + 1. Computing
the value of a function is achieved by posing a query with n arguments
instantiated and the argument place corresponding to the value of the
function uninstantiated. The solution to the query is the value of the
function with the given arguments. To make the analogy clearer, we give
a functional definition of addition corresponding to the logic program:

One advantage that relational programs have over functional programs
is the multiple uses that can be made of the program. For example, the
query plus (s (0) , s (0) , s (s (0) 1) 7 means checking whether 1 + 1 = 2.
(We feel free to use the more readable decimal notation when mentioning
numbers.) As for I, the program for p lus is not efficient. The proof tree
confirming that the sum of N and M is N + M has N + M + 2 nodes.

Posing the query plus (s (0) , s (0) , X) ?, an example of the standard
use, calculates the sum of 1 and 1. However, the program can just as eas-
ily be used for subtraction by posing a query such as plus (s (0) , x , s (s
(s (0))))?. The computed value of X is the difference between 3 and 1,
namely, 2. Similarly, asking a query with the first argument uninstanti-
ated, and the second and thrd instantiated, also performs subtraction.

A more novel use exploits the possibility of a query having multiple so-
) lutions. Consider the query plus (X, Y , s (s (s (0)))) ?. It reads: "Do there

PROYECTO

Chapter 3 Recursive Programming

exist numbers X and Y that add up to 3." In other words, find a partition
of the number 3 into the sum of two numbers, X and Y. There are several
solutions.

A query with multiple solutions becomes more interesting when the
properties of the variables in the query are restricted. There are two
forms of restriction: using extra conjuncts in the query, and instanti-
ating variables in the query. We saw examples of t h s when querylng a
database. Exercise (ii) at the end of t h s section requires to define a pred-
icate even(X) , whch is true if X is an even number. Assuming such a
predicate, the query plus (X , Y , N) , even (X) , even (Y) ? gives a partition
of N into two even numbers. The second type of restriction is exemplified
by the query plus (s (s (x)) , s (s (Y)) ,N) 7 , which insists that each of the
numbers adding up to N is strictly greater than 1.

Almost all logic programs have multiple uses. Consider Program 3.2
for I, for example. The query s (0) 2 s (s (0)) ? checks whether 1 is less
than or equal to 2. The query X I s (s (0)) ? finds numbers X less than
or equal to 2. The query x I Y? computes pairs of numbers less than or
equal to each other.

Program 3.3 defining addition is not unique. For example, the logic
program

plus (x, 0, X) -- natural-number ()o .
plus(X,s(Y) ,s(Z)) - plus(X,Y,Z).
has precisely the same meaning as Program 3.3 for plus. Two programs
are to be expected because of the symmetry between the first two argu-
ments. A proof of correctness and completeness given for Program 3.3
applies to this program by reversing the roles of the symmetric argu-
ments.

The meaning of the program for plus would not change even if it
consisted of the two programs combined. Ths composite program is un-
desirable, however. There are several different proof trees for the same
goal. It is important both for runtime efficiency and for textual concise-
ness that axiomatizations of logic programs be minimal.

We define a type condition to be a call to the predicate defining the
type. For natural numbers, a type condition is any goal of the form
natural-number (X).

In practice, both Programs 3.2 and 3.3 are simplified by omitting the
body of the base rule, natural-number(X). Without t h s test, facts such

times (X , Y,Z) -
X, Y, and Z are natural numbers
such that Z is the product of X and Y.

times(O,X,O).
times(s(X),Y,Z) - times(X,Y,XY), plus(XY,Y,Z).

plus(X,Y ,Z) - See Program 3 .3 .

Program 3.4 Multiplication as repeated addition

exp(N,X, Y) -
N, X, and Y are natural numbers
such that Y equals X raised to the power N .

exp(s(X) ,0,0).
exp(O,s(X) ,s(O)).
exp(s(N),X,Y) - exp(N,X,Z), times(Z,X,Y).

times(X,Y,Z) - See Program 3.4 .

Program 3.5 Exponentiation as repeated multiplication

as 0 i a and plus (0, a, a), where a is an arbitrary constant, will be
in the programs' meanings. Type conditions are necessary for correct
programs. However, type conditions distract from the simplicity of the
programs and affect the size of the proof trees. Hence in the following
we might omit explicit type conditions from the example programs, Pro-
grams 3.4-3.7.

The basic programs shown are the building blocks for more compli-
cated relations. A typical example is defining multiplication as repeated
addition. Program 3.4 reflects this relation. The relation scheme is
times (X , Y, Z) , meaning X times Y equals Z.

Exponentiation is defined as repeated multiplication. Program 3.5 for
exp(N,X, Y) expresses the relation that xN=y. It is analogous to Pro-
gram 3.4 for times (X,Y ,Z), with exp and times replacing times and
plus, respectively. The base cases for exponentiation are xO=l for all pos-
itive values of X, and oN=O for positive values of N.

A definition of the factorial function uses the definition of multiplica-
tion. Recall that N! = N . N - 1 2 1. The predicate factorial(N,F)
relates a number N to its factorial F. Program 3.6 is its axiomatization.

PROYECTO

Chapter 3

factorial (N,F) -
F equals N factorial.

times(X,Y,z) - See Program 3.4

Program 3.6 Computing factorials

minimum(Nl,NZ,Min) -
The minimum of the natural numbers N1 and N2 is Min.

N I 5 N 2 - See Program 3.2 .

Program 3.7 The minimum of two numbers

Not all relations concerning natural numbers are defined recursively.
Relations can also be defined in the style of programs in Chapter 2. An
example is Program 3.7 determining the minimum of two numbers via
the relation minimum(N1, N2 ,Min) .

Composing a program to determine the remainder after integer divi-
sion reveals an interesting phenomenon-different mathematical defini-
tions of the same concept are translated into different logic programs.
Programs 3.8a and 3.8b give two definitions of the relation mod(~,Y, Z),
which is true if Z is the value of X modulo Y, or in other words. Z is the re-
mainder of X divided by Y. The programs assume a relation < as specified
in Exercise (i) at the end of this section.

Program 3.8a illustrates the direct translation of a mathematical defi-
nition, which is a logical statement, into a logic program. The program
corresponds to an existential definition of the integer remainder: "Z is
the value of X mod Y if Z is strictly less than Y, and there exists a num-
ber Q such that X = Q . Y + Z. In general, mathematical definitions are
easily translated to logic programs.

We can relate Program 3.8a to constructive mathematics. Although
seemingly an existential definition, it is also constructive, because of the
constructive nature of <, plus, and times. The number Q, for example.
proposed in the definition will be explicitly computed by times in any
use of mod.

Recursive Programming

mod(X,Y,Z) -
Z is the remainder of the integer division of X by Y.

m o d (X , Y , Z) - Z < Y , times(Y,Q,QY), plus(QY,Z,X).

Program 3.8a A nonrecursive definition of modulus

mod(X,Y,Z) -
Z is the remainder of the integer division of X by Y

m o d (X , Y , X) - X < Y .
m o d (X , Y , Z) - plus(Xl,Y,X), m o d (X l , Y , Z) .

Program 3.8b A recursive definition of modulus

In contrast to Program 3.8a. Program 3.8b is defined recursively. It con-
stitutes an algorithm for finding the integer remainder based on repeated
subtraction. The first rule says that X mod Y is X if X is strictly less than
Y. The second rule says that the value of X mod Y is the same as X - Y
mod Y. The effect of any computation to determine the modulus is to re-
peatedly subtract Y from X until it becomes less than Y and hence is the
correct value.

The mathematical function X mod Y is not defined when Y is zero. Nei-
ther Program 3.8a nor Program 3.8b has goal mod (X , 0 , Z) in its meaning
for any values of X or Z. The test of < guarantees that.

The computational model gives a way of distinguislung between the
two programs for mod. Given a particular X, Y, and Z satisfflng mod,
we can compare the sizes of their proof trees. In general, proof trees
produced with Program 3.8b will be smaller than those produced with
Program 3.8a. In that sense Program 3.8b is more efficient. We defer more
rigorous discussions of efficiency till the discussions on lists, where the
insights gained will carry over to Prolog programs.

Another example of translating a mathematical definition directly into
a logic program is writing a program that defines Ackermann's function.
Ackermann's function is the simplest example of a recursive function
that is not primitive recursive. It is a function of two arguments, defined
by three cases:

ackermann(0, N) = N + 1 .

ackermann(M, 0) = ackermann(M - 1, l) .

ackermann(M, N) = ackermann(M - 1 , ackermann(M, N - 1)).

Chapter 3

ackermann(X,Y,A) -
A is the value of Ackermann's
function for the natural numbers X and E'

ackerrnann(O,N,s(N)).
ackermann(s(M) ,O ,Val) - ackermann(M, ~ (0) ,Val) .
ackermann(s (M) , s(N) ,Val) -

ackermann(s (M) ,N ,Vall) , ackermann(M ,Val1 ,Val).

Program 3.9 Ackermann's function

gcd(X,Y,Z) -
Z is the greatest common divisor of
the natural numbers X and Y.

Program 3.10 The Euclidean algorithm

Program 3.9 is a translation of the functional definition into a logic pro-
gram. The predicate ackermann(M ,N , A) denotes that ~=ackermann(M, N) .
The third rule invol~~es two calls to Ackermann's function, one to com-
pute the value of the second argument.

The functional definition of Ackermann's function is clearer than the
relational one given in Program 3.9. In general, functional notation is
more readable for pure functional definitions, such as Ackermann's
function and the factorial function (Program 3.6). Expressing constraints
can also be awkward with relational logic programs. For example, Pro-
gram 3.8a says less directly that X = Q . Y + Z .

The final example in this section is the Euclidean algorithm for finding
the greatest common divisor of two natural numbers. recast as a logic
program. Like Program 3.8b, it is a recursive program not based on the
recursive structure of numbers. The relation scheme is gcd(X, Y , Z) , with
intended meaning that z is the greatest common divisor (or gcd) of two
natural numbers X and Y. It uses either of the two programs, 3.8a or 3.8b,
for mod.

The first rule in Program 3.10 is the logical essence of the Euclidean
algorithm. The gcd of X and Y is the same as the gcd of Y and X mod
Y. A proof that Program 3.10 is correct depends on the correctness

Recursive Programming

of the above mathematical statement about greatest common divisors.
The proof that the Euclidean algorithm is correct similarly rests on t h s
result.

The second fact in Program 3.10 is the base fact. It must be specified
that X is greater than 0 to preclude gcd(0,0,0) from being in the mean-
ing. The gcd of 0 and 0 is not well defined.

3.1.1 Exercises for Section 3.1

(i) Modify Program 3.2 for to axiomatize the relations <, >, and r.
Discuss multiple uses of these programs.

(ii) Prove that Program 3.2 is a correct and complete axiomatization of
1.

(iii) Prove that a proof tree for the query sn (0) a sm (01 using Pro-
gram 3.2 has m + 2 nodes.

(iv) Define predicates even(X) and odd(X) for determining if a natural
number is even or odd. (Hint: Modify Program 3.1 for natural-
number.)

(v) Write a logic program defining the relation fib(N,F) to determine
the Nth Fibonacci number F.

(vi) The predicate times can be used for computing exact quotients
with queries such as times (s (s (0)) ,X, s (s (s (s (0)) I) ? to find
the result of 4 divided by 2. The query times (s (s (0)) , x , s (s (s
(0) 1) I ? to find 3i2 has no solution. Many applications require the
use of integer division that would calculate 312 to be 1. Write a
program to compute integer quotients. (Hint: Use repeated subtrac-
tion.)

(vii) Modify Program 3.10 for finding the gcd of two integers so that
it performs repeated subtraction directly rather than use the mod
function. (Hint: The program repeatedly subtracts the smaller num-
ber from the larger number until the two numbers are equal.)

(viii) Rewrite the logic programs in Section 3.1 using a different represen-
tation of natural numbers, namely as a sum of 1's. For example, the
modified version of Program 3.1 would be

Chapter 3

natural-number (1) .
natural-number (l+X) -- natural-number (X) .

Note that + is used as a binary operator, and 0 is not defined to be
a natural number.

3.2 Lists

The basic structure for arithmetic is the unary successor functor. Al-
though complicated recursive functions such as Ackermann's function
can be defined, the use of a unary recursive structure is limited. This sec-
tion discusses the binary structure, the list.

The first argument of a list holds an element, and the second argument
is recursively the rest of the list. Lists are sufficient for most computa-
tions - attested to by the success of the programming language Lisp,
whlch has lists as its basic compound data structure. Arbitrarily complex
structures can be represented with lists, though it is more convenient to
use different structures when appropriate.

For lists, as for numbers, a constant symbol is necessary to terminate
recursion. This "empty list," referred to as nil, will be denoted here by
the symbol [1. We also need a functor of arity 2. Historically, the usual
functor for lists is "." (pronounced dot), which overloads the use of the
period. It is convenient to define a separate, special syntax. The term
. (X,Y) is denoted [XIYI . Its components have special names: X is called
the head and Y is called the tail.

The term [X/Yl corresponds to a cons pair in Lisp. The corresponding
words for head and tail are, respectively, car and cdr.

Figure 3.2 illustrates the relation between lists written with different
syntaxes. The first column writes lists with the dot functor, and is the
way lists are considered as terms in logic programs. The second column
gives the square bracket equivalent of the dot syntax. The third column
is an improvement upon the syntax of the second column, essentially
lvding the recursive structure of lists. In this syntax, lists are written
as a sequence of elements enclosed in square brackets and separated
by commas. The empty list used to terminate the recursive structure is
suppressed. Note the use of "cons pair notation" in the third column
when the list has a variable tail.

Recursive Programming

Formal object Cons pair syntax Element syntax

.(a,[I) [all 11 [a1

.(a,.(b,[1)) [alIbl[111 lab1

. I [al[bl[c I [1111 [a,b,cl

.(a,X) [a l XI [a l XI

.(a,.(b,X)) Ial[blXll [a,blXl

Figure 3.2 Equivalent forms of lists

list(Xs) -
Xs is a list.

l i s t ([I) .
l i s t (CX l Xsl) - l i s t (Xs) .

Program 3.1 1 Defining a list

Terms built with the dot functor are more general than lists. Program
3.11 defines a list precisely. Declaratively it reads: "A list is either the
empty list or a cons pair whose tail is a list." The program is analogous to
Program 3.1 defining natural numbers, and is the simple type definition
of lists.

Figure 3.3 gives a proof tree for the goal list ([a, b, cl). Implicit in the
proof tree are ground instances of rules in Program 3.11, for example,
list ([a, b, cl - list ([b, cl >. We specify the particular instance here
explicitly, as instances of lists in cons pair notation can be confusing.
[a, b , cl is an instance of [X l Xsl under the substitution {X=a, Xs= [b , cl }.

Because lists are richer data structures than numbers, a great variety of
interesting relations can be specified with them. Perhaps the most basic
operation with lists is determining whether a particular element is in
a list. The predicate expressing tlvs relation is member (Element, List).
Program 3.12 is a recursive definition of member/2.

Declaratively, the reading of Program 3.12 is straightforward. X is an
element of a list if it is the head of the list by the first clause, or if it
is a member of the tail of the list by the second clause. The meaning
of the program is the set of all ground instances member (X , Xs) , where

Chapter 3

Figure 3.3 Proof tree verifying a list

member (Element,List) -
Element is an element of the list List.

member (X , [X I Xsl) .
member (X , [Y I Ysl) - member (X ,Ys) .

Program 3.12 Membership of a list

X is an element of XS. We omit the type condition in the first clause.
Alternatively, it would be written

member (X, [X I XS]) - list (Xs) .
This program has many interesting applications, to be revealed

throughout the book. Its basic uses are checlung whether an element
is in a list with a query such as member (b, [a, b, cl) ?, finding an ele-
ment of a list with a query such as member (X, [a, b, cl) ?, and finding a
list containing an element with a query such as member (b, X)?. Thls last
query may seem strange, but there are programs that are based on t h s
use of member.

We use the following conventions wherever possible when naming vari-
ables in programs involving lists. If X is used to denote the head of a
list, then Xs will denote its tail. More generally, plural variable names will
denote lists of elements, and singular names will denote individual ele
ments. Numerical suffxes will denote variants of lists. Relation schemes
will still contain mnemonic names.

Recursive Programming

prefix (Prefix,List) -
Prefix is a prefix of List.

p re f i x (I ,Ys) .
pre f i x ([XIXsl , [X I Ysl - pref i x (Xs ,Ys) .
suffix (Suffix,List) -

Suffix is a suflix of List.

Program 3.13 Prefixes and suffixes of a list

Our next example is a predicate sublist (Sub,List) for determining
whether Sub is a sublist of List. A sublist needs the elements to be
consecutive: [b, cl is a sublist of [a, b, c ,dl, whereas [a, cl is not.

It is convenient to define two special cases of sublists to make the defi-
nition of sublist easier. It is good style when composing logic programs
to define meaningful relations as auxiliary predicates. The two cases con-
sidered are initial sublists, or prefixes, of a list, and terminal sublists, or
suffxes, of a list. The programs are interesting in their own right.

The predicate prefix (Prefix , List) is true if Prefix is an initial sub-
list of List, for example, prefix ([a, bl , [a, b, cl) is true. The compan-
ion predicate to prefix is suffix (Suf f ix, List), determining if Suffix
is a terminal sublist of List. For example, suffix ([b, cl , [a, b, cl) is
true. Both predicates are defined in Program 3.13. A type condition ex-
pressing that the variables in the base facts are lists should be added to
the base fact in each predicate to give the correct meaning.

An arbitrary sublist can be specified in terms of prefixes and suffixes:
namely, as a suffix of a prefix, or as a prefix of a suffix. Program 3.14a
expresses the logical rule that Xs is a sublist of Ys if there exists Ps such
that Ps is a prefix of Ys and Xs is a suffix of Ps. Program 3.14b is the dual
definition of a sublist as a prefix of a suffuc.

The predicate prefix can also be used as the basis of a recursive
definition of sublist. Thls is given as Program 3.14~. The base rule reads
that a prefix of a list is a sublist of a list. The recursive rule reads that the
sublist of a tail of a list is a sublist of the list itself.

The predicate member can be viewed as a special case of sublist de-
fined by the rule

member (X, Xs) - sublist ([XI , Xs) .

Chapter 3

sublist (Sub,List) -
Sub is a sublist of List.

a: Suffix of a prefix

sublist(Xs ,Ys) - pref ix(Ps ,YS), suff ix(Xs,Ps).
b: Prefuc of a suffix

sublist (Xs ,Ys) - pref ix(Xs ,ss), suffix(Ss,Ys).
c: Recursive definition of a sublist

sublist (Xs ,Ys) - pref ix(xs,Ys).
sublist(Xs, [Y ~ Y s]) - sublist (XS ,YS).

d: Prefix of a suffix, using append

sublist (Xs ,AsXsBs) -
append(As , XsBs , A s ~ s B s) , append(Xs ,Bs , XSBS) .

e: Suffuc of a prefix, using append
sublist(Xs,AsXsBs) -

append(AsXs ,Bs, AsXsBs) , append(As ,Xs ,ASXS) .

Program 3.14 Determining sublists of lists

a p p e n d (Xs, Ys,XsYs) -
XsYs is the result of concatenating
the lists X s and Ys.

append([1 ,Ys ,Ys).
append([XI Xsl ,Ys, [XI Zsl) - append(Xs ,Ys ,Zs)
Program 3.1 5 Appending two lists

The basic operation with lists is concatenating two lists to give a t h rd
list. This defines a relation, append(Xs , Ys , Zs), between two lists Xs, Ys
and the result Zs of joining them together. The code for append, Pro-
gram 3.15, is identical in structure to the basic program for combining
two numbers, Program 3.3 for plus.

Figure 3.4 gives a proof tree for the goal append ([a, bl , LC, dl , [a, b,
c ,dl) . The tree structure suggests that its size is linear in the size of
the first list. In general, if Xs is a list of n elements, the proof tree for
append(Xs ,Ys , Zs) has n + 1 nodes.

There are multiple uses for append similar to the multiple uses for
plus. The basic use is to concatenate two lists by posing a query such

Recursive P r o g r a m m i n g

Figure 3.4 Proof tree for appending two lists

as append(Ca,b,cl, [d,el ,Xs)? with answer Xs=[a,b,c,d,el. A query
such as append(Xs, [c, dl , [a, b, c ,dl > ? finds the difference Xs= [a, b]
between the lists Cc, dl and [a, b, c ,dl. Unlike plus, append is not sym-
metric in its first two arguments, and thus there are two distinct versions
of finding the difference between two lists.

The analogous process to partitioning a number is splitting a list. The
query append(As , Bs , [a, b, c , dl) ?, for example, asks for lists As and Bs
such that appending Bs to As gives the list [a,b, c, dl. Queries about
splitting lists are made more interesting by partially specifying the na-
ture of the split lists. The predicates member, sublist, prefix, and suf -
fix, introduced previously, can all be defined in terms of append by
viewing the process as splitting a list.

The most straightforward definitions are for prefix and suffix, whlch
just specify which of the two split pieces are of interest:

 ref ix(Xs, Ys) - append(Xs, As, Ys) .
suff ix(Xs,Ys) - append(As,Xs,Ys) .
Sublist can be written using two append goals. There are two distinct

variants, given as Programs 3.14d and 3.14e. These two programs are
obtained from Programs 3.14a and 3.14b, respectively, where prefix and
suffix are replaced by append goals.
Member can be defined using append, as follows:

Thls says that X is a member of Ys if Ys can be split into two lists where
X is the head of the second list.

Chapter 3

reverse(List, Tsil) -
Tsil is the result of reversing the list List.

a: Naive reverse
reverse([I,[I) .
reverse([XI Xs] ,Zs) - reverse(Xs ,Ys) , append(ls, [XI ,ZS)

b: Reverse-accumulate
reverse(Xs ,Ys) - reverse(Xs, C 1 ,Ys).

reverse([XIXsl ,Acc,Ys) - reverse(Xs, [X I A C C] , Y S) .
reverse([I ,Ys,Ys).

Program 3.16 Reversing a Iist

A similar rule can be written to express the relation adjacent (X ,Y, Zs)
that two elements X and Y are adjacent in a list Zs:

Another relation easily expressed through append is determining the
last element of a list. The desired pattern of the second argument to
append, a list with one element, is built into the rule:

Repeated applications of append can be used to define a predicate
reverse (List ,Tsil). The intended meaning of reverse is that Tsil is a
list containing the elements in the list List in reverse order to how they
appear in List. An example of a goal in the meaning of the program is
reverse ([a, b , c] , [c , b , a]) . The naive version, given as Program 3.16a,
is the logical equivalent of the recursive formulation in any language:
recursively reverse the tail of the list, and then add the first element at
the back of the reversed tail.

There is an alternative way of defining reverse without calling append
directly. We define an auxiliary predicate reverse (Xs , Ys , Zs) , whlch is
true if Zs is the result of appending Ys to the elements of Xs reversed.
It is defined in Program 3.16b. The predicate reverse/3 is related to
reverse/2 by the first clause in Program 3.16b.

Program 3.16b is more efficient than Program 3.16a. Consider Fig-
ure 3.5, showing proof trees for the goal reverse ([a, b , cl , [c , b , a1 > us-
ing both programs. In general, the size of the proof tree of Program 3.16a

Recursive Programming

Figure 3.5 Proof trees for reversing a list

Chapter 3

lengrh(Xs,N) -
The list Xs has N elements.

Program 3.17 Determining the length of a list

is quadratic in the number of elements in the list to be reversed, whlle
that of Program 3.16b is linear.

The insight in Program 3.16b is the use of a better data structure for
representing the sequence of elements, which we discuss in more detail
in Chapters 7 and 15.

The final program in this section, Program 3.17, expresses a rela-
tion between numbers and lists, using the recursive structure of each.
The predicate length(Xs,N) is true if Xs is a list of length N, that
is, contains N elements, where N is a natural number. For example,
length([a, b] , s (s (0))) , indicating that [a, b] has two elements, is in
the program's meaning.

Let us consider the multiple uses of Program 3.17. The query length
([a,bl ,X)? computes the length, 2, of a list [a,b]. In t h s way, length
is regarded as a function of a list, with the functional definition

length([1) = 0
length([XI Xsl) = s (length(Xs)) .

The query length ([a, bl , s (s (0))) ? checks whether the list [a, bl has
length 2. The query length (xs , s (s (0))) ? generates a list of length 2
with variables for elements.

3.2.1 Exercises for Section 3.2

(i) A variant of Program 3.14 for sublist is defined by the following
three rules:

subsequence ([X I Xs] , [X I Ys]) -- subsequence (Xs , YS) .
subsequence (Xs , [Y I Ys]) - subsequence (XS ,YS) .
subsequence ([I , Ys) .

Explain why this program has a different meaning from Pro-
gram 3.14.

Recursive Programming

(ii) Write recursive programs for adjacent and last that have the
same meaning as the predicates defined in the text in terms of
append.

(iii) Write a program for double (List, ListList) , where every element
in List appears twice in ListList, e.g., double([I ,2,31 , [I , I ,2,
2,3,3]) is true.

(iv) Compute the size of the proof tree as a function of the size of the
input list for Programs 3.16a and 3.16b defining reverse.

(v) Define the relation sum(List0f Integers, Sum), whlch holds if Sum
is the sum of the ListOf Integers,

(a) Using plus/3;

(b) Without using any auxiliary predicate.

(Hint: Three axioms are enough.)

3.3 Composing Recursive Programs

No explanation has been given so far about how the example logic pro-
grams have been composed. The composition of logic programs is a slull
that can be learned by apprenticeshp or osmosis, and most definitely by
practice. For simple relations, the best axiomatizations have an aesthetic
elegance that look obviously correct when written down. Through solv-
ing the exercises, the reader may find, however, that there is a difference
between recognizing and constructing elegant logic programs.

Thls section gives more example programs involving lists. Their, pre-
sentation, however, places more emphasis on how the programs might be
composed. Two principles are illustrated: how to blend procedural and
declarative thinlung, and how to develop a program top-down.

We have shown the dual reading of clauses: declarative and procedural.
How do they interrelate when composing logic programs? Pragmatically,
one thinks procedurally when programming. However, one thinks declar-
atively when considering issues of truth and meaning. One way to blend
them in logic programming is to compose procedurally and then inter-
pret the result as a declarative statement. Construct a program with a

Chapter 3

given use in mind; then consider if the alternative uses make declarative
sense. We apply this to a program for deleting elements from a list.

The first, and most important, step is to specify the intended meaning
of the relation. Clearly, three arguments are involved when deleting ele-
ments from a list: an element X to be deleted, a list L1 that might have
occurrences of X, and a list L2 with all occurrences of X deleted. An ap-
propriate relation scheme is delete (L1, X, L2) . The natural meaning is
all ground instances where L2 is the list L1 with all occurrences of X re-
moved.

When composing the program, it is easiest to think of one specific
use. Consider the query delete ([a, b , c , b] , b , X) ?, a typical example of
finding the result of deleting an element from a list. The answer here is
X= [a, CI . The program will be recursive on the first argument. Let's don
our procedural thinking caps.

We begin with the recursive part. The usual form of the recursive ar-
gument for lists is [XJXs]. There are two possibilities to consider, one
where X is the element to be deleted, and one where it is not. In the first
case, the result of recursively deleting X from Xs is the desired answer to
the query. The appropriate rule is

delete ([X I Xs] ,X, Ys) - delete (Xs ,X2 Ys).
Switching hats, the declarative reading of this rule is: "The deletion of

X from [XIXsl is Ys if the deletion of X from Xs is Ys." The condition
that the head of the list and the element to be deleted are the same is
specified by the shared variable in the head of the rule.

The second case where the element to be deleted is different from X,
the head of the list, is similar. The result required is a list whose head
is X and whose tail is the result of recursively deleting the element. The
rule is

The rule's declarative reading is: "The deletion of Z from CXlXsl is
CXIYsl if Z is different from X and the deletion of Z from Xs is Ys." In
contrast to the previous rule, the condition that the head of the list and
the element to be deleted are different is made explicit in the body of the
rule.

The base case is straightforward. No elements can be deleted from the
empty list, and the required result is also the empty list. This gives the

Recursive Programming

delete(List,X,HasNoXs) -
The list HasNoXs is the result of removing all
occurrences of X from the list List.

Program 3.18 Deleting all occurrences of an element from a list

select (X,HasXs,OneLessXs) -
The list OneLessXs is the result of removing
one occurrence of X from the list HasXs.

select (X, [XI Xsl ,Xs) .
select (X, [Y I Ysl , [Y I Zsl) - select (X,Ys,Zs) .

Program 3.19 Selecting an element from a list

fact delete(C I ,X, C 1). The complete program is collected together as
Program 3.18.

Let us review the program h7e have written, and consider alternative
formulations. Omitting the condition Xf Z from the second rule in Pro-
gram 3.18 gives a variant of delete. This variant has a less natural mean-
ing, since any number of occurrences of an element may be deleted. For
example, delete ([a, b, c, bl , b, [a, cl 1, delete ([a, b, c, bl , b, [a, c,
bl), delete([a,b,c,bl ,b, [a,b,cl), and delete([a,b,c,bl ,b,[a,b,
c , b]) are all in the meaning of the variant.

Both Program 3.18 and the variant include in their meaning instances
where the element to be deleted does not appear in either list, for ex-
ample, delete (Cal , b, [a1 > is true. There are applications where thls is
not desired. Program 3.19 defines select (X,LI,L2), a relation that has
a different approach to elements not appearing in the list. The meaning
of select (X, L1 , L2) is all ground instances where L2 is the list L1 where
exactly one occurrence of X has been removed. The declarative reading
of Program 3.19 is: "X is selected from [XIXsl to give Xs; or X is selected
from [YIYsl to give [YIZsl if X is selected from Ys to give Zs."

A major thrust in programming has been the emphasis on a top-down
design methodology, together with stepwise refinement. Loosely, the

Chapter 3

methodology is to state the general problem, break it down into subprob-
lems, and then solve the pieces. A top-down programming style is one
natural way for composing logic programs. Our description of programs
throughout the book will be mostly top-down. The rest of t h s section de-
scribes the composition of two programs for sorting a list: permutation
sort and quicksort. Their top-down development is stressed.

A logical specification of sorting a list is finding an ordered permuta-
tion of a list. Ths can be written down immediately as a logic program.
The basic relation scheme is sort (Xs ,Ys) , where Ys is a list containing
the elements in Xs sorted in ascending order:

sort (Xs ,Ys) -- permutation(Xs ,Ys) , ordered(Ys)

The top-level goal of sorting has been decomposed. We must now define
permutation and ordered.

Testing whether a list is ordered ascendingly can be expressed in the
two clauses that follow. The fact says that a list with a single element
is necessarily ordered. The rule says that a list is ordered if the first
element is less than or equal to the second, and if the rest of the list,
beginning from the second element, is ordered:

ordered ([XI) .
ordered([X,YIYs]) - X I Y, ordered([YIYsl).

A program for permutation is more delicate. One view of the process
of permuting a list is selecting an element nondeterministically to be the
first element of the permuted list, then recursively permuting the rest
of the list. We translate this view into a logic program for permutation,
using Program 3.19 for select. The base fact says that the empty list is
its own unique permutation:

permutation(Xs, [Z I Zs]) -- select (Z,XS ,Ys), permutation(~s,~s).

permutation(C I , C 1) .

Another procedural view of generating permutations of lists is recur-
sively permuting the tail of the list and inserting the head in an arbitrary
position. Ths view also can be encoded immediately. The base part is
identical to the previous version:

Recursive Programming

sort (Xs, Ys) -
The list Ys is an ordered permutation of the list Xs.

sort(Xs,Ys) +- permutation(Xs,Ys), ordered(Ys).

permutation(Xs,[ZIZsl) - select(Z,Xs,Ys), permutation(Ys,Zs)
permutation([I , [I) .
ordered([I) .
ordered([XI 1.
ordered([X,YIYsl) - X 5 Y, ordered([YIYsl).

Program 3.20 Permutation sort

The predicate insert can be defined in terms of Program 3.19 for se-
lect:

insert (X ,Ys ,ZS) -- select (X, Zs,Ys) .

Both procedural versions of permutation have clear declarative read-
ings.

The "naive" sorting program, which we call permutation sort, is col-
lected together as Program 3.20. It is an example of the generate-and-test
paradigm, discussed fully in Chapter 14. Note the addition of the extra
base case for ordered so that the program behaves correctly for empty
lists.

The problem of sorting lists is well studied. Permutation sort is not a
good method for sorting lists in practice. Much better algorithms come
from applying a "divide and conquer" strategy to the task of sorting. The
insight is to sort a list by dividing it into two pieces, recursively sorting
the pieces, and then joining the two pieces together to give the sorted
list. The methods for dividing and joining the lists must be specified.
There are two extreme positions. The first is to make the dividing hard,
and the joining easy. Thls approach is taken by the quicksort algorithm.
The second position is malung the joining hard, but the dividing easy.
Ths is the approach of merge sort, which is posed as Exercise (v) at the
end of t h s section, and insertion sort, shown in Program 3.21.

In insertion sort, one element (typically the first) is removed from the
list. The rest of the list is sorted recursively; then the element is inserted,
preserving the orderedness of the list.

The insight in quicksort is to divide the list by choosing an arbitrary
element in it, and then to split the list into the elements smaller than the

Chapter 3

sort (Xs, Ys) -
The list Ys is an ordered permutation of the list Xs.

sort([XlXsl ,Ys) - sort (Xs,Zs) , insert (X,ZS,YS).
sort([I,[I).

insert(X,[],[XI).
insert (X, [Y I Ysl , [Y I Zsl) - X > Y, insert (X ,YS, 2s).
insert(X,[YIYsl,[~,~I~s]) - X 5 Y.

Program 3.21 Insertion sort

quicksort (Xs, Ys) -
The list Ys is an ordered permutation of the list Xs.

quicksort ([X I Xs] ,Ys) -
partition(Xs,X,Littles,Bigs),
quicksort (Littles ,Ls) ,
quicksort (Bigs ,Bs) ,
append(Ls, [XIBs] ,Ys).

quicksort ([1 , [1) .
partition([XIXs] ,Y, [XILs] ,Bs) - X 5 Y, p a r t i t i o n (~ s , ~ , ~ ~ , ~ ~) .
partition([XIXs] ,Y,Ls,[X(BsJ) - X > Y, partition(~s,~,~s,B~).
partition([l,Y,[I , [1) .

Program 3.22 Quicksort

chosen element and the elements larger than the chosen element. The
sorted list is composed of the smaller elements, followed by the chosen
element, and then the larger elements. The program we describe chooses
the first element of the list as the basis of partition.

Program 3.22 defines the quicksort algorithm. The recursive rule for
quicksort reads: "Ys is a sorted version of [XIXsl if Littles and Bigs
are a result of partitioning Xs according to X; Ls and Bs are the result of
sorting Littles and Bigs recursively; and Ys is the result of appending
[XIBsl to Ls."

Partitioning a list is straightforward, and is similar to the program for
deleting elements. There are two cases to consider: when the current
head of the list is smaller than the element being used for the parti-
tioning, and when the head is larger than the partitioning element. The
declarative reading of the first partition clause is: "Partitioning a list
whose head is X and whose tail is Xs according to an element Y gives the

Recursive Programming

lists [XILittlesl and Bigs if X is less than or equal to Y, and partitioning
Xs according to Y gives the lists Littles and Bigs." The second clause
for partition has a similar reading. The base case is that the empty list
is partitioned into two empty lists.

3.3.1 Exercises for Section 3.3

(i) Write a program for substitute(X,Y,LI,L2), where L 2 is the
result of substituting Y for all occurrences of X in Li, e.g., sub-
stitute (a,x, [a, b, a, cl , [x, b,x, cl) is true, whereas substi-
tute(a,x, [a,b,a,cl, [a,b,x,cl) is false.

(ii) What is the meaning of the variant of select:

select (X, [XI Xsl , Xs) .
select(X, [Y~Ysl,~YlZsl) - X f Y,
select (X, Ys, Zs) .

(iii) Write a program for no-doubles (Ll , L2), where L2 is the result of
removing all duplicate elements from L1, e.g., no-doubles ([a, b, c ,

bl , [a, c , bl) is true. (Hint: Use member.)

(iv) Write programs for even-permutation (Xs , Ys) and odd-permuta-
tion(Xs,Ys) that find Ys, the even and odd permutations, respec-
tively, of a list Xs. For example, even-permutat ion ([I, 2,31, [2,3,
11) and odd-permutation([I, 2,31, [2, I, 31) are true.

(v) Write a program for merge sort.

(vi) Write a logic program for kth-largest (Xs, K) that implements the
linear algorithm for finding the kth largest element K of a list XS.
The algorithm has the following steps:

Break the list into groups of five elements.
Efficiently find the median of each of the groups, which can be done
with a fixed number of comparisons.
Recursively find the median of the medians.
Partition the original list with respect to the median of medians.
Recursively find the kth largest element in the appropriate smaller
list.

Chapter 3

(vii) Write a program for the relation better-poker-hand(Hand1,
Hand2 ,Hand) that succeeds if Hand is the better poker hand be-
tween Hand1 and Hand2. For those unfamiliar with this card game,
here are some rules of poker necessary for answering t h s exercise:

(a) The order of cards is 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, lung,
ace.

(b) Each hand consists of five cards.

(c) The rank of hands in ascending order is no pairs < one pair <
two pairs < three of a lund < flush < straight < full house <
four of a lund < straight flush.

(d) Where two cards have the same rank, the hlgher denomination
wins, for example, a pair of kings beats a pair of 7's.

(Hints: (1) Represent a poker hand by a list of terms of the form
card(Suit,Value). For example a hand consisting of the 2 of
clubs, the 5 of spades, the queen of hearts, the queen of dia-
monds, and the 7 of spades would be represented by the list [card
(clubs, 2),card(spades, 5),card(hearts, queen),card(diamonds ,
queen) , card(spades, 7)] . (2) It may be helpful to define relations
such as has-f lush(Hand), whch is true if all the cards in Hand are
of the same suit; has-full-house (Hand), whch is true if Hand has
three cards with the same value but in different suits, and the other
two cards have the same different value; and has-straight (Hand),
which is true if Hand has cards with consecutive values. (3) The
number of cases to consider is reduced if the hand is first sorted.)

3.4 Binary Trees

We next consider binary trees, another recursive data type. These struc-
tures have an important place in many algorithms.

Binary trees are represented by the ternary functor tree(Element,
Left ,Right), where Element is the element at the node, and Left and
Right are the left and right subtrees respectively. The empty tree is
represented by the atom void. For example, the tree

Recursive Programming

would be represented as

tree (a, tree (b,void, void) ,tree (C ,void,void)) .
Logic programs manipulating binary trees are similar to those manip-

ulating lists. As with natural numbers and lists, we start with the type
definition of binary trees. It is given as Program 3.23. Note that the pro-
gram is doubly recursive; that is, there are two goals in the body of the
recursive rule with the same predicate as the head of the rule. Ths re-
sults from the doubly recursive nature of binary trees and will be seen
also in the rest of the programs of this section.

Let us write some tree-processing programs. Our first example tests
whether an element appears in a tree. The relation scheme is tree-
member(E1ement ,Tree). The relation is true if Element is one of the
nodes in the tree. Program 3.24 contains the definition. The declarative
reading of the program is: "X is a member of a tree if it is the element at
the node (by the fact) or if it is a member of the left or right subtree (by
the two recursive rules)."

The two branches of a binary tree are distinguishable, but for many ap-
plications the distinction is not relevant. Consequently, a useful concept

binary_tree(Tree) -
Tree is a binary tree.

Program 3.23 Defining binary trees

tree-member (Element,Tree) -
Element is an element of the binary tree Tree.

tree-member(X,tree(X,Left,Right)).
tree-member(X,tree(Y,Left,Right)) - tree-member(X,Left).
tree-member(X,tree(Y,Left,Right)) - tree-member(X,Right).
Program 3.24 Testing tree membership

PROYECTO

PROYECTO

PROYECTO

Chapter 3 Recursive Programming

Figure 3.6 Comparing trees for isomorphism

isotree(Treel, Tree21 -
Treel and Tree2 are isomorphc binary trees.

isotree(void,void) .
isotree (tree(X,Lef tl ,Rightl) ,tree (X ,Lef t2,Right2)) -

isotree(Leftl,Left2), isotree(Right1,Right2).
isotree(tree(X,lef tl ,Rightl) ,tree (X , ~ e f t2 , ~ i ~ h t 2) -

isotree(Leftl,~ight2), isotree(Right1,left2).

Program 3.25 Determining when trees are isomorphic

is isomorphism, whch defines when unordered trees are essentially the
same. Two binary trees TI and T2 are isomorphic if T2 can be obtained
by reordering the branches of the subtrees of TI. Figure 3.6 shows three
simple binary trees. The first two are isomorphc; the first and third are
not.

Isomorphsm is an equivalence relation with a simple recursive defini-
tion. Two empty trees are isomorphc. Otherwise, two trees are isomor-
p h ~ if they have identical elements at the node and either both the left
subtrees and the right subtrees are isomorphic; or the left subtree of one
is isomorphc with the right subtree of the other and the two other sub-
trees are isomorphic.

Program 3.25 defines a predicate isotree (Treel , Tree21, whch is
true if Treel and Tree2 are isomorphic. The predicate is symmetric in
its arguments.

Programs related to binary trees involve double recursion, one for each
branch of the tree. The double recursion can be manifest in two ways.
Programs can have two separate cases to consider, as in Program 3.24 for
tree-member. In contrast, Program 3.12 testing membershp of a list has
only one recursive case. Alternatively, the body of the recursive clause
has two recursive calls, as in each of the recursive rules for isotree in
Program 3.2 5.

substitute(X, Y, TreeX, TreeY) -
The binary tree TreeY is the result of replacing all
occurrences of X in the binary tree TreeX by Y .

substitute(X,Y,void,void).
substitute (X, Y , tree (Node ,Left ,Right) ,tree (Node1 ,Lef t1 ,Right1)) -

replace(X,Y,Node,Nodel),
substitute(X,Y,Left,Leftl),
substitute(X,Y,Right,Rightl).

Program 3.26 Substituting for a term in a tree

The task in Exercise 3.3(i) is to write a program for substituting for el-
ements in lists. An analogous program can be written for substituting
elements in binary trees. The predicate substitute (X, Y , OldTree ,
NewTree) is true if NewTree is the result of replacing all occurrences
of X by Y in OldTree. An axiomatization of substitute/4 is given as
Program 3.26.

Many applications involving trees require access to the elements ap-
pearing as nodes. Central is the idea of a tree traversal, which is a se-
quence of the nodes of the tree in some predefined order. There are three
possibilities for the linear order of traversal: preorder, where the value of
the node is first, then the nodes in the left subtree, followed by the nodes
in the right subtree; inorder, where the left nodes come first followed by
the node itself and then the right nodes; and postorder, where the node
comes after the left and right subtrees.

A definition of each of the three traversals is given in Program 3.27.
The recursive structure is identical; the only difference between the pro-
grams is the order in which the elements are composed by the various
append goals.

The final example in this section shows interesting manipulation of
trees. A binary tree satisfies the heap property if the value at each node
is at least as large as the value at its children (if they exist). Heaps, a class
of binary trees that satisfy the heap property, are a useful data structure
and can be used to implement priority queues efficiently.

It is possible to heapify any binary tree containing values for which an
ordering exists. That is, the values in the tree are moved around so that

Chapter 3

preorder (Tree,Pre) -
Pre is a preorder traversal of the binary tree Tree.

preorder(tree(X ,L,R) ,Xs) -
preorder(L,L~), preorder(R,Rs) , append([X ILs] ~ R s ~ x s)

preorder (void, [1) .

inorder (Tree,In) -
In is an inorder traversal of the binary tree Tree.

inorder (tree(X ,L ,R) ,Xs) -
inorder (L , Ls) , inorder (R , Rs) , append (Ls, [X 1 Rsl ,Xs)

inorder (void, [1) .
postorder (Tree,Post -

Post is a postorder traversal of the binary tree Tree.

postorder(tree(X,L,R) ,Xs) -
postorder(L,Ls),
~ostorder (R,Rs) ,
append(Rs , [XI ,Rsl) ,
append(Ls,Rsl,Xs).

postorder (void, [1) .

Program 3.27 Traversals of a binary tree

the shape of the tree is preserved and the heap property is satisfied. An
example tree and its heapified equivalent are shown in Figure 3.7.

An algorithm for heapifying the elements of a binary tree so that the
heap property is satisfied is easily stated recursively. Heapify the left and
right subtrees so that they both satisfy the heap property and then ad-
just the element at the root appropriately. Program 3.28 embodies tlvs
algorithm. The relation heapify/2 lays out the doubly recursive pro-
gram structure, and ad jus t (X, HeapL ,HeapR, Heap) produces the final
tree Heap satisfying the heap property from the root value X and the left
and right subtrees HeapL and HeapR satisfying the heap property.

There are three cases for ad jus t /4 depending on the values. If the root
value is larger than the root values of the left and right subtrees, then
the heap is t r e e (X ,HeapL ,HeapR). Tlvs is indicated in the first ad jus t
clause in Program 3.28. The second clause handles the case where the
root node in the left heap is larger than the root node and the root of the
right heap. In that case, the adjustment proceeds recursively on the left
heap. The third clause handles the symmetric case where the root node
of the right heap is the largest. The code is simplified by relegating the
concern whether the subtree is empty to the predicate greater/2.

Recursive Programming

Figure 3.7 A binary tree and a heap that preserves the tree's shape

heapib (Tree, Heap) -
The elements of the complete binary tree Tree have been adjusted
to form the binary tree Heap, which has the same shape as Tree and
satisfies the heap property that the value of each parent node is
greater than or equal to the values of its children.

heapify(void,void).
heapify(tree(X,L,R) ,Heap) -

heapify (L,HeapL), heapify (R,HeapR), adjust (X,HeapL,HeapR,Heap) .
adjust(X,HeapL,HeapR,tree(X,HeapL,HeapR)) -

greater (X , HeapL) , greater (X, HeapR) .
adjust(X,tree(Xl,L,R),HeapR,tree(Xl,HeapL,HeapR)) -

X < XI, greater(Xl,HeapR), adjust(X,L,R,HeapL).
adjust(X,HeapL,tree(Xl,L,R),tree(Xl,HeapL,HeapR)) -

X < XI, greater(X1 ,HeapL) , adjust (X,L,R,HeapR) .
greater (X ,void) .
greater(X,tree(Xl,L,R)) - X 2 XI.

Program 3.28 Adjusting a binary tree to satisfy the heap property

3.4.1 Exercises for Section 3.4

(i) Define a program for subtree (S ,TI, where S is a subtree of T.

(ii) Define the relation sum-tree (Treeof In tegers , Sum), whch holds
if Sum is the sum of the integer elements in TreeOf Integers.

(iii) Define the relation ordered(Tree0f In tegers) , which holds if Tree
is an ordered tree of integers, that is, for each node in the tree
the elements in the left subtree are smaller than the element in

Chapter 3

the node, and the elements in the right subtree are larger than
the element in the node. (Hint: Define two auxiliary relations,
ordered-lef t (X ,Tree) and ordered-right (X, Tree), which hold
if both Tree is ordered and X is larger (respectively, smaller) than
the largest (smallest) node of Tree.)

(iv) Define the relation tree-insert (X ,Tree ,Treel), which holds if
Treel is an ordered tree resulting from inserting X into the ordered
tree Tree. If X already occurs in Tree, then Tree and Treel are iden-
tical. (Hint: Four axioms suffice.)

(v) Write a logic program for the relation path(X ,Tree, Path), where
Path is the path from the root of the tree Tree to X.

3.5 Manipulating Symbolic Expressions

The logic programs illustrated so far in this chapter have manipulated
natural numbers, lists, and binary trees. The programming style is ap-
plicable more generally. This section gives four examples of recursive
programming - a program for defining polynomials, a program for sym-
bolic differentiation, a program for solving the Towers of Hanoi problem,
and a program for testing the satisfiability of Boolean formulae.

The first example is a program for recognizing polynomials in some
term X. Polynomials are defined inductively. X itself is a polynomial in
X, as is any constant. Sums, differences, and products of polynomials in
X are polynomials in X. So too are polynomials raised to the power of a
natural number, and the quotient of a polynomial by a constant.

An example of a polynomial in the term x is xZ - 3x + 2. Thls follows
from its being the sum of the polynomials, x2 - 3x and 2, where x Z - 3x
is recognized recursively.

A logic program for recognizing polynomials is obtained by expressing
the preceding informal rules in the correct form. Program 3.29 defines
the relation polynomial (Expression, X) , whch is true if Expression is
a polynomial in X. We give a declarative reading of two rules from the
program.

The fact polynomial (X, X) says that a term X is a polynomial in itself.
The rule

Recursive Programming

polynomial (Expression,X) -
Expression is a polynomial in X.

polynomial (X,X) .
polynomial(Term,X) +

constant(Term).
polynomial(Terml+Term2,X) -

polynomial(Terml,X), polynomial(Term2,X).
polynomial(Terml-Term2,X) -

polynomial(Terml,X), polynomial(Term2,X).
polynomial(Terml*~erm2,X) -

polynomial(Terml,X), polynomial(Term2,X).
polynomial(Terml/Term2,X) -

polynomial(Terml,X), constant(Term2).
polynomial(TermTN,X) -

natural-number(N), polynomial(Term,X).

Program 3.29 Recognizing polynomials

says that the sum Terml+Term2 is a polynomial in X if both Term1 and
Term2 are polynomials in X.

Other conventions used in Program 3.29 are the use of the unary pred-
icate constant for recognizing constants, and the binary functor t to
denote exponentiation. The term X t Y denotes xY.

The next example is a program for taking derivatives. The relation
scheme is derivative(Expression,X,DifferentiatedExpression).
The intended meaning of derivative is that Diff erentiatedExpres-
sion is the derivative of Expression with respect to X.

As for Program 3.29 for recognizing polynomials, a logic program for
differentiation is just a collection of the relevant differentiation rules,
written in the correct syntax. For example, the fact

expresses that the derivative of X with respect to itself is 1. The fact

derivative (sin(X) ,X, cos (X)) .

Chapter 3

derivat ive(Expression,X,Dif ferent iate~ssion -
DifferentiatedExpression is the derivative of
Expression with respect to X.

derivative(X,X,S(o)).
derivative(XTs(N) ,x,s(N)*XTN)
derivative(sin(~),X,co~(X)).
derivative (cos (X) ,X, -sin(X)) .
derivative(etX,X,etX).
derivative(log(X) ,X, 1/X) .
derivative(F+G,X,DF+DG) -

derivative (F ,X ,DF) , derivative (G ,X ,DG) .
derivative(F-G,X,DF-DG) +

derivative(F,X,DF), derivative(~,~,~G).
derivative (F*G ,X ,F*DG+DF*G) -

derivative(F,X,DF), derivative(~,~,DG).
derivative(l/F ,X ,-DF/ (F*F)) -

derivative(F,X,DF).
derivative(F/G,X,(G*~F-F*DG)/(G*G)) -

derivative(F,X,DF), derivative(~,X,DG).

Program 3.30 Derivative rules

reads: "The derivative of sin(X) with respect to X is cos (XI ." Natural
mathematical notation can be used. A representative sample of functions
and their derivatives is given in Program 3.30.

Sums and products of terms are differentiated using the sum rule and
product rule, respectively. The sum rule states that the derivative of a
sum is the sum of derivatives. The appropriate clause is

derivative (F+G, X, DF+DG) -
derivative (F , X , DF) , derivative (G , x , DG) .

The product rule is a little more complicated, but the logical clause is
just the mathematical definition:

derivative (F*G,X ,F*DG+DF*G) -
derivative (F, X, DF) , derivative (G, X, DG) .

Program 3.30 also contains the reciprocal and quotient rules.
The chain rule is a little more delicate. It states that the derivative of

f (g (x)) with respect to x is the derivative of f (g (x)) with respect to g(x)
times the derivative of g(x) with respect to x. As stated, it involves quan-

Recursive Programming

tification over functions, and is outside the scope of the logic programs
we have presented.

Nonetheless, a version of the chain rule is possible for each particular
function. For example, we give the rule for differentiating xN and sin(X):

derivative (UTs (N) ,X, s (N) *UfN*DU) -
derivative(U,X,DU).

derivative (sin(U), X, cos (U) *DU) -- derivative (U,X, DU)

The difficulty of expressing the chain rule for differentiation arises
from our choice of representation of terms. Both Programs 3.29 and
3.30 use the "natural" representation from mathematics where terms
represent themselves. A term such as sin(X) is represented using a
unary structure sin. If a different representation were used, for example,
unary-term(sin, X) where the name of the structure is made accessible,
then the problem with the chain rule disappears. The chain rule can then
be formulated as

derivative (unary-term (F , U) , X , DF*DU) -
derivative(unary-term(F,U),U,DF), derivative(U,X,DU).

Note that all the rules in Program 3.30 would have to be reformulated in
terms of this new representation and would appear less natural.

People take for granted the automatic simplification of expressions
when differentiating expressions. Simplification is missing from Program
3.30. The answer to the query derivative(3*x+2 ,x,D)? is D=(3*1+Oa
X) +O. We would immediately simplify D to 3, but it is not specified in the
logic program.

The next example is a solution to the Towers of Hanoi problem, a
standard introductory example in the use of recursion. The problem is
to move a tower of n disks from one peg to another with the help of an
auxiliary peg. There are two rules. Only one disk can be moved at a time,
and a larger disk can never be placed on top of a smaller disk.

There is a legend associated with the game. Somewhere hidden in the
surroundings of Hanoi, an obscure Far Eastern village when the legend
was first told, is a monastery. The monks there are performing a task
assigned to them by God when the world was created - solving the
preceding problem with three golden pegs and 64 golden disks. At the
moment they complete their task, the world will collapse into dust. Since
the optimal solution to the problem with n disks takes Z n - 1 moves, we

C h a p t e r 3

hanoi(N,A,B,C,Moves) -
Moves is a sequence of moves for solving the Towers of
Hanoi puzzle with N disks and three pegs, A, B, and C.

hanoi (s (0) ,A,B,C, [A t o B]).
hanoi(s(N) ,A,B,C,Moves) -

hanoi(N,A,C,B,Msl) ,
hanoi(N,C,B,A,Ms2),
append(Ms1, [A t o B I Ms21 ,Moves) .

Program 3.31 Towers of Hanoi

need not lose any sleep over this possibility. The number 2" is comfort-
ingly big.

The relation scheme for solving the problem is hanoi (N , A , B , C ,
Moves). It is true if Moves is the sequence of moves for moving a tower
of N disks from peg A to peg B using peg C as the auxiliary peg. T h s is an
extension to usual solutions that do not calculate the sequence of moves
but rather perform them. The representation of the moves uses a binary
functor to, written as an infix operator. The term X to Y denotes that
the top disk on peg X is moved to peg Y. The program for solving the
problem is given in Program,3.3 1.

The declarative reading of the heart of the solution, the recursive rule
in Program 3.31, is: "Moves is the sequence of moves of s (N) disks from
peg A to peg B using peg C as an auxiliary, if Msl is the solution for
moving N disks from A to C using B, Ms2 is the solution for moving N disks
from C to B using A, and Moves is the result of appending [A t o BIMs21
to ~ ~ 1 . l '

The recursion terminates with moving one disk. A slightly neater, but
less intuitive, base for the recursion is moving no disks. The appropriate
fact is

The final example concerns Boolean formulae.
A Boolean f o r m u l a is a term defined as follows: The constants rrue and

false are Boolean formulae; if X and Y are Boolean formulae, so are Xv Y,
X A Y , and -X, where v and A are binary infix operators for disjunction
and conjunction, respectively, and - is a unary prefn operator for nega-
tion.

Recursive Programming

satisfiable(Formu1a) -
There is a true instance of the Boolean formula Formula.

s a t i s f i a b l e (t r u e) .
s a t i s f i a b l e (X ~ Y) - s a t i s f i a b l e () o , s a t i s f i a b l e (Y 1
sa t i s f iab le (XVY) - s a t i s f i a b l e (X) .
s a t i s f iable(XVY) - s a t i s f iable(Y) .
s a t i s f iable(-X) - inva l id (X) .

invalid(Formu1a) -
There is a false instance of the Boolean formula Formula.

i n v a l i d (f a l s e) .
invalid(XVY1 - inval id(X) , inval id(Y) .
invalid(XAY) - inval id(X1.
invalid(XAY) - inval id(Y1.
inval id(-Y) - s a t i s f i a b l e (Y) .

Program 3.32 Satisfiability of Boolean formulae

A Boolean formula F is true if

F = 'true'.
F = XAY, and both X and Y are true.
F = X v Y , and either X or Y (or both) are true.
F = -X, and X is false.

A Boolean formula F is false if

F = 'false'.
F = XAY, and either X or Y (or both) are false.
F = X v Y , and both X and Y are false.
F = -X, and X is true.

Program 3.32 is a logic program for determining the truth or falsity
of a Boolean formula. Since it can be applied to Boolean formulae with
variables, it is actually more powerful than it seems. A Boolean formula
with variables is s a t i s f i a b l e if it has a true instance. It is i n v a l i d if it
has a false instance. These are the relations computed by the program.

Chapter 3 Recursive Programming

3.5.1 Exercises for Section 3.5

(i) Write a program to recognize if an arithmetic sum is normalized,
that is, has the form A + B, where A is a constant and B is a normal-
ized sum.

(ii) Write a type definition for Boolean formulae.

(iii) Write a program for recognizing whether a logical formula is in
conjunctive normal form, namely, is a conjunction of disjunctions
of literals, where a literal is an atomic formula or its negation.

(iv) Write a program for the relation negat ion-inwards (F l , F2), whch
is true if F2 is the logical formula resulting from moving all nega-
tion operators occurring in the formula F1 inside conjunctions and
disjunctions.

(v) Write a program for converting a logical formula into conjunctive
normal form, that is, a conjunction of disjunctions.

(vi) Consider the following representation of a bag, that is, a list of
elements with multiplicities. The function symbol bag(Element,
Multiplicity ,Restof Bag) should be used. The atom void can
be used as an empty bag. For example, the term bag (a, 3, bag (b, 2,
void)) represents a list of three copies of an element a, and two
copies of an element b. Write logic programs to

(a) Take the union of two bags;

(b) Take the intersection of two bags;

(c) Substitute for an element in a bag;

(d) Convert a list into a bag;

(e) Convert a binary tree into a bag.

3.6 Background

Many of the programs in this chapter have been floating around the logic
programming community, and their origins have become obscure. For

example, several appear in Clocksin and Mellish (1 984) and in the uneven
collection of short Prolog programs, How to Solve It in Prolog by Coelho
et al. (1980).

The latter book has been updated as Coelho and Cotta (1988) and is
a source for other simple examples. 'The exercise on describing poker
hands is due to Ken Bowen.

The classic reference for binary trees is Knuth (1968) and for sorting
Knuth (1973).

A discussion of the linear algorithm for the kth largest algorithms can
be found in most textbooks on algorithms, for example, Horowitz and
Sahni (1978). The discussion of the heap property is taken from Horowitz
and Sahni (1978).

Many of the basic programs for arithmetic and list processing have a
simple structure that allows many correctness theorems to be proved
automatically, see, for example, Boyer and Moore (1979) and Sterling and
Bundy (1982).

Ackermann's function is discussed by Peter (1967).

The Computation Model of Logic
Programs

The computation model used in the first three chapters of the book has
a severe restriction. All goals appearing in the proof trees are ground. All
rule instances used to derive the goals in the proof trees are also ground.
The abstract interpreter described assumes that the substitutions giving
the desired ground instances can be guessed correctly. In fact, the cor-
rect substitutions can be computed rather than guessed.

Thls chapter presents a general computation model of logic programs.
The first section presents a unification algorithm that removes the guess-
work in determining instances of terms. The second section presents an
appropriately modified abstract interpreter and gives example computa-
tions of logic programs.

The computation model of logic programming we present is especially
well suited to sequential languages such as Prolog. Our model can be
used to describe parallel logic programming languages. However, devel-
opers of these languages have often used other models, such as state
transitions or dynamic tree creation and destruction (see Section 4.3).

4.1 Unification

The heart of our computation model of logic programs is unification.
Unification is the basis of most work in automated deduction and of the
use of logical inference in artificial intelligence.

Necessary terminology for describing the algorithm is repeated from
Chapter 1, and new definitions are introduced as needed.

Chapter 4

Recall that a term t is a common instance of two terms, tl and tz, if
there exist substitutions and 8z such that t equals tl0l and t282. A

term s is more general than a term t if t is an instance of s but s is not
an instance of t . A term s is an alphabetic variant of a term t if both
s is an instance of t and t is an instance of s. Alphabetic variants are
related by the renaming of variables that occur in the terms. For exam-
ple, member (X, tree (Lef t , X ,Right)) and member (Y, tree (Lef t , Y, Z))
are alphabetic variants.

A unifier of two terms is a substitution making the terms identical. If
two terms have a unifier, we say they unify. There is a close relation be-
tween unifiers and common instances. Any unifier determines a common
instance, and conversely, any common instance determines a unifier.

For example, append([I, 2,31 , [3,41 ,List) and append([XIXsl ,Ys,
[XI Zsl) unify. A unifying substitution is {X=1 , Xs= [2,31 , Ys= [3,41 ,
List- [llzs] }. Their common instance, determined by this unifying sub-
stitution, is append ([I, 2,3] , [3,4] , [I (Zs]) .

A most general unifier, or mgu, of two terms is a unifier such that the
associated common instance is most general. It can be shown that if two
terms unify, all mgus are equivalent. Mahng that statement precise is
beyond the scope of this book, but we give pointers in Section 4.3. We
proceed by giving an algorithm that computes a most general unifier of
two terms if one exists.

The algorithm for unification presented here is based on solving equa-
tions. The input for the algorithm is two terms, Ti and Tz. The output
of the algorithm is an mgu of the two terms if they unify, or failure if
the terms do not unify. The algorithm uses a pushdown stack for storing
the equations that need to be solved and a location, 8, for collecting the
substitution comprising the output.

The location B is initially empty, and the stack is initialized to contain
the equation TI = T2. The algorithm consists of a loop of popping an
equation from the stack and processing it. The loop terminates when
the stack becomes empty or if failure occurs in processing an invalid
equation.

We consider the possible actions for dealing with a popped equation
S = T. The simplest case is if S and T are identical constants or var-
iables. This equation is correct, and nothing further needs to be done.
The computation continues by popping the next equation from the
stack.

The Computation Model of Logic Programs

If S is a variable, and T is a term not containing S, the following hap-
pens. The stack is searched for all occurrences of S, whch are replaced
by T. Similarly, all occurrences of S in 8 are replaced by T. Then the sub-
stitution S = T is added to 8. It is significant that S does not occur in T.
The test embodied by the phrase "not containing" is known as the occurs
check.

If T is a variable. and S is a term not containing T, i.e.. T satisfies
the occurs check with respect to S, the symmetric sequence of actions
happens.

Equations are added to the stack if S and T are compound terms with
the same principal functor and arity, f($.. . ,S,) and f (Tl , . . .,T,,), say.
For the terms to unify, each of the argument pairs must simultaneously
unify. This is achieved by pushing the n equations, S , = TL, onto the stack.

In any other case, failure is reported, and the algorithm terminates. If
the stack is emptied, the terms unify, and the unifier can be found in
8 . The complete algorithm is given as Figure 4.1. The occurs check is
embodied in the phrase "that does not occur in."

We do not prove the correctness of t h s algorithm, nor analyze its com-
plexity. The interested reader is referred to the literature in Section 4.3.

Consider attempting to unify the terms append([a, bl . [c ,dl , Ls) and
append([XIXsl ,Ys; CXIZsl). The stack is initialized to the equation

append([a,bl,[c,dl,Ls) = append(CXIXsl,Ys, CXlZsl).

These two terms have the same functor, append, and arity, 3, so we add
the three equations relating the subterms of the two terms. These are
[a,bl=[XJXsl, Cc,dl=Ys, and Ls=[XlZsl.

The next equation, [a, bl = [XIXsl , is popped from the stack. These two
compound terms have the same functor, ".". and arity. 2, so two equa-
tions, a=X and [bl =XS are added to the stack. Continuing, the equation
a=X is popped. Ths is covered by the second case in Figure 4.1. X is a
variable not occurring in the constant, a. All occurrences of X in the stack
are replaced by a. One equation is affected, namely Ls=[XZsl, whch
becomes Ls- [alZsl. The equation X=a is added to the initially empty sub-
stitution, and the algorithm continues.

The next equation to be popped is [bl =Xs. Again tlus is covered by the
second case. Xs= [bl is added to the set of substitutions, and the stack is
checked for occurrences of Xs. There are none, and the next equation is

popped.

PROYECTO

Chapter 4

Input: Two terms TI and T2 to be unified

Output: 8, the mgu of 7; and T2, or failure

Algorithm: Initialize the substitution 8 to be empty,
the stack to contain the equation TI = T,,
and failure to false.

while stack not empty and no failure do

pop X = Y from the stack

case
X is a variable that does not occur in Y:

substitute Y for X in the stack and in Q
add X = Y to O

I' is a variable that does not occur in X:
substitute X for I. in the stack and in 0
add Y = X to O

X. and I' are idcntical constants or variables:
continue

Xis f (X , , . . . , X,,) and Y i s f (Y l , . . . , Y,,)
for some functor f and n > 0:
push X, = I',, i = 1 . . . n , on the stack

other\vise:
fa~lure is true

I f . failure, then output failure else output 0

Figure 4.1 A unification algorithm

The second case also covers [c ,d l = Y s . Another substitution, Y s = Cc ,
d l , is added to the collection, and the final equation, Ls= [a l ~ s l , is
popped. This is handled by the symmetric first case. Ls does not
occur in [alzs], so the equation is added as is to the unifier, and
the algorithm terminates successfully. The unifier is {X=a , Xs= [bl ,
Y s = [c , d l , Ls= [a/ Zsl } . The common instance produced by the unifier is
append([a, bl , [c ,dl , [a1 Zs]) . Note that in t h s unification, the substi-
tutions were not updated.

The occurs check is necessary to prevent the unification of terms such
as s (XI and X. There is no finite common instance of these terms. How-

The Computation Model of Logic Programs

ever, most Prolog implementations omit the occurs check from the unifi-
cation algorithm, for pragmatic reasons.

When implementing this unification algorithm for a particular logic
programming language, the explicit substitution in both the equations on
the stack and the unifier is avoided. Instead, logical variables and other
terms are represented by memory cells with different values, and variable
binding is implemented by assigning to the memory cell representing a
logical variable a reference to the cell containing the representation of
the term the variable is bound to. Therefore,

Substitute Y for X in stack and in 8.
Add X = Y to substitutions.

is replaced by

Make X a reference to Y

4.1.1 Exercises for Section 4.1

(i) Use the algorithm in Figure 4.1 to compute an mgu of append([b] ,
[c ,dl ,L) and append(C X I X s l , Y s , [XlZsl 1.

(ii) Use the algorithm in Figure 4.1 to compute an mgu of h a n o i (s (N) ,
A , B ,C,Ms) and h a n o i (s (s (0)) , a , b , c ,Xs).

- - - - -. - -- - - -- --

4.2 An Abstract Interpreter for Logic Programs

We revise the abstract interpreter of Section 1.8 in the light of the unifi-
cation algorithm. The result is our full computation model of logic pro-
grams. All the concepts introduced previously, such as goal reductions
and computation traces, have their analogues in the full model.

A computation of a logic program can be described informally as fol-
lows. It starts from some initial (possibly conjunctive) query G and, if it
terminates, has one of two results: success or failure. If a computation
succeeds, the instance of G proved is conceived of as the output of the
computation. A given query can have several successful computations,
each resulting in a different output. In addition, it may have nontermi-
nating computations, to which we associate no result.

Chapter 4 The Computation Model of Logic Programs

The computation progresses via goal reduction. At each stage, there is
some resolvent, a conjunction of goals to be proved. A goal in the resol-
vent and clause in the logic program are chosen such that the clause's
head unifies with the goal. The computation proceeds with a new resol-
vent, obtained by replacing the chosen goal by the body of the chosen
clause in the resolvent and then applying the most general unifier of the
head of the clause and the goal, The computation terminates when the
resolvent is empty. In t h s case, we say the goal is solved by the program.

To describe computations more formally, we introduce some useful
concepts. A computation of a goal Q = Qo by a program P is a (possibly
infinite) sequence of triples (Q,Gi,CI). is a (conjunctive) goal, Gi is a
goal occurring in Q , and C, is a clause A-B1,. . .,Bk in P renamed so that it
contains new variable symbols not occurring in Q,, 0 5 j _(i. For all i > 0,
Q+1 is the result of replacing G, by the body of Ci in Q , and applying the
substitution GI , the most general unifier of Gi and A,, the head of C,; or
the constant true if GI is the only goal in and the body of C, is empty;
or the constant fail if Gi and the head of C, do not unify.

The goals BiOi are said to be derived from G., and C,. A goal G j = Bike,

where Blk occurs in the body of clause C,, is said to be invoked by GI and
C,. G, is the parent of any goal it invokes. Two goals with the same parent
goal are sibling goals.

A trace of a computation of a logic program (Q,G,,C,) is the sequence
of pairs (Gi,OI), where 81 is the subset of the mgu 0, computed at the ith
reduction, restricted to variables in GI.

We present an abstract interpreter for logic programs. It is an adap-
tation of the interpreter for ground goals (Figure 1.1). The restriction to
using ground instances of clauses to effect reductions is lifted. Instead,
the unification algorithm is applied to the chosen goal and head of the
chosen clause to find the correct substitution to apply to the new resol-
vent.

Care needs to be taken with the variables in rules to avoid name
clashes. Variables are local to a clause. Hence variables in different
clauses that have the same name are, in fact, different. This is ensured
by renaming the variables appearing in a clause each time the clause is
chosen to effect a reduction. The new names must not include any of the
variable names used previously in the computation.

The revised version of the interpreter is given as Figure 4.2. It solves a
query G with respect to a program P. The output of the interpreter is an

Input: A goal G and a program P

Output: An instance of G that is a logical consequence of P,
or no otherwise

Algorithm: Initialize the resolvent to G.
while the resolvent is not empty do

choose a goal A from the resolvent
choose a (renamed) clause A' -B,,. . .,B, from P

such that A and A' unify with mgu 8
(if no such goal and clause exist, exit the while loop)

replace A by B,,. . .,B, in the resolvent
apply B to the resolvent and to G

I f the resolvent is empty, then output G, else output no.

Figure 4.2 An abstract interpreter for logic programs

instance of G if a proof of such an instance is found, or no if a failure
has occurred during the computation. Note that the interpreter may also
fail to terminate.

An instance of a query for whlch a proof is found is called a solution to
the query.

The policy for adding and removing goals from the resolvent is called
the scheduling policy of the interpreter. The abstract interpreter leaves
the scheduling policy unspecified.

Consider solving the query append ([a, bl , [c , dl , Ls) ? by Program
3.15 for append using the abstract interpreter of Figure 4.2. The resol-
vent is initialized to be append([a, bl , [c , dl , Ls) . It is chosen as the
goal to reduce, being the only one. The rule chosen from the program is

append(CX I Xsl , Y s , CX I Z s l) - append(Xs , Y s , Zs) .

The unifier of the goal and the head of the rule is {X=a,Xs=[bl ,
Y s = [c ,dl , L s = [a1 Zsl } . A detailed calculation of t h s unifier appeared
in the previous section. The new resolvent is the instance of ap-
pend (Xs , Y s , Zs) under the unifier, namely, append (Cbl , [c ,dl , Zs) . This
goal is chosen in the next iteration of the loop. The same clause for
append is chosen, but variables must be renamed to avoid a clash of
variable names. The version chosen is

append([XI I Xsll ,Ysl , [XI I Z s l l) - append(Xs1 , Y s l , Zsl)

Chapter 4

append(Ca,bl , [c ,dl ,Ls) Ls= [a] Zsl

append ([bl , [c ,dl , Zs) Zs= [blZsl]

append([1 , [c,dl , Z S ~) Zsl=[c,d]

t rue
Output: Ls= [a,b,c,dl

Figure 4.3 Tracing the appending of two lists

The unifier of the head and goal is {X1=b, X s l = [I , ~ s l = [c ,d l ,
Z s = [b / Z s l l j . The new resolvent is append([I , [c ,dl , Zsl) . This time
the fact append([I , Zs2,Zs2) is chosen; we again rename variables as
necessary. The unifier this time is {Zs2= [c ,dl , Z s l = [c ,dl 1. The new
resolvent is empty and the computation terminates.

To compute the result of the computation, we apply the relevant part
of the mgu's calculated during the computation. The first unification
instantiated LS to [a/Zs]. zs was instantiated to [b i ~ s l l in the second
unification, and Z s l further became [c , d l . Putting it together, L s has the
value [a([bl [c ,dl 1 I , or more simply, [a , b , c , d l .

The computation can be represented by a trace. The trace of the fore-
going append computation is presented in Figure 4.3. To make the traces
clearer, goals are indented according to the indentation of their parent.
A goal has an indentation depth of d + l if its parent has indentation
depth d.

As another example, consider solving the query son(S,haran)? by
Program 1.2. It is reduced using the clause son(X ,Y) - f a t h e r (Y, X) ,
male (X). A most general unifier is {X=S ,Y=haran}. Applying the sub-
stitution gives the new resolvent f a t h e r (haran , S) , male (S). This is
a conjunctive goal. There are two choices for the next goal to reduce.
Choosing the goal f a t h e r (haran , S) leads to the following computation.
The goal, unifies with the fact f a t h e r (haran , l o t) in the program, and
the computation continues with S instantiated to l o t . The new resolvent
is male (l o t) , which is reduced by a fact in the program, and the compu-
tation terminates. This is illustrated in the left trace in Figure 4.4.

The other possibility for computing S=haran is choosing to reduce
the goal male (S) before f a t h e r (haran , S) . This goal is reduced by the
fact male(1ot) with S instantiated to l o t . The new resolvent is f a -
t h e r (haran , l o t) , which is reduced to the empty goal by the correspond-
ing fact. This is the right trace in Figure 4.4.

The Computation Model o f Logic Programs

son(S,haran) son(S,haran)
father(haran,S) S=lot male(S) S=lot
male(1ot) father(haran,lot)

true true

Figure 4.4 Different traces of the same solution

Solutions to a query obtained using the abstract interpreter may con-
tain variables. Consider the query member(a,Xs)? with respect to Pro-
gram 3.12 for member. This can be interpreted as asking what list X s has
the element a as a member. One solution computed by the abstract inter-
preter is X s = CalYsI , namely, a list with a as its head and an unspecified
tail. Solutions that contain variables denote an infinity of solutions-all
their ground instances.

There are two choices in the interpreter of Figure 4.2: choosing the goal
to reduce, and choosing the clause to effect the reduction. These must be
resolved in any realization of the computation model. The nature of the
choices is fundamentally different.

The choice of goal to reduce is arbitrary; it does not matter which is
chosen for the computation to succeed. If there is a successful computa-
tion by choosing a given goal, then there is a successful computation by
choosing any other goal. The two traces in Figure 4.4 illustrate two suc-
cessful computations, where the choice of goal to reduce at the second
step of the computation differs.

The choice of the clause to effect the reduction is nondeterministic.
Not every choice will lead to a successful computation. For example, in
both traces in Figure 4.4, we could have gone wrong. If we had chosen to
reduce the goal f a the r (ha ran , S) with the fact f a t h e r (haran , y iscah) ,
we would not have been able to reduce the invoked goal male (y iscah) .
For the second computation, had we chosen to reduce male(S) with
male (i s a a c) , the invoked goal f a t h e r (haran, i s a a c) could not have
been reduced.

For some computations, for example, the computation illustrated in
Figure 4.3, there is only one clause from the program that can reduce
each goal. Such a computation is called deterministic. Deterministic com-
putations mean that we do not have to exercise our nondeterministic
imagination.

The alternative choices that can be made by the abstract interpreter
when trying to prove a goal implicitly define a search tree, as described

Chapter 4

more fully in Section 5.4. The interpreter "guesses" a successful path
in t h s search tree, corresponding to a proof of the goal, if one exists.
However, dumber interpreters, without guessing abilities, can also be
built, with the same power as our abstract interpreter. One possibility
is to search t h s tree breadth-first, that is, to explore all possible choices
in parallel. Ths will guarantee that if there is a finite proof of the goal
(i.e., a finite successful path in the search tree), it will be found.

Another possibility would be to explore the abstract search tree depth-
first. In contrast to the breadth-first search strategy, the depth-first one
does not guarantee finding a proof even if one exists, since the search
tree may have infinite paths, corresponding to potentially infinite com-
putations of the nondeterministic interpreter. A depth-first search of the
tree might get lost in an infinite path, never finding a finite successful
path, even if one exists.

In technical terms, the breadth-first search strategy defines a complete
proof procedure for logic programs, whereas the depth-first one is in-
complete. In spite of its incompleteness, depth-first search is the one
incorporated in Prolog, for practical reasons, as explained in Chapter 6.

Let us give a trace of a longer computation, solving the Towers of
Hanoi problem with three disks, using Program 3.31. It is a deterministic
computation, given as Figure 4.5. The final append goal is given without
unifications. It is straightforward to fill them in.

Computations such as that in Figure 4.5 can be compared to compu-
tations in more conventional languages. Unification can be seen to sub-
sume many of the mechanisms of conventional languages: record alloca-
tion, assignment of and access to fields in records, parameter passing,
and more. We defer the subject until the computation model for Prolog
is introduced in Chapter 6.

A computation of G by P terminates if G, = true or fail for some n 2
0. Such a computation is finite and of length n. Successful computations
correspond to terminating computations that end in true. Failing com-
putations end in fail. All the traces given so far have been of successful
computations.

Recursive programs admit the possibility of nonterrninating computa-
tions. The query append(Xs, [c , dl , Ys)? with respect to append can be
reduced arbitrarily many times using the rule for append. In the process,
X s becomes a list of arbitrary length. Thls corresponds to solutions of
the query appending [c, dl to an arbitrarily long list. The nonterminat-
ing computation is illustrated in Figure 4.6.

The Computation Model o f Logic Programs

Figure 4.5 Solving the Towers of Hanoi

Figure 4.6 A nonterminating computation

PROYECTO

Chapter 4

All the traces presented so far have an important feature in common.
If two goals Gi and Gj are invoked from the same parent, and Gi appears
before G, in the trace, then all goals invoked by Gi will appear before
Gj in the trace. T h s scheduling policy makes traces easier to follow, by
solving queries depth-first.

The scheduling policy has another important effect: instantiating vari-
ables before their values are needed for other parts of the computation.
A good ordering can mean the difference between a computation being
deterministic or not.

Consider the computation traced in Figure 4.5. The goal

is reduced to the following conjunction

If the append goal is now chosen, the append fact could be used (incor-
rectly) to reduce the goal. By reducing the two hanoi goals first, and all
the goals they invoke, the append goal has the correct values for Msl and
Ms2.

4.2.1 Exercises for Section 4.2

(i) Trace the query sort ([3,1,21 , Xs)? using the permutation sort
(3.20), insertion sort (3.21), and quicksort (3.22) programs in turn.

(ii) Give a trace for the goal derivative(3*sin(x)-4*cos(x) , x , ~)

using Program 3.30 for derivative.

(iii) Practice tracing your favorite computations.

-- -

4.3 Background

Unification plays a central role in automated deduction and in the use
of logical inference in artificial intelligence. It was first described in the
landmark paper of Robinson (1 965). Algorithms for unification have been

The Computation Model o f Logic Programs

the subject of much investigation: see, for example, Martelli and Monta-
nari (1982), Paterson and Wegman (19781, and Dwork et al. (1984). Typi-
cal textbook descriptions appear in Bundy (1983) and Nilsson (1980).

The definition of unification presented here is nonstandard. Readers
wishlng to learn more about unifiers are referred to the definitive dis-
cussion on unification in Lassez, hlaher, and Marriott (1988). This paper
points out inconsistencies of the various definitions of unifiers that have
been proposed in the literature, including the version in this book. Es-
sentially, we have explained unifiers based on terms to avoid technical
issues of composition of substitutions, which are not needed for our de-
scription of logic programming computations.

The computation model we have presented has a sequential bias and
is influenced by the computation model for Prolog given in Chapter 6.
Nonetheless, the model has potential for parallelism by selecting several
goals or several rules at a time, and for elaborate control by selecting
complicated computation rules. References for reading about different -
computation models for logic programming are gi\.en in Section 6.3.

Another bias of our computation model is the central place of unifi-
cation. An exciting development n-ithin logic programming has been the
realization that unification is just one instance of constraint solving. New
computation models ha\.e been presented where the solution of equal-
ity constraints, i.e., unification, in the abstract interpreter of Figure 4.2
is replaced by solving other constraints. Good starting places to read
about the new constraint-based models are Colmerauer (1 990), Jaffar and
Lassez (1987), and Lassez (1991).

A proof that the choice of goal to reduce from the resolvent is arbitrary
can be found in Apt and \an Emden (1982) or in the text of Llo)-d (1987).

A method for replacing the runtime occurs check with compile-time
analysis was suggested by Plaisted (1984).

Attempts have been made to make unification without the occurs
check more than a necessary expedient for practical implementations of
Prolog. In particular, Colmerauer (1982b) proposes a theoretical model
for such unifications that incorporates computing with infinite terms.

A novel use of unification without the occurs check appears in Eggert
and Chow (1983), where Escher-like drawings that gracefully tend to in-
finity are constructed.

5 Theory of Logic Programs

A major underlying theme of this book, laid out in the introduction, is
that logic programming is attractive as a basis for computation because
of its basis in mathematical logic, whch has a well-understood, well-
developed theory. In this chapter, we sketch some of the growing theory
of logic programming, which merges the theory inherited from mathe-
matlcal logic with experience from computer science and engineering.
Giving a complete account is way beyond the scope of this book. In thls
chapter, we present some results to direct the reader in important direc-
tions. The first section, on semantics, gives definitions and suggests why
the model-theoretic and proof-theoretic semantics give the same result.
The main issue in the second section, on program correctness, is termi-
nation. Complexity of logic programs is discussed in the third section.
The most important section for the rest of the book is Section 4, which
discusses search trees. Search trees are vital to understanding Prolog's
behavior. Finally, we introduce negation in logic programming.

5.1 Semantics

Semantics assigns meanings to programs. Discussing semantics allows
us to describe more formally the relation a program computes. Chap-
ter 1 informally describes the meaning of a logic program P as the set
of ground instances that are deducible from P via a finite number of ap-
plications of the rule of universal modus ponens. This section considers
more formal approaches.

Chapter 5

parent(terach,abraham). ~arent(abraham,isaac).
parent (isaac, j acob) . parent (j acob , benj amin)

ancestor (X,Y) - parent (X,Y).
ancestor(X,Z) - parent(X,Y), ancestor(Y,Z).
Program 5.1 Yet another family example

The operational semantics is a way of describing procedurally the
meaning of a program. The operational meaning of a logic program P
is the set of ground goals that are instances of queries solved by P using
the abstract interpreter given in Figure 4.2. Thls is an alternative for-
mulation of the previous semantics, which defined meaning in terms of
logical deduction.

The declarative semantics of logic programs is based on the standard
model-theoretic semantics of first-order logic. In order to define it, some
new terminology is needed.

Definition
Let P be a logic program. The Herbrand universe of P, denoted U (P) , is
the set of all ground terms that can be formed from the constants and
function symbols appearing in P. m

In this section, we use two running examples-yet another family data-
base example, given as Program 5.1; and Program 3.1 defining the natural
numbers, repeated here:

natural-number (0) .
natural-number (s (X)) - natural-number (x) .
The Herbrand universe of Program 5.1 is the set of all constants appear-
ing in the program, namely, {terach, abraham, isaac , jacob, benjamin}.
If there are no function symbols, the Herbrand universe is finite. In Pro-
gram 3.1, there is one constant symbol, 0, and one unary function sym-
bol, s. The Herbrand universe of Program 3.1 is {0, s (0) , s (s (0)) , . . . I .
If no constants appear in a program, one is arbitrarily chosen.

Definition
The Herbrand base, denoted B(P), is the set of all ground goals that
can be formed from the predicates in P and the terms in the Herbrand
universe.

Theory o f Logic Programs

There are two predicates, parent/2 and ancestor/2, in Program 5.1.
The Herbrand base of Program 5.1 consists of 25 goals for each predi-
cate, where each constant appears as each argument:

Cparent(terach,terach), parent(terach,abraham),
parent (terach, isaac) , parent (terach, jacob) ,
parent (terach, benjamin) , parent (abraham, terach) ,
parent(abraham,abraham), parent(abraham,isaac),
parent (abraham , j acob) , parent (abraham , benj amin) ,
parent (isaac , terach) , parent (isaac, abraham) ,
parent (isaac, isaac) , parent (isaac, j acob) ,
parent (isaac ,benjamin) , parent (jacob, terach) ,
parent (j acob, abraham) , parent (jacob, isaac) ,
parent (j acob, j acob) , parent (j acob, benj amin) ,
parent(benjamin,terach), parent(benjamin,abraham),
parent (benj amin, isaac) , parent (benj amin, jacob) ,
parent(benjamin,benjamin), ancestor(terach,terach),

ancestor(terach, abraham) , ancestor(terach, isaac) ,
ancestor(terach, jacob) , ancestor(terach,benjamin),
ancestor (abraham, terach) , ancestor (abraham, abraham) ,
ancestor (abraham, isaac) , ancestor (abraham, jacob) ,
ancestor(abraham,benjamin), ancestor(isaac,terach),
ancestor(isaac, abraham) , ancestor (isaac, isaac) ,
ancestor (isaac, jacob) , ancestor(isaac, benjamin) ,
ancestor (jacob, terach) , ancestor(jacob, abraham) ,
ancestor(jacob, isaac) , ancestor(jacob, jacob) ,
ancestor (jacob, benjamin) , ancestor(benjamin, terach) ,
ancestor(benjamin, abraham) , ancestor (benjamin, isaac) ,
ancestor (benj amin, j acob) , ancestor (benjamin, benj amin)).

The Herbrand base is infinite if the Herbrand universe is. For Pro-
gram 3.1, there is one predicate, natural-number. The Herbrand base
equals {natural-number (0) ,natural-number (s (0)) , . . . } .

Definition
An interpretation for a logic program is a subset of the Herbrand base.

An interpretation assigns truth and falsity to the elements of the Her-
brand base. A goal in the Herbrand base is true with respect to an inter-
pretation if it is a member of it, false otherwise.

Chapter 5 Theory of' Logic Programs

Definition
An interpretation I is a model for a logic program if for each ground
instance of a clause in the program A-BI,. . .,B,, A is in I if BI,. . .,B, are
in I. ¤

Intuitively, models are interpretations that respect the declarative
reading of the clauses of a program.

For Program 3.1, natural-number(0) must be in every model, and
natural-number (s (X)) is in the model if natural-number (X) is. Any
model of Program 3.1 thus includes the whole Herbrand base.

For Program 5.1, the facts parent (t e rach , abraham), parent (abra-
ham, i saac) , parent (i s a a c , jacob), and parent (jacob, benjamin)
must be in every model. A ground instance of the goal ances tor (X ,Y) is
in the model if the corresponding instance of parent (X,Y) is, by the first
clause. So, for example, ancestor (terach, abraham) is in every model.
By the second clause, ancestor (X, Z) is in the model if parent (X, Y) and
ances tor (Y, Z) are.

It is easy to see that the intersection of two models for a logic program
P is again a model. T h s property allows the definition of the intersection
of all models.

Definition
The model obtained as the intersection of all models is known as the
minimal model and denoted M (P) . The minimal model is the declarative
meaning of a logic program.

The declarative meaning of the program for natural-number, its min-
imal model, is the complete Herbrand base {natural-number (0) , natu-
ral-number (s (0)) ,natural-number(s (S (0))) . . . 1.

The declarative meaning of Program 5.1 is {parent (t e rach , abraham) ,
parent (abraham, isaac) , parent (i saac , j acob) , parent (j acob,

benjamin) , ancestor (t e rach , abraham) , ancestor (abraham, i saac) ,
ancestor (i saac , j acob) , ancestor (jacob, benj amin) , ancestor

(t e rach , i saac) , ancestor (t e rach , jacob) , ancestor (t e rach ,
benj amin) , ancestor (abraham, jacob) , ancestor (abraham, ben-
jamin) , ances to r (i saac , benjamin) 1.

Let us consider the declarative meaning of append, defined as Pro-
gram 3.15 and repeated here:

The Herbrand universe is [I,[[]],[I I,[I], . . . , namely, all lists that can be
built using the constant [1. The Herbrand base is all combinations of
lists with the append predicate. The declarative meaning is all ground in-
stances of append ([I , X s , Xs) , that is, append ([I , [I , [I) ,
append([I , [[I I , [[I I) , . . . , together with goals such as append
([[]] , [I , [[I 1 1 , which are logically implied by application(s) of
the rule. This is only a subset of the Herbrand base. For example,
append([1 , [I , [[I I) is not in the meaning of append but is in the
Herbrand base.

Denotational semantics assigns meanings to programs based on asso-
ciating with the program a function over the domain computed by the
program. The meaning of the program is defined as the least fucpoint of
the function, if it exists. The domain of computations of logic programs
is interpretations.

Definition
Given a logic program P, there is a natural mapping Tp from interpreta-
tions to interpretations, defined as follows:

Tp(I) = { A in B(P):A -BI ,B,,. . .,B,l, n 2 0, is a ground instance of
a clause in P, and B1,. . .,B, are in I}. a

The mapping is monotonic, since whenever an interpretation I is con-
tained in an interpretation J, then Tp(I) is contained in Tp(J).

This mapping gives an alternative way of characterizing models. An
interpretation I is a model if and only if Tp(l) is contained in I.

Besides being monotonic, the transformation is also continuous, a no-
tion that will not be defined here. These two properties ensure that for
every logic program P, the transformation Tp has a least fixpoint, whlch
is the meaning assigned to P by its denotational semantics.

Happily, all the different definitions of semantics are actually describ-
ing the same object. The operational, denotational, and declarative se-
mantics have been demonstrated to be equivalent. This allows us to de-
fine the meaning of a logic program as its minimal model.

5.2 Program Correctness

Every logic program has a well-defined meaning, as discussed in Sec-
tion 5.1. This meaning is neither correct nor incorrect.

Chapter 5

The meaning of the program, however, may or may not be what was
intended by the programmer. Discussions of correctness must therefore
take into consideration the intended meaning of the program. Our pre-
vious discussion of proving correctness and completeness similarly was
with respect to an intended meaning of a program.

We recall the definitions from Chapter 1. An intended meaning of a
program P is a set of ground goals. We use intended meanings to denote
the set of goals intended by the programmer for the program to com-
pute. A program P is correct with respect to an intended meaning M if
M(P) is contained in M. A program P is complete with respect to an in-
tended meaning if M is contained in M(P). A program is thus correct and
complete with respect to an intended meaning if the two meanings coin-
cide exactly.

Another important aspect of a logic program is whether it terminates.

Definition
A domain is a set of goals, not necessarily ground, closed under the
instance relation. That is, if A is in D and A' is an instance of A, then
A' is in D as well.

Definition
A termination domain of a program P is a domain D such that every
computation of P on every goal in D terminates. ¤

lisually, a useful program should have a termination domain that in-
cludes its intended meaning. However, since the computation model of
logic programs is liberal in the order in which goals in the resolvent can
be reduced, most interesting logic programs will not have interesting ter-
mination domains. This situation will improve when we switch to Prolog.
The restrictive model of Prolog allows the programmer to compose non-
trivial programs that terminate over useful domains.

Consider Program 3.1 defining the natural numbers. This program is
terminating over its Herbrand base. However, the program is nonter-
minating over the domain {natural-number (X) } . This is caused by the
possibility of the nonterminating computation depicted in the trace in
Figure 5.1.

For any logic program, it is useful to find domains over which it is
terminating. This is usually difficult for recursive logic programs. We

Theory o f Logic Programs

natural-number (X) X=s (XI)
natural-number(X1) X1=s (X2)

natural-number (X2) X2=s (X3)

Figure 5.1 A nonterrninating computation

need to describe recursive data types in a way that allows us to discuss
termination.

Recall that a type, introduced in Chapter 3, is a set of terms.

Definition
A type is complete if the set is closed under the instance relation. With
every complete type T we can associate an incomplete type IT, which is
the set of terms that have instances in T and instances not in T.

We illustrate the use of these definitions to find termination domains
for the recursive programs using recursive data types in Chapter 3. Spe-
cific instances of the definitions of complete and incomplete types are
given for natural numbers and lists. A (complete) natural number is ei-
ther the constant 0, or a term of the form s n (X) . An incomplete natural
number is either a variable, X, or a term of the form sn(0), where X is
a variable. Program 3.2 for I is terminating for the domain consisting
of goals where the first and/or second argument is a complete natural
number.

Definition
A list is complete if every instance satisfies the definition given in Pro-
gram 3.11. A list is incomplete if there are instances that satisfy this
definition and instances that do not.

For example, the list [a, b , cl is complete (proved in Figure 3.3), while
the variable X is incomplete. Two more interesting examples: [a, X , cl is
a complete list, although not ground, whereas [a,bjXs] is incomplete.
A termination domain for append is the set of goals where the first

and/or the thrd argument is a complete list. We discuss domains for
other list-processing programs in Section 7.2, on termination of Prolog
programs.

Chapter 5

5.2.1 Exercises for Section 5.2

(i) Give a domain over which Program 3.3 for p lus is terminating.

(ii) Define complete and incomplete binary trees by analogy with the
definitions for complete and incomplete lists.

5.3 Complexity

We have analyzed informally the complexity of several logic programs,
for example, I and plus (Programs 3.2 and 3.3) in the section on arith-
metic, and append and the two versions of reverse in the section on lists
(Programs 3.15 and 3.16). In this section, we briefly describe more formal
complexity measures.

The multiple uses of logic programs slightly change the nature of com-
plexity measures. Instead of looking at a particular use and specifying
complexity in terms of the sizes of the inputs, we look at goals in the
meaning and see how they were derived. A natural measure of the com-
plexity of a logic program is the length of the proofs it generates for
goals in its meaning.

Definition
The size of a term is the number of symbols in its textual representation.

Constants and variables, consisting of a single symbol, have size 1.
The size of a compound term is 1 more than the sum of the sizes of
its arguments. For example, the list [b] has size 3, [a,b] has size 5,
and the goal append([a , b] , [c , dl ,Xs) has size 12. In general, a list of
n elements has size 2 . n + 1.

Definition
A program P is of length complexity L(n) if for any goal G in the meaning
of P of size n there is a proof of G with respect to P of length less than
equal to L(n).

Length complexity is related to the usual complexity measures in com-
puter science. For sequential realizations of the computation model, it
corresponds to time complexity. Program 3.15 for append has linear

Theory of Logic Programs

length complexity. This is demonstrated in Exercise (i) at the end of thls
section.

The applicability of thls measure to Prolog programs, as opposed to
logic programs, depends on using a unification algorithm without an oc-
curs check. Consider the runtime of the straightforward program for ap-
pending two lists. Appending two lists, as shown in Figure 4.3, involves
several unifications of append goals with the head of the append rule
append (C X l X s l , Ys, CXlZsl 1. At least three unifications, matchng vari-
ables against (possibly incomplete) lists, will be necessary. If the occurs
check must be performed for each, the argument lists must be searched.
This is directly proportional to the size of the input goal. However, if the
occurs check is omitted, the unification time will be bounded by a con-
stant. The overall complexity of append becomes quadratic in the size of
the input lists with the occurs check, but only linear without it.

We introduce other useful measures related to proofs. Let R be a proof.
We define the depth of R to be the deepest invocation of a goal in the
associated reduction. The goal-size of R is the maximum size of any goal
reduced.

Definition
A logic program P is of goal-size complexity G(n) if for any goal A in the
meaning of P of size n, there is a proof of A with respect to P of goal-size
less than or equal to G(n). #

Definition
A logic program P is of depth-complexity D(n) if for any goal A in the
meaning of P of size n, there is a proof of G with respect to P of depth
<D(n).

Goal-size complexity relates to space. Depth-complexity relates to
space of what needs to be remembered for sequential realizations, and
to space and time complexity for parallel realizations.

5.3.1 Exercises for Section 5.3

(i) Show that the size of a goal in the meaning of append joining a
list of length n to one of length m to give a list of length n + m
is 4 . n + 4 . m + 4. Show that a proof tree has m + 1 nodes. Hence

Chapter 5

show that append has linear complexity. Would the complexity be
altered if the type condition were added?

(ii) Show that Program 3.3 for p l u s has linear complexity.

(iii) Discuss the complexity of other logic programs.

5.4 Search Trees

Computations of logic programs given so far resolve the issue of nonde-
terminism by always making the correct choice. For example, the com-
plexity measures, based on proof trees, assume that the correct clause
can be chosen from the program to effect the reduction. Another way of
computationally modeling nondeterminism is by developing all possible
reductions in parallel. In this section, we discuss search trees, a formal-
ism for considering all possible computation paths.

Definition
A search tree of a goal G with respect to a program P is defined as
follows. The root of the tree is G. Nodes of the tree are (possibly con-
junctive) goals with one goal selected. There is an edge leading from a
node N for each clause in the program whose head unifies with the se-
lected goal. Each branch in the tree from the root is a computation of G
by P. Leaves of the tree are success nodes, where the empty goal has been
reached, or failure nodes, where the selected goal at the node cannot be
further reduced. Success nodes correspond to solutions of the root of the
tree.

There are in general many search trees for a given goal with re-
spect to a program. Figure 5.2 shows two search trees for the query
son(S, haran) ? with respect to Program 1.2. The two possibilities cor-
respond to the two choices of goal to reduce from the resolvent f a -
t h e r (haran , S) ,male (S) . The trees are quite distinct, but both have a
single success branch corresponding to the solution of the query S=lot .
The respective success branches are given as traces in Figure 4.4.

We adopt some conventions when drawing search trees. The leftmost
goal of a node is always the selected one. This implies that the goals in
derived goals may be permuted so that the new goal to be selected for

Theory o f Logic Programs

@
Figure 5.2 Two search trees

reduction is the first goal. The edges are labeled with substitutions that
are applied to the variables in the leftmost goal. These substitutions are
computed as part of the unification algorithm.

Search trees correspond closely to traces for deterministic computa-
tions. The traces for the append query and hanoi query given, respec-
tively, in Figures 4.3 and 4.5 can be easily made into search trees. This is
Exercise (i) at the end of this section.

Search trees contain multiple success nodes if the query has mul-
tiple solutions. Figure 5 .3 contains the search tree for the query ap-
pend(As , B s , [a , b , cl > ? with respect to Program 3.15 for append, asking
to split the list [a , b , cl into two. The solutions for A s and B s are found
by collecting the labels of the edges in the branch leading to the success
node. For example, in the figure, following the leftmost branch gives the
solution { A s = [a , b , cl , Bs= [I 1.

The number of success nodes is the same for any search tree of a given
goal with respect to a program.

Search trees can have infinite branches, which correspond to nonter-
rninating computations. Consider the goal append (Xs , [c ,d l , Ys) with
respect to the standard program for append. The search tree is given in
Figure 5.4. The infinite branch is the nonterminating computation given
in Figure 4.6.

Chapter 5

Figure 5.3 Search tree with multiple success nodes

Complexity measures can also be defined in terms of search trees. Pro-
log programs perform a depth-first traversal of the search tree. There-
fore, measures based on the size of the search tree will be a more real-
istic measure of the complexity of Prolog programs than those based on
the complexity of the proof tree. However, the complexity of the search
tree is much harder to analyze.

There is a deeper point lurking. The relation between proof trees and
search trees is the relation between nondeterministic computations and
deterministic computations. Whether the complexity classes defined via
proof trees are equivalent to complexity classes defined via search trees
is a reformulation of the classic P=NP question in terms of logic program-
ming.

5.4.1 Exercises for Section 5.4

(i) Transform the traces of Figure 4.3 and 4.5 into search trees.

(ii) Draw a search tree for the query s o r t ([2,4,11 , Xs) ? using permu-
tation sort.

Theory of Logic Programs

Figure 5.4 Search tree with an infinite branch

5.5 Negation in Logic Programming

Logic programs are collections of rules and facts describing what is true.
Untrue facts are not expressed explicitlj-; they are omitted. When writing
rules, it is often natural to include negative conditions. For example,
defining a bachelor as an unmarried male could be written as

bachelor(X) - male(X) , not married(X) .

if negation w7ere allowed. In this section, we describe an extension to
the logic programming computation model that allows a limited form of
negation.

Researchers have investigated other extensions to logic programming
to allow disjunction, and indeed, arbitrary first-order formulae. Dis-
cussing them is beyond the scope of this book. The most useful of the
extensions is definitely negation.

We define a relation not G and give a semantics. The essence of logic
programming is that there is an efficient procedural semantics. There is
a natural way to adapt the procedural semantics to negation, namely by
negation as failure. A goal G fails, (not G succeeds), if G cannot be derived
by the procedural semantics.

PROYECTO

Chapter 5

The relation not G is only a partial form of negation from first-order
logic. The relation nor uses the negarion as failure rule. A goal not G will
be assumed to be a consequence of a program P if G is not a consequence
of P.

Negation as failure can be characterized in terms of search trees.

Definition
A search tree of a goal G with respect to a program P is finitely failed if it . - ~ -
has no success nodes or infinite branches. The finite failure set of a logic
program P is the set of goals G such that G has a finitely failed search
tree with respect to P.

A goal not G is implied by a program P by the "negation as failure" rule
if G is in the finite failure set of P.

Let us see a simple example. Consider the program consisting of two
facts:

likes (abraham,pomegranates) .
likes (isaac ,pomegranates) .

The goal not likes (sarah ,pomegranates) follows from the program by
negation as failure. The search tree for the goal likes(sarah,pomegran-
ates) has a single failure node.

Using negation as failure allows easy definition of many relations. For
example, a declarative definition of the relation disjoint (Xs ,Ys) that
two lists, XS and Ys, have no elements in common is possible as follows.

dls j oint (Xs , Ys) - not (member (X , XS) , member (X ,Ys)) .
This reads: "Xs is disjoint from Ys if there is no element X that is a
member of both Xs and Ys."

An intuitive understanding of negation as failure is fine for the pro-
grams in this book using negation. There are semantic problems, how-
ever, especially when integrated with other issues such as completeness
and termination. Pointers to the literature are given in Section 5.6, and
Prolog's implementation of negation as failure is discussed in Chap-
ter 11.

115 Theory of Logic Programs

5.6 Background

The classic paper on the semantics of logic programs is of van Emden
and Kowalski (1976). Important extensions were given by Apt and van
Emden (1982). In particular, they showed that the choice of goal to re-
duce from the resolvent is arbitrary by showing that the number of suc-
cess nodes is an invariant for the search trees. Textbook accounts of
the theory of logic programming discussing the equivalence between the
declarative and procedural semantics can be found in Apt (1990), Deville
(1990), and Lloyd (1987).

In Shapiro (1984), complexity measures for logic programs are com-
pared with the complexity of computations of alternating Turing ma-
chines. It is shown that goal-size is linearly related to alternating space,
the product of length and goal-size is linearly related to alternating tree-
size, and the product of depth and goal-size is linearly related to alter-
nating time.

The classic name for search trees in the literature is SLD trees. The
name SLD was coined by research in automatic theorem proving, which
preceded the birth of logic programming. SLD resolution is a particu-
lar refinement of the resolution principle introduced in Robinson (1965).
Computations of logic programs can be interpreted as a series of reso-
lution steps, and in fact, SLD resolution steps, and are still commonly
described thus in the literature. The acronym SLD stands for Selecting a
literal, using a Linear strategy, restricted to Definite clauses.

The first proof of the correctness and completeness of SLD resolution,
albeit under the name LUSH-resolution, was given by Hill (1974).

The subject of negation has received a large amount of attention and
interest since the inception of logic programming. The fundamental work
on the semantics of negation as failure is by Clark (1978). Clark's results,
establishing soundness, were extended by Jaffar et al. (1983), who proved
the completeness of the rule.

The concept of negation as failure is a restricted version of the closed
world assumption as discussed in the database world. For more infor-
mation see Reiter (1978). There has been extensive research on charac-
terizing negation in logic programming that has not stabilized at this
time. The reader should look up the latest logic programming conference
proceedings to find current thinlung. A good place to start reading to un-
derstand the issue is Kunen (1989).

Leonardo Da Vinci. Portrait of the Florentine poet Bernardo Bellincioni, en-
gaged at the Court of Ludovico Sforza. Woodcut, based on a drawing by
Leonardo. From Bellincioni's Rime. Milan 1493.

I1 The Prolog Language

In order to implement a practical programming language based on the
computation model of logic programming, three issues need attention.
The first concerns resolving the choices remaining in the abstract inter-
preter for logic programs, defined in Chapter 4. The second concerns
enhancing the expressiveness of the pure computation model of logic
programs by adding meta-logical and extra-logical facilities. Finally, ac-
cess to some of the capabilities of the underlying computer, such as fast
arithmetic and input/output, must be provided. This part discusses hob7
Prolog, the most developed language based on logic programming, han-
dles each of these issues.

Pure Prolog

A pure Prolog program is a logic program, in which an order is defined
both for clauses in the program and for goals in the body of the clause.
The abstract interpreter for logic programs is specialized to take advan-
tage of this ordering information. This chapter discusses the execution
model of Prolog programs in contrast to logic programs, and compares
Prolog to more conventional languages.

The relation between logic programming and Prolog is reminiscent of
the relation between the lambda-calculus and Lisp. Both are concrete re-
alizations of abstract computation models. Logic programs that execute
with Prolog's execution mechanism are referred to as pure Prolog. Pure
Prolog is an approximate realization of the logic programming compu-
tation model on a sequential machine. It is certainly not the only possi-
ble such realization. However, it is a realization with excellent practical
choices, which balance preserving the properties of the abstract model
with catering for efficient implementation.

6.1 The Execution Model of Prolog

Two major decisions must be taken to convert the abstract interpreter
for logic programs into a form suitable for a concrete programming lan-
guage. First, the arbitrary choice of which goal in the resolvent to reduce,
namely, the scheduling policy, must be specified. Second, the nondeter-
ministic choice of the clause from the program to effect the reduction
must be implemented.

Chapter 6 Pure Prolog

Several logic programming languages exist, reflecting different choices.
Prolog and its extensions (Prolog-11, IC-Prolog, and MU-Prolog, for exam-
ple) are based on sequential execution. Other languages, such as PAR-
LOG, Concurrent Prolog, GHC, Aurora-Prolog, and Andorra-Prolog, are
based on parallel execution. The treatment of nondeterminism distin-
guishes between sequential and parallel languages. The distinction be-
tween Prolog and its extensions is in the choice of goal to reduce.

Prolog's execution mechanism is obtained from the abstract interpreter by
choosing the leftmost goal instead of an arbitrary one and replacing the non-
deterministic choice of a clause by sequential search for a unifiable clause and
backtracking.

In other words, Prolog adopts a stack scheduling policy. It maintains
the resolvent as a stack: pops the top goal for reduction, and pushes the
derived goals onto the resolvent stack.

In addition to the stack policy, Prolog simulates the nondeterministic
choice of reducing clause by sequential search and backtracking. When
attempting to reduce a goal, the first clause whose head unifies with the
goal is chosen. If no unifiable clause is found for the popped goal, the
computation is unwound to the last choice made, and the next unifiable
clause is chosen.

A computation of a goal G with respect to a Prolog program P is the
generation of all solutions of G with respect to P. In terms of logic
programming concepts, a Prolog computation of a goal G is a complete
depth-first traversal of the particular search tree of G obtained by always I

I

choosing the leftmost goal.
Many different Prolog implementations exist with differing syntax and

programming facilities. Recently, there has been an attempt to reach a
Prolog standard based on the Edinburgh dialect of Prolog. At the time of

I

writing, the standard has not been finalized. However a complete draft i
exists, whch we essentially follow. We refer to the Prolog described in
that document as Standard Prolog. The syntax of logic programs that
we have been using fits within Standard Prolog except that we use some
characters not available on a standard keyboard. We give the standard

I
I

equivalent of our special characters. Thus :- should be used instead of - in Prolog programs to separate the head of a clause from its body.
All the programs in this book run (possibly with minor changes) in all
Edinburgh-compatible Prologs.

A trace of a Prolog computation is an extension of the trace of a com-
putation of a logic program under the abstract interpreter as described

father(abraham,isaac) . male(isaac) .
father(haran,lot). male(1ot).
father(haran,milcah). female(yiscah)

f ather(haran, yiscah) . f emale(mi1cah)

son(X,haran)?
f ather(haran,X)
male (lot)

true
Output: X=lot

father(haran,X)
male (milcah) f

no (more) solutions

Figure 6.1 Tracing a simple Prolog computation

in Section 4.2. We revise the computations of Chapters 4 and 5, indicat-
ing the similarities and differences. Consider the query son(X, ha ran)?
with respect to Program 1.2, biblical family relationships, repeated at the
top of Figure 6.1. The computation is given in the bulk of Figure 6.1. It
corresponds to a depth-first traversal of the first of the search trees in
Figure 5.2. It is an extension of the first trace in Figure 4.4, since the
whole search tree is searched.

The notation previously used for traces must be extended to handle
failure and backtracking. An f after a goal denotes that a goal fails, that
is there is no clause whose head unifies with the goal. The next goal af-
ter a failed goal is where the computation continues on backtracking.
It already appears as a previous goal in the trace at the same depth of
indentation and can be identified by the variable names. We adopt the
Edinburgh Prolog convention that a ";" typed after a solution denotes a
continuation of the computation to search for more solutions. Unifica-
tions are indicated as previously.

Trace facilities and answers provided by particular Prolog implementa-
tions vary from our description. For example, some Prolog implementa-
tions always give all solutions, while others wait for a user response after
each solution.

Chapter 6

append([XI Xs] ,Ys, [X I Zs]) - append(Xs ,Ys ,Zs)
append([1 ,Ys,Ys).

append(Xs,Ys, Ca,b,cl) Xs= [al Xsll
append(Xsl,Ys, [b,cl) Xsl= [b l Xs21

append(Xs2,Ys, LC]) Xs2= [c l Xs31
append(Xs3, Ys , [I) Xs3=[1 ,Ys=[I

true
Output: (Xs=[a,b, c] ,Ys= [1)

append(Xs2,Ys, [c]) Xs2= [I ,Ys= [cl
true

Output: (Xs= [a,bl ,Ys= [cl)

append (Xsl , Ys , [b , c] Xsl=C I ,Ys=[b,c]
true

Output: (Xs= [a1 ,Ys= [b, cl)

append(Xs,Ys, [a,b,cl)
true

Output: (Xs=[1 ,Ys=[a,b,cl)

no (more) solutions

Figure 6.2 Multiple solutions for splitting a list

The trace of append ([a , b] , [c , dl , Ls) ? giving the answer Ls= [a , b , c ,
dl is precisely the trace given in Figure 4.3. Figure 4.5, giving the trace
for solving the Towers of Hanoi with three disks, is also a trace of
the hanoi program considered as a Prolog program solving the query
hanoi (s (s (s (0))) , a , b , c , Ms) ?. The trace of a deterministic computa-
tion is the same when considered as a logic program or a Prolog program,
provided the order of goals is preserved.

The next example is answering the query append (Xs , Y s , [a, b, cl > ?
with respect to Program 3.15 for append. There are several solutions of
the query. The search tree for thls goal was given as Figure 5.3. Figure 6 . 2
gives the Prolog trace.

Tracing computations is a good way to gain understanding of the ex-
ecution model of Prolog. We give a slightly larger example, sorting a
list with the quicksort program (Program 3.22, reproduced at the top of
Figure 6.3). Computations using qu ickso r t are essentially deterministic
and show the algorithmic behavior of a Prolog program. Figure 6.3 gives
a trace of the query qu ickso r t ([2 , I ,3] ,Xs)?. Arithmetic comparisons

Pure Prolog

quicksort ([XI XS] ,Ys) -
~artition(xs ,~,~ittles,~igs),
quicksort(Littles,Ls),
quicksort(Bigs,Bs),
append(Ls, [XI BS] ,Ys) .

quicksort ([I , [1 1.
partition([XIXs] ,Y, [X ILsl ,Bs) -

X i Y, partition(Xs,~,Ls,Bs).
partition([XIXs] ,y,Ls, [XIBSI) -

X > Y, partition(Xs,Y,Ls,Bs).
l,Y,C I,[1).

quicksort([2,1,31 ,Qs)
partition([1,31 ,2,Ls,Bs)

1 1 2

partition([31 ,2,Lsl,Bs)
3 5 2 f

partition([31 ,2,Lsl,Bs)
3 > 2
partition([I ,2,Lsl,Bsl)

quicksort ([ll ,Qsl)
 arti it ion([1 ,1 ,Ls2,Bs2)
quicksort ([1 , Qs2)
quicksort ([1 ,Qs3)
append([I , [I] ,Qsl)

quicksort ([31, Qs4)
 arti it ion([I ,3,Ls3,Bs3)
quicksort ([1 , Qs5)
quicksort ([1 , Qs6)
append(C I , Dl, qs4)

append([I] , [2,31 ,Qs)
append([I , [2,31 ,Ys)

true
Output: (QS= [I, 2,31)

Ls= [I I Lsll

Ls3=[l=Bs3
Qs5=[1
qss=r I
4s4= C31
qs= [1 I Ysl
Ys= [2,31

Figure 6.3 Tracing a q u i c k s o r t computation

Chapter 6

are assumed to be unit operations, and the standard program for append
is used.

We introduce a distinction between shallow and deep backtraclung.
Shallow backtracking occurs when the unification of a goal and a clause
fails, and an alternative clause is tried. Deep backtracking occurs when
the unification of the last clause of a procedure with a goal fails, and
control returns to another goal in the computation tree.

It is sometimes convenient to include, for the purpose of this defini-
tion, test predicates that occur first in the body of the clause as part
of unification, and to classif). the backtracking that occurs as a result of
their failure as shallow. An example in Figure 6.3 is the choice of a new
clause for the goal partition (C31 , 2 , Lsl , Bs) .

6.1.1 Exercises for Section 6.1

(i) Trace the execution of daughter (X, haran)? with respect to Pro-
gram 1.2.

(ii) Trace the execution of sort ([3,1,21 , Xs)? with respect to Pro-
gram 3.21.

(iii) Trace the execution of sort ([3,1,21 ,Xs)? with respect to Pro-
gram 3.20.

- - - -- - -- --

6.2 Comparison to Conventional Programming Languages

A programming language is characterized b17 its control and data ma-
nipulation mechanisms. Prolog, as a general-purpose programming lan-
guage, can be discussed in these terms, as are conventional languages.
In this section, we compare the control flow and data manipulation of
Prolog to that of Algol-like languages.

The control in Prolog programs is like that in conventional procedural
languages as long as the computation progresses forward. Goal invoca-
tion corresponds to procedure invocation, and the ordering of goals in
the body of clauses corresponds to sequencing of statements. Specifi-
cally, the clause A -BI,. . .,B, can be viewed as the definition of a pro-
cedure A as follows:

Pure Prolog

procedure A
call B1,
call BZ,

call B,,
end.

Recursive goal invocation in Prolog is similar in behavior and imple-
mentation to that of conventional recursive languages. The differences
show when backtracking occurs. In a conventional language, if a compu-
tation cannot proceed (e.g., all branches of a case statement are false), a
runtime error occurs. In Prolog, the computation is simply undone to the
last choice made, and a different computation path is attempted.

The data structures manipulated by logic programs, terms, correspond
to general record structures in conventional programming languages.
The handling of data structures is very flexible in Prolog. Like Lisp, Prolog
is a declaration-free, typeless language.

The major differences between Prolog and conventional languages in
the use of data structures arise from the nature of logical variables. Log-
ical variables refer to individuals rather than to memory locations. Con-
sequently, having once beed specified to refer to a particular individual,
a variable cannot be made to refer to another individual. In other words,
logic programming does not support destructive assignment where the
contents of an initialized variable can change.

Data manipulation in logic programs is achieved entirely via the unifi-
cation algorithm. Unification subsumes

Single assignment

Parameter passing

Record allocation

Read/write-once field-access in records

We discuss the trace of the quicksort program in Figure 6.3, point-
ing out the various uses of unification. The unification of the initial
goal quicksort ([2,1,31, qs) with the head of the procedure definition
quicksort ([XI Xsl ,Ys) illustrates several features. The unification of
[2,1,31 with the term CX I Xsl achieves record access to the list and also
selection of its two fields, the head and tail.

Chapter 6

The unification of [l ,31 with xs achieves parameter passing to the
p a r t i t i o n procedure, because of the sharing of the variables. T h s gives
the first argument of p a r t i t i o n . Similarly, the unification of 2 with X
passes the value of the second parameter to p a r t i t i o n .

Record creation can be seen with the unification of the goal p a r t i -
t i o n ([I , 33 , 2 , L s , B s) with the head of the partition procedure p a r t i-
t i o n ([X I XS] , z , [X 1 LS ll , BS I) . As a result, L s is instantiated
to [1 I L s l l . Specifically, L s is made into a list and its head is assigned
the value 1 , namely, record creation and field assignment via unifica-
tion.

The recursive algorithm embodied by the qu ickso r t program can
be easily coded in a conventional programming language using linked
lists and pointer manipulation. As discussed, unification is achiev-
ing the effect of the necessary pointer manipulations. Indeed, the ma-
nipulation of logical variables via unification can be viewed as an
abstraction of low-level manipulation of pointers to complex data
structures.

These analogies may provide hints on how to implement Prolog effi-
ciently on a von Neumann machine. Indeed, the basic idea of compilation
of Prolog is to translate special cases of unification to conventional mem-
ory manipulation operations, as specified previously.

Conventional languages typically incorporate error-handling or excep-
tion-handling mechanisms of various degrees of sophstication. Pure Pro-
log does not have an error or exception mechanism built into its defi-
nition. The pure Prolog counterparts of nonfatal errors in conventional
programs, e.g., a missing case in a case statement, or dividing by zero,
cause failure in pure Prolog.

Full Prolog, introduced in the following chapters, includes system
predicates, such as arithmetic and I/O, whch may cause errors.
Current Prolog implementations do not have sophsticated error-
handling mechanisms. Typically, on an error condition, a system pred-
icate prints an error message and either fails or aborts the computa-
tion.

T h s brief discussion of Prolog's different way of manipulating data
does not help with the more interesting question: How does program-
ming in Prolog compare with programming in conventional program-
ming languages? That is the major underlying topic of the rest of this
book

127 Pure Prolog

6.3 Background

The origins of Prolog are shrouded in mystery. All that is known is that
the two founders, Robert Kowalslu, then at Edinburgh, and Alain Colmer-
auer at Marseilles worked on similar ideas during the early 1970% and
even worked together one summer. The results were the formulation of
the logic programming philosophy and computation model by Kowalski
(1974), and the design and implementation of the first logic program-
ming language Prolog, by Colmerauer and his colleagues (1973). Three
recent articles giving many more details about the beginnings of Prolog
and logic programming are Cohen (1988), Kowalski (1988), and Colmer-
auer and Roussel(1993).

A major force behind the realization that logic can be the basis of a
practical programming language has been the development of efficient
implementation techniques, as pioneered by Warren (1977). Warren's
compiler identified special cases of unification and translated them into
efficient sequences of conventional memory operations. Good accounts
of techniques for Prolog implementation, both interpretation and compi-
lation, can be found in Maier and Warren (1988) and Ait-Kaci (1991).

Variations of Prolog with extra control features, such as IC-Prolog
(Clark and McCabe, 1979), have been developed but have proved too
costly in runtime overhead to be seriously considered as alternatives to
Prolog. We will refer to particular interesting variations that have been
proposed in the appropriate sections.

Another breed of logic programming languages, which indirectly
emerged from IC-Prolog, was concurrent logic languages. The first was
the Relational Language (Clark and Gregory, 1981), followed by Concur-
rent Prolog (Shapiro, 1983b), PARLOG (Clark and Gregory, 1984), GHC
(Ueda, 1985), and a few other proposals.

References for the variations mentioned in the text are, for Prolog-
I1 (van Caneghem, 1982), IC-Prolog (Clark et al., 1982), and MU-Prolog
(Naish, 1986). Aurora-Prolog is described in Disz et al. (1987), while a
starting place for reading about AKL, a language emerging from Andorra-
Prolog is Janson and Haridi (199 1).

The syntax of Prolog stems from the clausal form of logic due to
Kowalski (1974). The original Marseilles interpreter used the terminol-
ogy of positive and negative literals from resolution theory. The clause
A - B 1 , . . . , B, was written +A - B1 . . . - B , .

Chapter 6

David H. D. Warren adapted Marseilles Prolog for the DEC-10 at the Uni-
versity of Edinburgh, with help from Fernando Pereira. Their decisions
have been very influential. Many systems adopted most of the conven-
tions of Prolog-10 (Warren et al., 1979), whch has become known more
generically as Edinburgh Prolog. Its essential features are described in
the widespread primer on Prolog (Clocksin and Mellish, 1984). Ths book
follows the description of Standard Prolog existing as Scowen (1991).

A paper by Cohen (1985) delves further into the relation between Pro-
log and conventional languages.

Programming in Pure Prolog

A major aim of logic programming is to enable the programmer to pro-
gram at a hgher level. Ideally one should write axioms that define the
desired relations, maintaining ignorance of the way they are going to
be used by the execution mechanism. Current logic programming lan-
guages, Prolog in particular, are still far away from allowing t h s ideal of
declarative programming. The specific, well-defined choices of how their
execution mechanisms approximate the abstract interpreter cannot be ig-
nored. Effective logic programming requires knowing and utilizing these
choices.

This chapter discusses the consequences of Prolog's execution model
for the logic programmer. New aspects of the programming task are
introduced. Not only must programmers come up with a correct and
complete axiomatization of a relation but they must also consider its
execution according to the model.

7.1 Rule Order

Two syntactic issues, irrelevant for logic programs, are important to con-
sider when composing Prolog programs. The rule order, or clause order,
of clauses in each procedure must be decided. Also the goal order of
goals in the bodies of each clause must be determined. The consequences
of these decisions can be immense. There can be orders of magnitude
of difference in efficiency in the performance of Prolog programs. In ex-
treme though quite common cases, correct logic programs will fail to give
solutions because of nontermination.

Chapter 7

parent(terach,abraham). parent(abraham,isaac).
parent (isaac , jacob) . parent (j acob , benj amin) .

ancestor(X,Y) - parent(X,Y).
ancestor(X,Z) - parent(X,Y), ancestor(Y,Z).

Program 7.1 Yet another family example

The rule order determines the order in which solutions are found.

Changing the order of rules in a procedure permutes the branches
in any search tree for a goal using that procedure. The search tree is
traversed depth-first. So permuting the branches causes a different order
of traversal of the search tree, and a different order of finding solutions.
The effect is clearly seen when using facts to answer an existential query.
With our biblical database and a query such as f a t h e r (X,Y)?, changing
the order of facts will change the order of solutions found by Prolog.
Deciding how to order facts is not very important.

The order of solutions of queries solved by recursive programs is also
determined by the clause order. Consider Program 5.1, a simple bibli-
cal database together with a program for the relationshp ances tor , re-
peated here as Program 7.1.

For the query ances to r (t e r ach ,X)? with respect to Program 7.1, the
solutions will be given in the order, X=abraham, X=isaac, X=jacob, and
X=benjamin. If the rules defining ances to r are swapped, the solutions
will appear in a different order, namely, X=benj amin, X=j acob, X=isaac,
and X=abraham.

The different order of ances to r clauses changes the order of searchng
the implicit family tree. In one order, Prolog outputs solutions as it goes
along. With the other order, Prolog travels to the end of the family tree
and gives solutions on the way back. The desired order of solutions is
determined by the application, and the rule order of ances to r is chosen
accordingly.

Changing the order of clauses for the member predicate (Program 3.12)
also changes the order of search. As written, the program searches the
list until the desired element is found. If the order of the clauses is
reversed, the program always searches to the end of the list. The order
of solutions will also be affected, for example, responding to the query
member (X , [I , 2 ,31) ?. In the standard order, the order of solutions is

Programming in Pure Prolog

intuitive: X = l , X=2, X=3. With the rules swapped, the order is X=3, X=2,
X = l . The order of Program 3.12 is more intuitive and hence preferable.

When the search tree for a given goal has an infinite branch, the or-
der of clauses can determine if any solutions are given at all. Consider
the query append (Xs , Cc , dl , Ys) ? with respect to append. As can be seen
from the search tree in Figure 5.4, no solutions would be given. If, how-
ever, the append fact appeared before the append rule, an infinite number
of pairs X s , Y s satisfying the query would be given.

There is no consensus as to how to order the clauses of a Prolog pro-
cedure. Clearly, the standard dictated in more conventional languages,
of testing for the termination condition before proceeding with the iter-
ation or recursion is not mandatory in Prolog. This is demonstrated in
Program 3.15 for append as well as in other programs in thls book. The
reason is that the recursive or iterative clause tests its applicability by
unification. This test is done explicitly and independently of the other
clauses in the procedure.

Clause order is more important for general Prolog programs than it
is for pure Prolog programs. Other control features, notably the cut to
be discussed in Chapter 11, depend significantly on the clause order.
When such constructs are used, clauses lose their independence and
modularity, and clause order becomes significant.

In this chapter, for the most part, the convention that the recursive
clauses precede the base clauses is adopted.

7.1.1 Exercises for Section 7.1

(i) Verify the order of solutions for the query ances to r (abraham,X)?
with respect to Program 7.1, and its variant with different rule order
for ances tor , claimed in the text.

(ii) What is the order of solutions for the query ances to r (X, benja-
min)? with respect to Program 7.1? What if the rule order for
ances to r were swapped?

7.2 Termination

Prolog's depth-first traversal of search trees has a serious problem. If
the search tree of a goal with respect to a program contains an infinite

Chapter 7

branch, the computation will not terminate. Prolog may fail to find a
solution to a goal, even though the goal has a finite computation.

Nontermination arises with recursive rules. Consider adding a relation-
s h p married (Male,Female) to our database of family relationshps. A
sample fact from the biblical situation is married(abraham,sarah). A
user querying the married relationship should not care whether males
or females are first, as the relationship is commutative. The "obvious"
way of overcoming the commutativity is adding a recursive rule mar-
ried(X ,Y) - married(Y, X). If t h s is added to the program, no com-
putation involving married would ever terminate. For example, the trace
of the query married(abraham, sarah) ? is given in Figure 7.1.

Recursive rules that have the recursive goal as the first goal in the
body are known as left recursive rules. The problematic married axiom
is an example. Left recursive rules are inherently troublesome in Prolog.
They cause nonterminating computations if called with inappropriate
arguments.

The best solution to the problem of left recursion is avoidance. The
married relationship used a left recursive rule to express commutativity.
Commutative relationships are best handled differently, by defining a
new predicate that has a clause for each permutation of the arguments
of the relationship. For the relationship married, a new predicate, are-
married (Person1 , Person2), say, would be defined using two rules:

are-married (X, Y) - married (X, Y) .
are-married(X,Y) - married(Y ,X) .
Unfortunately, it is not generally possible to remove all occurrences of
left recursion. All the elegant minimal recursive logic programs shown
in Chapter 3 are left recursive, and can cause nontermination. However,

married(X,Y) - married(Y,X).
married(abraham,sarah).

married(abraham,sarah)
married(sarah, abraham)

married(abraham,sarah)
married(sarah,abraham)

Figure 7.1 A nonterminating computation

Programming in Pure Prolog

the appropriate analysis, using the concepts of domains and complete
structures introduced in Section 5.2, can determine which queries will
terminate with respect to recursive programs.

Let us consider an example, Program 3.1 5 for appending two lists. The
program for append is everywhere terminating for the set of goals whose
first and/or last argument is a complete list. Any append query whose
first argument is a complete list will terminate. Similarly, all queries
where the third argument is a complete list will terminate. The program
will also terminate if the first and/or third argument is a ground term
that is not a list. The behavior of append is best summed up by consid-
ering the queries that do not terminate, namely, when both the first and
third arguments are incomplete lists that are unifiable.

The condition for when a query to Program 3.12 for member terminates
is also stated in terms of incomplete lists. A query does not terminate if
the second argument is an incomplete list. If the second argument of a
query to member is a complete list, the query terminates.

Another guaranteed means of generating nonterminating computa-
tions, easy to overlook, is circular definitions. Consider the pair of rules

parent (X, Y) - child (Y X) .
child (x, Y) - parent (Y, X) .
Any computation involving parent or child, for example, parent
(haran, lot)?, will not terminate. The search tree necessarily contains
an infinite branch, because of the circularity.

7.2.1 Exercises for Section 7.2

(i) Discuss the termination behavior of both programs in Program 3.13
determining prefixes and suffutes of lists.

(ii) Discuss the termination of Program 3 . 1 4 ~ for sublist

7.3 Goal Order

Goal order is more significant than clause order. It is the principal means
of specifying sequential flow of control in Prolog programs. The pro-
grams for sorting lists, e.g., Program 3.22 for quicksort, exploit goal
order to indicate the sequence of steps in the sorting algorithms.

PROYECTO

Chapter 7

We first discuss goal order from the perspective of database program-
ming. The order of goals can affect the order of solutions. Consider
the query daughter (X, haran) ? with respect to a variant of Program
1.2, where the order of the facts female (milcah) and female (y iscah)
is interchanged. The two solutions are given in the order X=milcah,
X=yiscah. If the goal order of the daughter rule were changed to be
daughter (X, Y) - female (X) , f a t h e r (Y , X) . , the order of the solutions
to the query, given the same database, would be X=yiscah, X=milcah.

The reason that the order of goals in the body of a clause affects
the order of solutions to a query is different from the reason that the
order of rules in a procedure affects the solution order. Changing rule
order does not change the search tree that must be traversed for a given
query. The tree is just traversed in a different order. Changing goal order
changes the search tree.

Goal order determines the search tree.

Goal order affects the amount of searching the program does in solv-
ing a query by determining whch search tree is traversed. Consider the
two search trees for the query son(X, haran) ?, given in Figure 5.2. They
represent two different ways of finding a solution. In the first case, solu-
tions are found by searching for children of haran and checlung if they
are male. The second case corresponds to the rule for son being written
with the order of the goals in its body swapped, namely, son(X,Y) +-

male (X) , parent (Y, X). Now the query is solved by searching through
all the males in the program and checlung if they are chldren of ha-
ran. If there were many male facts in the program, more search would
be involved. For other queries, for example, son(sarah,X)?, the reverse
order has advantages. Since sa rah is not male, the query would fail more
quickly.

The optimal goal order of Prolog programs varies with different uses.
Consider the definition of grandparent . There are two possible rules:

grandparent (X, Z) - parent (X,Y) , parent (Y 9 Z, .
(X, Z) - paren t (Y, Z) , 7 Y, .

If you wish to find someone's grandson with the g randfa the r relation-
ship with a query such as grandparent(abraham,X)?, the first of the
rules searches more directly. If looking for someone's grandparent with

Programming in Pure Prolog

a query such as grandparent (X, i s aac) ?, the second rule finds the solu-
tion more directly. If efficiency is important, then it is advisable to have
two distinct relationshps, grandparent and grandchild, to be used ap-
propriately at the user's discretion.

In contrast to rule order, goal order can determine whether computa-
tions terminate. Consider the recursive rule for ances tor :

ances to r (X, Y) +- parent (X, Z) , ances tor (Z, Y) .

If the goals in the body are swapped, the ances to r program becomes
left recursive, and all Prolog computations with ances to r are nontermi-
nating.

The goal order is also important in the recursive clause of the quicksort
algorithm in Program 3.22:

qu ickso r t ([X 1 Xsl , Ys) -
p a r t i t i ~ n (X ~ , X , L i t t l e s ,B igs) ,
qu ickso r t (L i t t l e s , L s) ,
qu ickso r t (Bigs ,Bs) ,
append(Ls, [X 1 B s l ,Ys) .

The list should be partitioned into its two smaller pieces before recur-
sively sorting the pieces. If, for example, the order of the p a r t i t i o n goal
and the recursive sorting goal is swapped, no computations terminate.

We next consider Program 3.16a for reversing a list:

r e v e r s e ([I , [I) .
reverse ([X (X s] , Zs) - r eve r se (XS , Ys) , append (Ys, [XI ,Zs) -
The goal order is significant. As written, the program terminates with
goals where the first argument is a complete list. Goals where the first
argument is an incomplete list give nonterminating computations. If the
goals in the recursive rule are swapped, the determining factor of the ter-
mination of r eve r se goals is the second argument. Calls to r eve r se with
the second argument a complete list terminate. They do not terminate if
the second argument is an incomplete list.

A subtler example comes from the definition of the predicate sub-
l i s t in terms of two append goals, specifying the sublist as a suf-
fur of a prefuc, as given in Program 3.14e. Consider the query sub-
l i s t ([2,31 , [I , 2 ,3 ,41) ? with respect to the program. The query is
reduced to append(AsXs ,Bs, [I , 2 ,3 ,41) , append(As, [2,3l ,AsXs)?.

Chapter 7 Programming in Pure Prolog

This has a finite search tree, and the initial query succeeds. If Pro-
gram 3.14e had its goals reversed, the initial query would be reduced
to append (As, [2,3] , AsXs) ,append (AsXs , Bs , [I , 2,3,41 I? . This leads
to a nonterrninating computation because of the first goal, as illustrated
in Figure 5.4.

A useful heuristic for goal order can be given for recursive programs
with tests such as arithmetic comparisons, or determining whether two
constants are different. The heuristic is to place the tests as early as
possible. An example comes in the program for partition, which is part
of Program 3.22. The first recursive rule is

The test X I Y should go before the recursive call. This leads to a
smaller search tree.

In Prolog programming (in contrast, perhaps, to life in general) our goal
is to fail as quickly as possible. Failing early prunes the search tree and
brings us to the right solution sooner.

7.3.1 Exercises for Section 7.3

(i) Consider the goal order for Program 3.14e defining a sublist of
a list as a suffix of a prefix. Why is the order of the append
goals in Program 3.14e preferable? (Hint: Consider the query sub-

I
list (Xs, [a,b, cl) ? . I I

!
(ii) Discuss the clause order, goal order, and termination behavior for I

substitute, posed as Exercise 3 .W.
I

I
Redundant Solutions

An important issue when composing Prolog programs, irrelevant for
logic programs, is the redundancy of solutions to queries. The mean-
ing of a logic program is the set of ground goals deducible from it. No
distinction is made between whether a goal in the meaning could be
deduced uniquely from the program, or whether it could be deduced
in several distinct ways. This distinction is important for Prolog when
considering the efficiency of searchng for solutions. Each possible de-

duction means an extra branch in the search tree. The bigger the search
tree, the longer a computation will take. It is desirable in general to keep
the size of the search tree as small as possible.

Having a redundant program may cause, in an extreme case, exponen-
tial increase in runtime, in the event of backtraclung. If a conjunction of
n goals is solved, and each goal has one redundant solution, then in the
event of backtraclung, the conjunction may generate Zn solutions, thus
possibly changing a polynomial-time program (or even a linear one) to be
exponential.

One way for redundancy to occur in Prolog programs is by covering the
same case with several rules. Consider the following two clauses defining
the relation minimum.

The query minimum(2,2,M)? with respect to these two clauses has a
unique solution M=2, which is given twice; one is redundant.

Careful specification of the cases can avoid the problem. The second
clause can be changed to

Now only the first rule covers the case when the two numbers have equal
values.

Similar care is necessary with the definition of partition as part of
Program 3.22 for quicksort. The programmer must ensure that only one
of the recursive clauses for partition covers the case when the number
being compared is the same as the number being used to split the list.

Another way redundancy appears in programs is by having too many
special cases. Some of these can be motivated by efficiency. An extra fact
can be added to Program 3.15 for append, namely, append(Xs, [I ,Xs),
to save recursive computations when the second argument is an empty
list. In order to remove redundancy, each of the other clauses for append
would have to cover only lists with at least one element as their second
argument.

We illustrate these points when composing Program 7.2 for the relation
merge (Xs ,Ys , Zs), which is true if Xs and Ys are lists of integers sorted in
ascending order and Zs is the ordered list resulting from merging them.

Chapter 7

merge(Xs,Ys,Zs) -
Z s is an ordered list of integers obtained from
merging the ordered lists of integers Xs and Ys.

merge(CXIXsl,CYlYsl,CXIZsl) -
X < Y , merge(Xs,[YIYsl ,Zs).

merge(CXIXsl,[YIYsl,[X,XIZsl) -
X =:= Y , merge(Xs,Ys,Zs).

merge([XlXsl,[YIYsl,[YIZsl) -
X > Y , merge([XIXsl ,Ys,Zs).

merge([I , CXIXsl, [XIXsl).
merge(Xs, [I ,Xs).

Program 7.2 Merging ordered lists

There are three separate recursive clauses. They cover the three pos-
sible cases: when the head of the first list is less than, equal to, or
greater than the head of the second list. We discuss the predicates <,
=:=, and > in Chapter 8. Two cases are needed when the elements in ei-
ther list have been exhausted. Note that we have been careful that the
goal merge (C 1 , [1 , [I) is covered by only one fact, the bottom one.

Redundant computations occur when using member to find whether
a particular element occurs in a particular list, and there are multiple
occurrences of the particular element being checked for in the list. For
example, the search tree for the query member (a, [a, b , a, cl) would have
two success nodes.

The redundancy of previous programs was removed by a careful con-
sideration of the logic. In t h s case, the member program is correct. If we
want a different behavior, the solution is to compose a modified version
of member.

Program 7.3 defines the relation member-check (X , Xs) whch checks
whether an element X is a member of a list Xs. The program is a vari-
ant of Program 3.12 for member that adds a test to the recursive clause.
It has the same meaning but, as a Prolog program, it behaves differ-
ently. Figure 7.2 shows the difference between the search trees for the
identical query to the two programs. The left tree is for the goal mem-
ber (a, [a, b , a, cl) with respect to Program 3.12. Note there are two suc-
cess nodes. The right tree is for the goal member-check(a, Ca,b,a,cl)
with respect to Program 7.3. It has only one success node.

Programming in Pure Prolog

member-check (X,Xs) -
X is a member of the list Xs.

member-check(X, [X 1 Xs1) .
member-check()(, [Y IYsl) - X # Y , member-check(X,Ys) .

Program 7.3 Checking for list membership

Figure 7.2 Variant search trees

We restrict use of Program 7.3 to queries where both arguments are
ground. This is because of the way # is implemented in Prolog, discussed
in Section 11.3.

p- -- --

7.5 Recursive Programming in Pure Prolog

Lists are a very useful data structure for many applications written in
Prolog. In this section, we revise several logic programs of Sections 3.2
and 3.3 concerned with list processing. The chosen clause and goal or-
ders are explained, and their termination behavior presented. The section
also discusses some new examples. Their properties are analyzed, and a
reconstruction offered of how they are composed.

C h a p t e r 7

select-first (X,Xs, Y s) -
Y s is the list obtained by removing the
first occurrence of X from the list Xs.

s e l e c t - f i r s t (X , [X IXs] ,Xs) .
select-first(X,[Y1Ysl,[YIZsl) -

X f Y , s e l e c t - f i r s t (X , Y s , Zs) .

Program 7.4 Selecting the first occurrence of an element from a list

Programs 3.12 and 3.1 5 for member and append, respectively, are cor-
rect Prolog programs as written. They are both minimal recursive pro-
grams, so there is no issue of goal order. They are in their preferred
clause order, the reasons for whch have been discussed earlier in this
chapter. The termination of the programs was discussed in Section 7.2.

Program 3.19 for select is analogous to the program for member:

select (X, [XI Xsl ,Xs) .
select(X, [YIYS], [YIZsl) - select(X,YsyZs).
The analysis of select is similar to the analysis of member. There is no
issue of goal order because the program is minimal recursive. The clause
order is chosen to reflect the intuitive order of solutions to queries such
as select (X, [a,b, cl ,Xs), namely, {X=a,Xs=[b,c] 1 , {X=b,Xs=Ca,cll,
{X=c , Xs= [a, b] }. The first solution is the result of choosing the first
element, and so forth. The program terminates unless both the second
and third arguments are incomplete lists.

A variant of select is obtained by adding the test X # Y in the recur-
sive clause. As before, we assume that # is only defined for ground argu-
ments. The variant is given as Program 7.4 defining the relation select-
first(X,Xs,Ys). Programs 3.12 and 7.3 defining member and member-
check have the same meaning. Program 7.4, in contrast, has a different
meaning from Program 3.19. The goal select (a, [a,b,a,cl , [a,b, cl) is
in the meaning of select, whereas select-first(a, [a,b,a,cl , Ca,b,
cl) is not in the meaning of select-f irst.

The next program considered is Program 3.20 for permutation. The
order of clauses, analogously to the clause order for append, reflects the
more likely mode of use:

permutation(Xs, [XI Ys]) - select (X,Xs ,Zs) , permutation(~s,Ys).
permutation([I , [I).

P r o g r a m m i n g i n Pure Prolog

n o n m e m b e r (X,Xs) -
X is not a member of the list Xs.

nonmember (X , [Y I Ys l) - X f Y , nonmember (X ,Ys) .
nonmember (X , C 1) .

Program 7.5 Nonrnembershp of a list

The goal order and the termination behavior of permutation are closely
related. Computations of permutation goals where the first argument
is a complete list will terminate. The query calls select with its sec-
ond argument a complete list, whch terminates generating a complete
list as its third argument. Thus there is a complete list for the recur-
sive permutation goal. If the first argument is an incomplete list, the
permutation query will not terminate, because it calls a select goal
that will not terminate. If the order of the goals in the recursive rule
for permutation is swapped, the second argument of a permutation
query becomes the significant one for determining termination. If it
is an incomplete list, the computation will not terminate; otherwise it
will.

A useful predicate using # is nonmember (X, Ys) which is true if X is not
a member of a list Ys. Declaratively the definition is straightforward: An
element is a nonmember of a list if it is not the head and is a nonmember
of the tail. The base case is that any element is a nonmember of the
empty list. Ths program is given as Program 7.5.

Because of the use of f , nonmember is restricted to ground instances.
This is sensible intuitively. There are arbitrarily many elements that are
not elements of a given list, and also arbitrarily many lists not containing
a given element. Thus the behavior of Program 7.5 with respect to these
queries is largely irrelevant.

The clause order of nonmember follows the convention of the recursive
clause preceding the fact. The goal order uses the heuristic of putting the
test before the recursive goal.

We reconstruct the composition of two programs concerned with the
subset relation. Program 7.6 defines a relation based on Program 3.12
for member, and Program 7.7 defines a relation based on Program 3.19
for select. Both consider the occurrences of the elements of one list in
a second list.

Chapter 7

members(Xs,Ys) -
Each element of the list X s is a member of the list Ys.

members([X 1 Xs] ,Ys) - member (X ,Ys) , members (XS ,Ys) .
members([1 ,Ys).

Program 7.6 Testing for a subset

selects(Xs,Ys) -
The list Xs is a subset of the list Ys.

select(X,Ys,Zs) - See Program 3.19.

Program 7.7 Testing for a subset

Program 7.6 defining members(Xs ,Ys) ignores the multiplicity of ele-
ments in the lists. For example, members ([b , b] , [a, b , c] is in the mean-
ing of the program. There are two occurrences of b in the first list, but
only one in the second.

Program 7.6 is also restrictive with respect to termination. If either
the first or the second argument of a members query is an incomplete
list, the program will not terminate. The second argument must be a
complete list because of the call to member, whde the first argument
must also be complete, since that is providing the recursive control. The
query members (Xs , [I, 2,31) ? aslung for subsets of a given set does not
terminate. Since multiple copies of elements are allowed in Xs, there
are an infinite number of solutions, and hence the query should not
terminate.

Both these limitations are avoided by Program 7.7. The revised relation
is selects(Xs,Ys). Goals in the meaning of Program 7.7 have at most
as many copies of an element in the first list as appear in the second.
Related to this property, Program 7.7 terminates whenever the second
argument is a complete list. A query such as selects (Xs, [a, b, cl > has
as solution all the subsets of a given set.

We now consider a different example: translating a list of English
words, word for word, into a list of French words. The relation is trans-
late(Words ,Mots), where Words is a list of English words and Mots the
corresponding list of French words. Program 7.8 performs the trans-

Programming in Pure Prolog

translate(Words,Mots) -
Mots is a list of French words that is the
translation of the list of English words Words.

translate ([Word I Words] , [Mot I Mots]) -
dict(Word,Mot), translate(Words,Mots).

translate([: I , [1).

dict (the, le) . dict(dog,chien)
dict(chases,chasse). dict(cat,chat).

Program 7.8 Translating word for word

lation. It assumes a dictionary of pairs of corresponding English and
French words, the relation scheme being dict (Word, Mot). The trans-
lation is very naive, ignoring issues of number, gender, subject-verb
agreement, and so on. Its range is solving a query such as trans-
late ([the, dog, chases, the, cat1) , X) ? with solution X= [le, chien,
chasse, le, chat]. Ths program can be used in multiple ways. English
sentences can be translated to French, French ones to English, or two
sentences can be checked to see if they are correct mutual translations.

Program 7.8 is a typical program performing m a p p i n g , that is, convert-
ing one list to another by applying some function to each element of the
list. The clause order has the recursive rule(s) first, and the goal order
calls dict first, so as not to be left recursive.

We conclude this section with a discussion of the use of data structures
in Prolog programs. Data structures are handled somewhat differently in
Prolog than in conventional programming languages. Rather than having
a global structure, all parts of whlch are accessible, the programmer
specifies logical relations between various substructures of the data.

Talung a more procedural view, in order to build and modify struc-
tures, the Prolog programmer must pass the necessary fields of the struc-
ture to subprocedures. These fields are used and/or acquire values dur-
ing the computation. Assignment of values to the structures happens via
unification.

Let us look more closely at a generic example - producing a single
output from some given input. Examples are the standard use of ap-
pend, joining two lists together to get a thlrd, and using Program 7.8 to
translate a list of English words into French. The computation proceeds
recursively. The initial call instantiates the output to be an incomplete

Chapter 7

list [X I Xsl . The head X is instantiated by the call to the procedure, often
in unification with the head of the clause. The tail Xs is progressively in-
stantiated whle solving the recursive call. The structure becomes fully
instantiated with the solution of the base case and the termination of the
computation.

Consider appending the list [c, dl to the list [a, bl , as illustrated
in Figure 4.3. The output Ls= [a, b, c ,dl is constructed in stages, as
Ls= [a I Zsl , Zs= [blZsl] , and finally Zs1= [c, dl, when the base fact of
append is used. Each recursive call partially instantiates the originally in-
complete list. Note that the recursive calls to append do not have access
to the list being computed. This is a t o p - d o w n construction of recursive
structures and is typical of programming in Prolog.

The top-down construction of recursive data structures has one limi-
tation. Pieces of the global data structure cannot be referred to deeper
in the computation. This is illustrated in a program for the relation no-
doubles (XXs , Xs), which is true if Xs is a list of all the elements appear-
ing in the list XXs with all duplicates removed.

Consider trying to compose no-doubles top-down. The head of the
recursive clause will be

no-doubles ([X I Xsl , . . .) -
where we need to fill in the blank. The blank is filled by calling no-
doubles recursively on Xs with output Ys and integrating Ys with X. If
X has not appeared in the output so far, then it should be added, and the
blank will be [X/Ysl. If X has appeared, then it should not be added and
the blank is Ys. This cannot be easily said. There is no way of knowing
what the output is so far.

A program for no-doubles can be composed by thinlung differently
about the problem. Instead of determining whether an element has al-
ready appeared in the output, we can determine whether it will appear.
Each element X is checked to see if it appears again in the tail of the list
Xs. If X appears, then the result is Ys, the output of the recursive call to
no-doubles. If X does not appear, then it is added to the recursive result.
This version of no-doubles is given as Program 7.9. It uses Program 7.5
for nonmember.

A problem with Program 7.9 is that the list without duplicates may not
have the elements in the desired order. For example, no-doubles ([a, b,
c , bl , Xs) ? has the solution Xs= [a, c , bl , where the solution Xs= [a, b , cl

Programming in Pure Prolog

no-doubles(Xs,Ys) -
Ys is the list obtained by removing
duplicate elements from the list Xs.

no-doubles ([X 1 Xsl , Ys) -
member(X,Xs), no-doubles(Xs,Ys).

no-doubles ([X 1 Xsl , [X I YS]) -
nonmember(X,Xs), no-doubles(Xs,Ys).

no-doubles([1 , [1).

nonmember (X ,Xs) - See Program 7.5.

Program 7.9 Removing duplicates from a list

may be preferred. This latter result is possible if the program is rewrit-
ten. Each element is deleted from the remainder of the list as it is found.
In terms of Program 7.9, this is done by replacing the two recursive calls
by a rule

no-doubles ([X I Xs] , [X I Ys]) -
delete(X,Xs,Xsl), no-doubles(Xs1,Ys).

The new program builds the output top-down. However, it is inefficient
for large lists, as will be discussed in Chapter 13. Briefly, each call to
delete rebuilds the whole structure of the list.

The alternative to building structures top-down is building them
bottom-up. A simple example of bottom-up construction of data struc-
tures is Program 3.16b for reversing a list:

reverse (Xs ,Ys) - reverse (XS, [: 1 , Ys)

reverse ([X 1 Xs] ,Revs, Ys) - reverse (Xs , [X 1 ~ e v s l , Ys) .
reverse([I ,Ys,Ys).

An extra argument is added to reverse/2 and used to accumulate the
values of the reversed list as the computation proceeds. This procedure
for reverse builds the output list bottom-up rather than top-down. In
the trace in Figure 7.3 solving the goal reverse ([a, b , cl , Xs) , the suc-
cessive values of the middle argument of the calls to reverse/3 [I ,
[a], [b , a1 , and [c , b , a1 represent the structure being built.

A bottom-up construction of structures allows access to the partial
results of the structure during the computation. Consider a relation nd-
reverse(Xs,Ys) combining the effects of no-doubles and reverse. The

Chapter 7

reverse(Ca,b,cl ,Xs)
reverse([a,b, cl , [1 ,Xs)

reverse([b,c] , [a] ,Xs)
reverse ([cl , [b , a1 ,Xs)

reverse([I , Cc,b,al ,Xs) Xs=[c,b,al
true

Figure 7.3 Tracing a reverse computation

nd-reverse (Xs, Ys) -
Ys is the reversal of the list obtained by
removing duplicate elements from the list Xs.

nd-reverse(Xs,Ys) - nd-reverse(xs,[1 ,Ys).
nd-reverse([XI Xs] ,Revs ,Ys) -

mernber(X,Revs), nd-reverse(Xs,Revs,Ys).
nd-reverse([XI Xs] ,Revs ,Ys) -

nonmember(X ,Revs) , nd-reverse(Xs, [XI ~ e v s] ,Ys).

nd-reverse([1 ,Ys,Ys) .

nonmember (X ,XS) - See Program 7.5.

Program 7.10 Reversing .with no duplicates

meaning of nd-reverse is that Ys is a list of elements in Xs in reverse or-
der and with duplicates removed. Analogously to reverse, nd-reverse
calls nd_reverse/3 with an extra argument that builds the result bottom-
up. This argument is checked to see whether a particular element ap-
pears, rather than checking the tail of the list as in Program 7.9 for
no-doubles. The program is given as Program 7.10.

We emphasize the characteristics of bottom-up construction illus-
trated here. One argument behaves as an accumulator of the final data
structure. It is augmented in the recursive call, so that the more complex
version is in the body of the clause rather than in its head. T h s contrasts
with top-down construction, where the more complex version of the data
structure being built is in the head of the clause. Another argument is
used solely for returning the output, namely, the final value of the ac-
cumulator. It is instantiated with the satisfaction of the base fact. The
argument is explicitly carried unchanged in the recursive call.

The technique of adding an accumulator to a program can be general-
ized. It is used in Chapter 8 discussing Prolog programs for arithmetic.

147 P r o g r a m m i n g in Pure Prolog

Accumulators can also be viewed as a special case of incomplete data
structures, as is discussed in Chapter 15.

7.5.1 Exercise for Section 7.5

(i) Write Program 7.9 for no-doubles, building the structure bottom-
UP.

7.6 Background

Prolog was envisaged as a first approximation to logic programming,
whch would be superseded by further research. Its control has always
been acknowledged as being limited and naive. An oft-cited slogan, cred-
ited to Kowalslu (1979b), is "Algorithm = Logic + Control." The particular
control provided in pure Prolog was intended as just one solution on the
path to declarative programming and intelligent control. Time has shown
otherwise. The control of Prolog has proven adequate for a large range of
applications, and the language has not only endured but has blossomed.

Nonetheless, logic programming researchers have investigated other
forms of control. For example, LOGLISP (Robinson and Sibert, 1982) has
breadth-first traversal of the search tree, and IC-Prolog (Clark and Mc-
Cabe, 1979) has co-routining. MU-Prolog (Naish, 1986) allows suspension
to provide a correct implementation of negation and to prevent the com-
putation from searchmg infinite branches in certain cases. Wait declara-
tions are generated (Naish, 1985b) that are related to the conditions on
termination of Prolog programs given in Section 7.2.

A methodology for systematically constructing simple Prolog pro-
grams is given in Deville (1990). Essential to Deville's methods are
specifications, a subject touched upon in Section 13.3.

Analysis of Prolog programs, and logic programs more generally, has
become a hot topic of research. Most analyses are based on some form of
abstract interpretation, a topic beyond the scope of this book. The initial
work in Prolog can be found in Mellish (1985), and a view of leading
research groups can be found in a special issue of the Journal of Logic
Programming (1993).

Extensive work has also appeared recently on analyzing termination of
Prolog programs. A starting place for thls topic is Pliimer (1990).

Arithmetic

The logic programs for performing arithmetic presented in Section 3.1
are very elegant, but they are not practical. Any reasonable computer
provides very efficient arithmetic operations directly in hardware, and
practical logic programming languages cannot afford to ignore thls fea-
ture. Computations such as addition take unit time on most computers
independent of the size of the addends (as long as they are smaller than
some large constant). The recursive logic program for p lus (Program 3.3)
takes time proportional to the first of the numbers being added. This
could be improved by switching to binary or decimal notation but still
won't compete with direct execution by dedicated hardware.

Every Prolog implementation reserves some predicate names for
system-related procedures. Queries to these predicates, called system
predicates, are handled by special code in the implementation in contrast
to calls to predicates defined by pure Prolog programs. A Prolog imple-
mentor should build system predicates that complement pure Prolog
naturally and elegantly. Other names for system predicates are evaluable
predicates, builtin predicates, or bips, the latter two being referred to in
the draft for Standard Prolog.

8.1 System Predicates for Arithmetic

The role of the system predicates for arithmetic introduced in Prolog is
to provide an interface to the underlying arithmetic capabilities of the
computer in a straightforward way. The price paid for t h s efficiency is

Chapter 8

that some of the machne-oriented arithmetic operations are not as gen-
eral as their logical counterparts. The interface provided is an arithmetic
evaluator, whch uses the underlying arithmetic facilities of the com-
puter. Standard Prolog has a system predicate is (Value ,Expression)
for arithmetic evaluation. Goals with the predicate is are usually written
in binary infix form, talung advantage of the operator facility of Prolog,
about whch we now digress.

Operators are used in order to make programs more readable. People
are very flexible and learn to adjust to strange surroundings-they can
become accustomed to reading Lisp and Fortran programs, for example.
We believe nonetheless that syntax is important; the power of a good
notation is well known from mathematics. An integral part of a good
syntax for Prolog is the ability to specify and use operators.

Operators, for example # and <, have already been used in earlier
chapters. Standard Prolog provides several operators, whch we intro-
duce as they arise. Programmers can also define their own operators
using the built-in predicate op/3. An explanation of the mechanism for
operator declarations, together with a list of pre-defined operators and
their precedences is given in Appendix B.

Queries using the arithmetic evaluator provided by Prolog have the
form Value is Expression?. Queries to the evaluator are interpreted
as follows. The arithmetic expression Expression is evaluated and the
result is unified with Value. Once arithmetic evaluation succeeds, the
query succeeds or fails depending on whether unification succeeds or
fails.

Here are some examples of simple addition, illustrating the use and
behavior of the evaluator. The query (X is 3+5)? has the solution X=8.
T h s is the standard use of the evaluator, instantiating a variable to the
value of an arithmetic expression. The query (8 is 3+5)? succeeds. Hav-
ing both arguments to is instantiated allows checlung the value of an
arithmetic expression. (3+5 is 3+5)? fails because the left-hand argu-
ment, 3+5, does not unify with 8, the result of evaluating the expression.

Standard Prolog specifies a range of arithmetic operations that should
be supported by Prolog for both integers and reals represented as
floating-point numbers. In particular, the evaluator provides for addi-
tion, subtraction, multiplication, and division (+, -, *, /) with their usual
mathematical precedences. In this book, we restrict ourselves to integer
arithmetic.

Arithmetic

What happens if the term to be evaluated is not a valid arithmetic ex-
pression? An expression can be invalid for one of two reasons, whlch
should be treated differently, at least conceptually. A term such as
3+x for a constant x cannot be evaluated. In contrast, a term 3+Y
for a variable Y may or may not be evaluable, depending on the value
of Y.

The semantics of any logic program is completely defined, and, in this
sense, logic programs cannot have runtime "errors." For example, the
goal X is 3+Y has solutions {X=3, Y=O}. However, when interfacing logic
programs to a computer, the limitations of the machne should be taken
into account. A runtime error occurs when the machine cannot determine
the result of the computation because of insufficient information, that
is, uninstantiated variables. Ths is distinct from goals that simply fail.
Extensions to Prolog and other logic languages handle such "errors" by
suspending until the values of the concerned variables are known. The
execution model of Prolog as introduced does not permit suspension.
Instead of simply failure, we say an error condition occurs.

The query (X is 3+x)? fails because the right-hand argument cannot
be evaluated as an arithmetic expression. The query (X is 3+Y)? is an
example of a query that would succeed if Y were instantiated to an arith-
metic expression. Here an error condition should be reported.

A common misconception of beginning Prolog programmers is to re-
gard is as taking the place of assignment as in conventional program-
ming languages. It is tempting to write a goal such as (N is N+I). This
is meaningless. The goal fails if N is instantiated, or causes an error if N
is a variable.

Further system predicates for arithmetic are the comparison operators.
Instead of the logically defined <, I (written = <), >, 2 (written > =),
Prolog directly calls the underlying arithmetic operations. We describe
the behavior of <; the others are virtually identical. To answer the query
(A < B)?, A and B are evaluated as arithmetic expressions. The two
resultant numbers are compared, and the goal succeeds if the result of
evaluating A is less than the result of evaluating B. Again, if A or B is not
an arithmetic expression, the goal will fail, and an error condition should
result if A or B are not ground.

Here are some simple examples. The query (1 < 2)? succeeds, as
does the query (3-2 < 2*3+1)?. On the other hand, (2 < I)? fails, and
(N < 1) ? generates an error when N is a variable.

Chapter 8

Tests for equality and inequality of values of arithmetic expressions
are implemented via the builtin predicates =: = and =/=, which evaluate
both of their arguments and compare the resulting values.

8.2 Arithmetic Logic Programs Revisited

Performing arithmetic via evaluation rather than logic demands a recon-
sideration of the logic programs for arithmetic presented in Section 3.1.
Calculations can certainly be done more efficiently. For example, finding
the minimum of two numbers can use the underlying arithmetic com-
parison. The program syntactically need not change from Program 3.7.
Similarly, the greatest common divisor of two integers can be computed
efficiently using the usual Euclidean algorithm, given as Program 8.1.
Note that the explicit condition J > 0 is necessary to avoid multiple
solutions when J equals 0 and errors from calling mod with a zero ar-
gument.

Two features of logic programs for arithmetic are missing from their
Prolog counterparts. First, multiple uses of programs are restricted. Sup-
pose we wanted a predicate p l u s (X ,Y, Z) that performed as before, built
using i s . The obvious definition is

This works correctly if X and Y are instantiated to integers. However,
we cannot use the same program for subtraction with a goal such as
p l u s (3, X , 8) ?, which raises an error condition. Meta-logical tests are
needed if the same program is to be used for both addition and sub-
traction. We defer this until meta-logical predicates are introduced in
Chapter 10.

Programs effectively become specialized for a single use, and it is
tricky to understand what happens when the program is used differently.

greatest~common~divisor (X , Y,Z) -
Z is the greatest common divisor of the integers X and Y

greatest~common~divisor(I,O,I).
greatest~common~divisor(I,J,Gcd) -

J > 0 , R is I mod J , g r e a t e s t ~ c o m m o n ~ d i v i s o r (~ , ~ , ~ ~ d) .

Program 8.1 Computing the greatest common divisor of two integers

Arithmetic

factorial (N,F) -
F is the integer N factorial.

factorial(N,F) -
N > 0 , N1 is N-1, factorial(Nl,Fl), F is N*Fl.

factorial(0,l).

Program 8.2 Computing the factorial of a number

Program 3.7 for minimum, for example, can be used reliably only for find-
ing the minimum of two integers.

The other feature missing from Prolog programs for arithmetic is the
recursive structure of numbers. In logic programs, the structure is used
to determine whch rule applies, and to guarantee termination of compu-
tations. Program 8.2 is a Prolog program for computing factorials closely
corresponding to Program 3.6. The recursive rule is more clumsy than
before. The first argument in the recursive call of f a c t o r i a l must be cal-
culated explicitly rather than emerging as a result of unification. Further-
more, the explicit condition determining the applicability of the recursive
rule, N > 0, must be given. This is to prevent nonterminating computa-
tions with goals such as f a c t o r i a l (-1 ,N)? or even f a c t o r i a l (3 , F) ? .
Previously, in the logic program, unification with the recursive structure
prevented nonterminating computations.

Program 8.2 corresponds to the standard recursive definition of the
factorial function. Unlike Program 3.6, the program can be used only to
calculate the factorial of a given number. A f a c t o r i a l query where the
first argument is a variable will cause an error condition.

We must modify the concept of correctness of a Prolog program to
accommodate behavior with respect to arithmetic tests. Other system
predicates that generate runtime "errors" are handled similarly. A Prolog
program is totally correct over a domain D of goals if for all goals in D
the computation terminates, does not produce a runtime error, and has
the correct meaning. Program 8.2 is totally correct over the domain of
goals where the first argument is an integer.

8.2.1 Exercisesfor Section8.2

(i) The Nth triangular number is the sum of the numbers up to and in-
cluding N. Write a program for the relation t r i a n g l e (N,T), where
T is the Nth triangular number. (Hint: Adapt Program 8.2.)

PROYECTO

Chapter 8

(ii) Write a Prolog program for power(X,N,V), where V equals xN.

Whch way can it be used? (Hint: Model it on Program 3.5 for exp.)

(iii) Write Prolog programs for other logic programs for arithmetic given
in the text and exercises in Section 3.1.

(iv) Write a Prolog program to generate a Huffman encoding tree from a
list of symbols and their relative frequencies.

8.3 Transforming Recursion into Iteration

In Prolog there are no iterative constructs as such, and a more general
concept, namely recursion, is used to specify both recursive and iterative
algorithms. The main advantage of iteration over recursion is efficiency,
mostly space efficiency. In the implementation of recursion, a data struc-
ture (called a stack frame) has to be maintained for every recursive call
that has not terminated yet. A recursive computation involving n recur-
sive procedure calls would require, therefore, space linear in n. On the
other hand, an iterative program typically uses only a constant amount
of memory, independent of the number of iterations.

Nevertheless, there is a restricted class of recursive programs that cor-
responds quite closely to conventional iterative programs. Under some
conditions, explained further in Section 11.2 on tail recursion optimiza-
tion, such Prolog programs can be implemented with almost the same
efficiency as iterative programs in conventional languages. For t h s rea-
son, it is preferable to express a relation using an iterative program, if
possible. In this section, we show how recursive programs can be made
iterative using accumulators.

Recall that a pure Prolog clause is iterative if it has one recursive call
in the body. We extend t h s notion to full Prolog, and allow zero or
more calls to Prolog system predicates before the recursive call. A Prolog
procedure is iterative if it contains only unit clauses and iterative clauses.

Most simple arithmetic calculations can be implemented by iterative
programs.

Factorials can be computed, for example, in a loop where the numbers
up to the desired factorial are multiplied together. A procedure in a

Arithmetic

f a c t o r i a l (N) ;
I i s 0 ; T i s 1 ;
while I < N do

I i s 1 + 1 ; T i s T * I end;
r e tu rn T.

Figure 8.1 Computing factorials iteratively

factorial (N,F) -
F is the integer N factorial.

Program 8.3 An iterative factorial

Pascal-like language using a while loop is given in Figure 8.1. Its iterative
behavior can be encoded directly in Prolog with an iterative program.

Prolog does not have storage variables, whlch can hold intermediate
results of the computation and be modified as the computation pro-
gresses. Therefore, to implement iterative algorithms, whch require the
storage of intermediate results, Prolog procedures are augmented with
additional arguments, called accumulators. Typically, one of the interme-
diate values constitutes the result of the computation upon termination
of the iteration. Ths value is unified with the result variable using the
unit clause of the procedure.

This technique is demonstrated by Program 8.3, which is a Prolog def-
inition of f a c t o r i a l that mirrors the behavior of the while loop in Fig-
ure 8.1. It uses f a c t o r i a l (I ,N,T, F) , which is true if F is the value of N
factorial, and I and T are the values of the corresponding loop variables
before the (I+l) th iteration of the loop.

The basic iterative loop is performed by the iterative procedure f ac to-
r i a l / 4 . Each reduction of a goal using f a c t o r i a l / 4 corresponds to an
iteration of the while loop. The call of f a c t o r i a l / 4 by f a c t o r i a l / 2 cor-
responds to the initialization stage. The first argument of f a c t o r i a l / 4 ,
the loop counter, is set to 0.

PROYECTO

Chapter 8

factorial (N,F) -
F is the integer N factorial.

factorial(N,F) - factorial(N,l,F).
factorial(N,T,F) -

N > 0, TI is T*N, N1 is N-1, factorial(Nl,TI,F)
factorial(O,F,F).

Program 8.4 Another iterative factorial

The third argument of f a c t o r i a l / 4 is used as an accumulator of the
running value of the product. It is initialized to 1 in the call to f ac -
t o r i a l / 4 by f a c t o r i a l / 2 . The handling of both accumulators in Pro-
gram 8.3 is a typical programming techmque in Prolog. It is closely re-
lated to the use of accumulators in Programs 3.16b and 7.10 for collect-
ing elements in a list.

Accumulators are logical variables rather than locations in memory.
The value is passed between iterations, not an address. Since logical
variables are "write-once," the updated value, a new logical variable, is
passed each time. Stylistically, we use variable names with the suffix 1,
for example, TI and 11, to indicate updated values.

The computation terminates when the counter I equals N. The rule for
f a c t o r i a l / 4 in Program 8.3 no longer applies, and the fact succeeds.
With this successful reduction, the value of the factorial is returned.
This happens as a result of the unification with the accumulator in the
base clause. Note that the logical variable representing the solution, the
final argument of f a c t o r i a l / 4 , had to be carried throughout the whole
computation to be set on the final call of f a c t o r i a l . This passing of
values in arguments is characteristic of Prolog programs and might seem
strange to the newcomer.

Program 8.3 exactly mirrors the while loop for factorial given in Fig-
ure 8.1. Another iterative version of f a c t o r i a l can be written by count-
ing down from N to 0, rather than up from 0 to N. The basic program
structure remains the same and is given as Program 8.4. There is an ini-
tialization call that sets the value of the accumulator, and recursive and
base clauses implementing the while loop.

Program 8.4 is marginally more efficient than Program 8.3. In general,
the fewer arguments a procedure has, the more readable it becomes, and
the faster it runs.

Arithmetic

between(l,J,K) -
K is an integer between the integers I and J inclusive.

between(I,J,I) -- I I J.
between(I,J,K) - I < J, I1 is I+1, between(Il,J,K).

Program 8.5 Generating a range of integers

sumlist (Is,Sum) -
S u m is the sum of the list of integers Is.

sumlist([IIIs],Sum) - sumlist(Is,IsSum), Sum is I+IsSum.
sumlist ([I ,O) .

Program 8.6a Summing a list of integers

sumlist (ls,Sum) -
Sum is the sum of the list of integers Is.

sumlist(Is,Sum) - sumlist(Is,O,Sum).
sumlist ([I I Is] ,Temp, Sum) -

Temp1 is Temp+I, sumlist(Is,Templ,Sum).
sumlist([I ,Sum,Sum) .

Program 8.6b Iterative version of summing a list of integers using an accu-
mulator

A useful iterative predicate is between(1, J ,K), which is true if K is an
integer between I and J inclusive. It can be used to generate nondeter-
ministically integer values within a range (see Program 8.5). This is useful
in generate-and-test programs, explained in Section 14.1, and in failure-
driven loops, explained in Section 12.5.

Iterative programs can be written for calculations over lists of integers
as well. Consider the relation suml is t (I n t e g e r l i s t , Sum), where Sum is
the sum of the integers in the list In t ege rL i s t . We present two pro-
grams for the relation. Program 8.6a is a recursive formulation. To sum
a list of integers, sum the tail, and then add the head. Program 8.6b uses
an accumulator to compute the progressive sum precisely as Program 8.3
for f a c t o r i a l uses an accumulator to compute a progressive product.
An auxiliary predicate, suml is t /3 , is introduced with an extra argument
for the accumulator, whose starting value, 0, is set in the initial call to

Chapter 8

inner-product (Xs, Ys,Value) -
Value is the inner product of the vectors
represented by the lists of integers Xs and Ys.

inner-product ([XI Xsl , [Y I Ysl , IP) -
inner-product(Xs,Ys,IPl), IP is X*Y+IP1.

inner-product ([1 , [],0) .

Program 8.7a Computing inner products of vectors

inner-product (Xs, Ys, Value) -
Value is the inner product of the vectors
represented by the lists of integers Xs and Ys.

inner-product(Xs,Ys,IP) - inner-product(Xs,Ys,O,IP).
inner-product ([XI Xs] , [Y I Ys] ,Temp, I P) -

Temp1 is X*Y+Temp, inner-product(Xs,Ys,Templ,IP).
inner-product ([1 , C I , IP, IP) .

Program 8.7b Computing inner products of vectors iteratively

sumlist/3. The sum is passed out in the final call by unification with the
base fact. The only difference between Program 8.6b and the iterative ver-
sions of factorial is that the recursive structure of the list rather than
a counter is used to control the iteration.

Let us consider another example. The inner product of two vec-
tors Xi,Yi is the sum XI . Yl + . . . + X , . Y,. If we represent vectors as
lists, it is straightforward to write a program for the relation inner-
product (Xs ,Ys, IP), where IP is the inner product of Xs and Ys. Pro-
grams 8.7a and 8.7b are recursive and iterative versions, respectively.
The iterative version of inner-product bears the same relation to the
recursive inner-product that Program 8.6b for sumlist bears to Pro-
gram 8.6a.

Both Programs 8.7a and 8.7b are correct for goals inner-product (Xs,
Ys, Zs), where xs and Ys are lists of integers of the same length. There
is a built-in check that the vectors are of the same length. The programs
fail if Xs and Ys are of different lengths.

The similarity of the relations between Programs 8.6a and 8.6b, and
Programs 8.7a and 8.7b, suggests that one may be automatically trans-
formed to the other. The transformation of recursive programs to equiv-

Arithmetic

area (Chain,Area) -
Area is the area of the polygon enclosed by the list of points
Chain, where the coordinates of each point are represented by
a pair (X,Y) of integers.

area([Tuple] ,0) .
area([(XI ,Y1), (X2,Y2) IXYsl ,Area) -

area([(X2,Y2) 1 XYsl ,Areal),
Area is (X1*~2-Y1*X2)/2 + Areal.

Program 8.8 Computing the area of polygons

alent iterative programs is an interesting research question. Certainly it
can be done for the simple examples shown here.

The sophistication of a Prolog program depends on the underlying
logical relation it axiomatizes. Here is a very elegant example of a simple
Prolog program solving a complicated problem.

Consider the following problem: Given a closed planar polygon chain
{Pl,P2,. . .,P,}, compute the area of the enclosed polygon and the orienta-
tion of the chain. The area is computed by the line integral

where the integral is over the polygon chain.
The solution is given in Program 8.8, whlch defines the relation

area(Chain,Area). Chain is given as a list of tuples, for example,
[(4,6), (4,2), (0,8), (4,6)]. The magnitude of Area is the area of the poly-
gon bounded by the chain. The sign of Area is positive if the orientation
of the polygon is counterclockwise, and negative if it is clockwise.

The query area([(4,6) , (4,2) , (0,8) , (4,6)] ,Area)? has the soh-
tion Area = -8. The polygon gains opposite orientation by reversing
the order of the tuples. The solution of the query area(C (4,6) , (0,8) ,
(4,2),(4,6)l,Area)?isArea = 8.

The program shown is not iterative. Converting it to be iterative is the
subject of Exercise (v) at the end of the section.

An iterative program can be written to find the maximum of a list of
integers. The relation scheme is maxlist (Xs ,Max), and the program is
given as Program 8.9. An auxiliary predicate maxlist (Xs , X , Max) is used
for the relation that Max is the maximum of X and the elements in the
list Xs. The second argument of maxlist/3 is initialized to be the first

Chapter 8

maxlist (Xs,N) -
N is the maximum of the list of integers Xs.

maxlist([XIXs] ,M) - maxlist (Xs,X,M) .
maxlist ([XIXsl ,Y,M) - maximum(X,Y,Yl), maxlist(Xs,Y1 ,M).
maxlist(C 1 ,M,M).

maximum(X,Y,Y) - X I Y.
maximum(X,Y,X) - X > Y.

Program 8.9 Finding the maximum of a list of integers

length (Xs,N) -
Xs is a list of length N.

length([XIXs],N) - N > 0, N1 is N-1, length(xs,~l).
length([1 ,0) .

Program 8.10 Checking the length of a list

element of the list. Note that the maximum of an empty list is not defined
by this program.

The standard recursive program for finding the maximum of a list of
integers constitutes a slightly different algorithm. The recursive formula-
tion finds the maximum of the tail of the list and compares it to the head
of the list to find the maximum element. In contrast, Program 8.9 keeps
track of the running maximum as the list is traversed.

Program 3.1 7 for finding the length of a list is interesting, affording
several ways of translating a logic program into Prolog, each of which has
its separate features. One possibility is Program 8.10, which is iterative.
Queries length(Xs,N)? are handled correctly if N is a natural number,
testing if the length of a list is N, generating a list of N uninstantiated
elements, or failing. The program is unsuitable, however, for finding
the length of a list with a call such as length([1,2,31 ,N)?. This query
generates an error.

The length of a list can be found using Program 8.11. This program
cannot be used, however, to generate a list of N elements. In contrast to
Program 8.10, the computation does not terminate if the first argument
is an incomplete list. Different programs for length are needed for the
different uses.

Arithmetic

length(Xs,N) -
N is the length of the list Xs.

length([XIXs] ,N) +- length(xs,~l), N is N1+1.
length([1,O).

Program 8.1 1 Finding the length of a list

range(M,N,Ns) -
N s is the list of integers between M and N inclusive.

range(~,N, [MI NS]) - M < N, MI is M+1, range (MI, N ,Ns) .
range (N , N, [Nl) .

Program 8.12 Generating a list of integers in a given range

Similar considerations about the intended use of a program occur
when trying to define the relation range (M,N, Ns), where Ns is the list
of integers between M and N inclusive. Program 8.12 has a specific use:
generating a list of numbers in a desired range. The program is totally
correct over all goals range (M , N , Ns) where M and N are instantiated. The
program cannot be used, however, to find the upper and lower limits
of a range of integers, because of the test M < N. Removing this test
would allow the program to answer a query range (M, N, [I , 2,31) ?, but
then it would not terminate for the intended use, solving queries such as
range(1,3,Ns)?.

8.3.1 Exercises for Section 8.3

(i) Write an iterative version for triangle(N,T), posed as Exer-
cise 8.2(i).

(ii) Write an iterative kersion for power (X, N, V) , posed as Exercise
8.2(ii).

(iii) Rewrite Program 8.5 so that the successive integers are generated
in descending order.

fiv) Write an iterative program for the relation timeslist (Integer-
List,Product) computing the product of a list of integers, anal-
ogous to Program 8.6b for sumlist.

Chapter 8

(v) Rewrite Program 8.8 for finding the area enclosed by a polygon so
that it is iterative.

(vi) Write a program to find the minimum of a list of integers.

(vii) Rewrite Program 8.11 for finding the length of a list so that it is
iterative. (Hint: Use a counter, as in Program 8.3.)

(viii) Rewrite Program 8.12 so that the range of integers is built bottom-
up rather than top-down.

8.4 Background

The examples given in t h s chapter are small and do not especially ex-
ploit Prolog's features. Algorithms that are fundamentally recursive are
more interesting in Prolog. A good example of such a program is the Fast
Fourier Transform, for which efficient versions have been written in Pro-
log.

A good place for reading about Huffman encoding trees for Exercise
8.2(iv) is Abelson and Sussman (1985).

A program for transforming recursive programs to iterative ones,
whlch handles the examples in the text, is described in Bloch (1984).

Program 8.8, computing the area of a polygon, was shown to us by
Martin Nilsson.

Structure Inspection

Standard Prolog has several predicates related to the structure of terms.
These predicates are used to recognize the different types of terms, to
decompose terms into their functor and arguments, and to create new
terms. Ths chapter discusses the use of predicates related to term struc-
ture.

9.1 Type Predicates

Type predicates are unary relations that distinguish between the different
types of terms. System predicates exist that test whether a given term is
a structure or a constant, and further, whether a constant is an atom, an
integer or floating-point. Figure 9.1 gives the four basic type predicates
in Standard Prolog, together with their intended meanings.

Each of the basic predicates in Figure 9.1 can be regarded as an infi-
nite table of facts. The predicate i n t e g e r / l would consist of a table of
integers:

in teger (0) . in teger (1) . in teger (-1) .

The predicate atom/l would consist of a table of atoms in the program:

The predicate compound/l would consist of a table of the function sym-
bols in the program with variable arguments, etc.

Chapter 9

integer(X) - X is an integer.
atom(X) - X is an atom.
real(X) - X is a floating-point number.
compound(X) - X is a compound term.
Figure 9.1 Basic system type predicates

Other type predicates can be built from the basic type predicates. For
example, that a number is either an integer or floating-point can be rep-
resented by two clauses:

number (X) - in teger (X) .
number (X) - r e a l (X) .

Standard Prolog includes a predicate number/l effectively defined in
this way. It also includes a predicate atomic(X), which is true if X is an
atom or a number. In this book, we prefer to call the predicate con-
s t a n t / l . To run under Standard Prolog, the following clause may be
necessary:

constant (XI -- atomic ()o

To illustrate the use of type predicates, the query in teger (3)? would
succeed, but the query atom(3)? would fail. One might expect that a
call to a type predicate with a variable argument, such as in teger (X)?,
would generate different integers on backtracking. This is not practical
for implementation, however, and we would prefer that such a call re-
port an error condition. In fact, Standard Prolog specifies that the call
i n t e g e r (XI? should fail.

The only terms not covered by the predicates in Figure 9.1 are vari-
ables. Prolog does provide system predicates relating to variables. The
use of such predicates, however, is conceptually very different from the
use of structure inspection predicates described in thls chapter. Meta-
logical predicates (their technical name) are the subject of Chapter 10.

We give an example of the use of a type predicate as part of a pro-
gram for flattening a list of lists. The relation f la t ten(Xs,Ys) is true if
Y s is the list of elements occurring in the list of lists Xs. The elements
of X s can themselves be lists or elements, so elements can be arbitrarily
deeply nested. An example of a goal in the meaning of f l a t t e n is f l a t -
t e n ([[a l , [b, [c ,d l l , e l , [a , b , c , d , e l) .

Structure Inspection

flatten(Xs,Ys) -
Ys is a list of the elements of Xs.

flatten([XlXsl ,Ys) +

flatten(X,Ysl), flatten(Xs,Ys2), append(Ysl,Ys2,Ys)

f latten(X, [XI) -
constant (0 , X# C 1 .

flatten([I , [1).

Program 9. la Flattening a list with double recursion

The simplest program for flattening uses double recursion. To flatten
an arbitrary list [XIXsl , where X can itself be a list, flatten the head of the
list X, flatten the tail of the list X s , and concatenate the results:

What are the base cases? The empty list is flattened to itself. A type
predicate is necessary for the remaining case. The result of flattening a
constant is a list containing the constant:

f l a t t en (X, [XI - constant (10, X # C I .

The condition constant (X) is necessary to prevent the rule being used
when X is a list. The complete program for f l a t t e n is given as Pro-
gram 9.la.

Program 9,la, although very clear declaratively, is not the most effi-
cient way of flattening a list. In the worst case, whlch is a left-linear tree,
the program would require a number of reductions whose order is qua-
dratic in the number of elements in the flattened list.

A program for f l a t t e n that constructs the flattened list top-down is a
little more involved than the doubly recursive version. It uses an auxiliary
predicate f l a t t en (Xs , Stack, Ys), where Y s is a flattened list containing
the elements in Xs and a stack Stack to keep track of what needs to be
flattened. The stack is represented as a list.

The call of f l a t t e n / 3 by f l a t t e n / 2 initializes the stack to the empty
list. We discuss the cases covered by f l a t t e n / % The general case is
flattening a list [XIXsl, where X is itself a list. In this case X s is pushed
onto the stack, and X is recursively flattened. The predicate l i s t (X) is
used to recognize a list. It is defined by the fact l i s t ([XIXsl) :

Chap te r 9

flatten(Xs,Ys) -
Ys is a list of the elements of Xs.

f l a t t e n ([X I X s l ,S,Ys) -
l is t (X) , f l a t t en (X , [XSI S] ,Ys).

flatten(CXIXs1 , S , [XIYsl) -
constant (XI, ~f [I , f la t ten(Xs , S ,Ys) .

f l a t t e n ([1 , [XIS] ,Ys) -
f la t ten(X,S,Ys) .

f l a t t e n ([I , [I , [I) .

l i s t ([XI Xsl)

Program 9.lb Flattening a list using a stack

f l a t t e n ([X I XS] ,S ,Ys) - l i s t (X) , f l a t t e n (X , [X s IS1 yYs)

When the head of the list is a constant other then the empty list, it is
added to the output, and the tail of the list is flattened recursively:

f l a t t e n ([X I X s l , S , [XIYsl) -
cons tant (X) ,Xf [1 , f l a t t e n (X s , S ,Ys) .

When the end of the list is reached, there are two possibilities, depending
on the state of the stack. If the stack is nonempty, the top element is
popped, and the flattening continues:

If the stack is empty, the computation terminates:

The complete program is given as Program 9.lb.
A general technique of using a stack is demonstrated in Program 9.lb.

The stack is managed by unification. Items are pushed onto the stack
by recursive calls to a consed list. Items are popped by unifylng with
the head of the list and recursive calls to the tail. Another application
of stacks appears in Programs 17.3 and 17.4 simulating pushdown au-
tomata.

Note that the stack parameter is an example of an accumulator.
The reader can verify that the revised program requires a number of

reductions linear in the size of the flattened list.

Structure Inspection

9.1.1 Exercise for Section 9.1

(i) Rewrite Program 9.la for f la t ten(Xs ,Ys) to use an accumulator
instead of the call to append, keeping it doubly recursive.

9.2 Accessing Compound Terms

Recognizing a term as compound is one aspect of structure inspection.
Another aspect is providing access to the functor name, arity, and argu-
ments of a compound term. One system predicate for delving into com-
pound terms is f u n c t o r (Term, F , Ar i ty) . Ths predicate is true if Term is
a term whose principal functor has name F and arity Ari ty. For example,
func to r (f a t h e r (haran, l o t) , f a t h e r , 2)? succeeds.

The functor predicate can be defined, analogously to the type pred-
icates, by a table of facts of the form func to r (f (X1,. . . , XN) , f , N) for
each functor f of arity N, for example, f u n c t o r (f a t h e r (X , Y , f a t h e r ,
2), f u n c t o r (son (X, Y) , son, 2), Standard Prolog considers constants
to be functors of arity 0, with the appropriate extension to the functor
table.

Calls to f u n c t o r can fail for various reasons. A goal such as func-
t o r (f a t h e r (X , Y) , son , 2) does not unify with an appropriate fact in
the table. Also, there are type restrictions on the arguments of func-
t o r goals. For example, the third argument of func to r , the arity of the
term, cannot be an atom or a compound term. If these restrictions are
violated, the goal fails. A distinction can be made between calls that fail
and calls that should give an error because there are infinitely many so-
lutions, such as func to r (X,Y, 2)?.

The predicate func to r is commonly used in two ways, term decompo-
sition and creation. The first use finds the functor name and arity of a
given term. For example, the query func to r (f a t h e r (haran, l o t , X , Y) ?
has the solution {X=father,Y=2}. The second use builds a term with a
particular functor name and arity. A sample query is func to r (T, f a t h e r ,
2)? with solution T=f a t h e r (X ,Y) .

The companion system predicate to func to r is a r g (N , Term, Arg) ,
whlch accesses the arguments of a term rather than the functor name.

Chapter 9

subterm(Sub, T e r m) -
Sub is a subterm of the ground term T e r m .

subterm(Term,Term).
subterm(Sub,Term) -

compound(Term) , functor (Term,F,N) , subterm(N, Sub ,Term) .
subterm(N, Sub, Term) -

N > 1, N1 is N-1, subterm(Nl,Sub,Term)
subterm(N,Sub,Term) -

arg(N ,Term, Arg) , subterm(Sub ,Arg) .

Program 9.2 Finding subterms of a term

The goal arg (N ,Term, Arg) is true if Arg is the Nth argument of Term. For
example, arg (1, father (haran, lot) , haran) is true.

Like functor/3, arg/3 is commonly used in two ways. The term de-
composition use finds a particular argument of a compound term. A
query exemplifying t h s use is arg (2, father (haran, lot) , X) ? with so-
lution X=lot. The term creation use instantiates a variable argument of a
term. For example, the query arg(1, f ather (X, lot) , haran) ? succeeds,
instantiating X to haran.

The predicate arg is also defined as if there is an infinite table of facts.
A fragment of the table is

Calls to arg fail if the goal does not unify with the appropriate fact in the
table, for example, arg (1, father (haran, lot) , abraham) . They also fail
if the type restrictions are violated, for example, if the first argument is
an atom. An error is reported with a goal such as arg(1, X, Y) .

Let us consider an example of using functor and arg to inspect terms.
Program 9.2 axiomatizes a relation subterm (TI, T2), whch is true if TI is
a subterm of T2. For reasons that will become apparent later, we restrict
TI and T2 to be ground.

The first clause of Program 9.2 defining subterm/:! states that any term
is a subterm of itself. The second clause states that Sub is a subterm of
a compound term Term if it is a subterm of one of the arguments. The
number of arguments, i.e., the arity of the principal functor of the term,

Structure Inspection

is found and used as a loop counter by the auxiliary subterm/3, whch
iteratively tests all the arguments.

The first clause of subterm/3 decrements the counter and recursively
calls subterm. The second clause covers the case when Sub is a subterm
of the Nth argument of the term.

The subterm procedure can be used in two ways: to test whether the
first argument is indeed a subterm of the second; and to generate sub-
terms of a given term. Note that the clause order determines the order
in which subterms are generated. The order in Program 9.2 gives sub-
terms of the first argument before subterms of the second argument,
and so on. Swapping the order of the clauses changes the order of solu-
tions.

Consider the query subterm(a,f (X,Y) I? , where the second argument
is not ground. Eventually the subgoal subterm(a,X) is reached. Thls suc-
ceeds by the first subterm rule, instantiating X to a. The subgoal also
matches the second subterm rule, involung the goal compound(X), which
generates an error. This is undesirable behavior.

We defer the issues arising when performing structure inspection on
nonground terms to Chapter 10, where meta-logical predicates with suit-
able expressive power are introduced. For the rest of thls chapter, all
programs are assumed to take only ground arguments unless otherwise
stated.

Program 9.2 is typical code for programs that perform structure in-
spection. We look at another example, substituting for a subterm in a
term.

The relation scheme for a general program for substituting subterms
is substitute (Old, New, OldTerm, NewTerm), where NewTerm is the result
of replacing all occurrences of Old in OldTerm by New. Program 9.3 imple-
menting the relation generalizes substituting for elements in a list, posed
as Exercise 3.3(i) and the logic program (Program 3.26) substituting for
elements in binary trees.

Program 9.3 is a little more complicated than Program 9.2 for sub-
term but conforms to the same basic pattern. The clauses for substi-
tute/4 cover three different cases. The last, handling compound terms,
calls an auxiliary predicate substitute/5, whch iteratively substitutes
in the subterms. The arity of the principal functor of the term is used
as the initial value of a loop counter that is successively decremented
to control the iteration. We present a particular example to illustrate

Chapter 9

substitute(Old,New,OldTerm,NewTerm) -
NewTerm is the result of replacing all occurrences of Old
in OldTerm by N e w .

substitute(Old,New,Old,New).
substitute(0ld,New,Term,Term) -

constant (Term), Term # Old.
substitute(0ld,New,Term,Terml) -

compound(Term),
functor(Term,F,N),
functor (Terml ,F ,N) ,
substitute(N,Old,New,Term,Terml).

substitute(N,Old,New,Term,Terml) -
N > 0,
arg(N , Term, Arg) ,
substitute(Old,New,Arg,Argl) ,
arg(N,Terml,Argl),
N1 is N-1,
substitute(Nl,Old,New,Term,Terml).

substitute(0,0ld,New,Term,Terml).

Program 9.3 A program for substituting in a term

the interesting points lurking in the code. A trace of the query substi-
tute (cat, dog, owns (j ane, cat) , X)? is given in Figure 9.2.

The query fails to unify with the fact in Program 9.3. The second rule
is also not applicable because owns (j ane , cat) is not a constant.

The th rd substitute rule is applicable to the query. The second call
of functor is interesting. Name and Arity have been instantiated to owns
and 2, respectively, in the previous call of functor, so thls call builds a
term that serves as the answer template to be filled in as the computation
progresses. Ths explicit term building has been acheved by implicit uni-
fication in previous Prolog programs. The call to substitute/5 succes-
sively instantiates the arguments of Terml. In our example, the second
argument of owns (XI, X2) is instantiated to dog, and then XI is instanti-
ated to jane.

The two calls to arg serve different tasks in substitute/5. The first
call selects an argument, whle the second call of arg instantiates an
argument.

Substitution in a term is typically done by destructive assignment in
conventional languages. Destructive assignment is not possible directly

Structure Inspection

substitute(cat ,dog,owns(jane ,cat) ,XI X=owns (jane ,
constant (owns(jane ,cat)) f cat)

substitute(cat ,dog,owns(jane ,cat) ,x)
compound(owns(jane,cat))
functor(owns(jane, cat) ,F,N) F=owns,N=2

functor(X,owns,2) X=owns(Xl,X2)
substitute(2,cat,dog,owns(jane,cat),o~ns(~1,~2))

2 > 0
arg (2, owns (j ane , cat , Arg) Arg=cat

substitute (cat ,dog, cat ,~rgl) Argl=dog

arg(2,owns(X1 ,X2) ,dog) X2=dog

N1 is 2-1 N1=l
substitute(1 ,cat ,dog,owns(jane,cat) , owns(~1 ,dog))

1 > 0
arg(l,owns(jane,cat) ,Arg2) Arg2= j ane

substitute(cat,dog,jane,Arg3) Arg3= j ane

constant (jane)
jane f cat

arg(1 ,owns(X1 ,dog), jane) XI= j ane

N2 substitute(0,cat,dog,owns(jane,cat),owns(jane,dog)) is 1-1 N2=0

o > o f
substitute(0,cat ,dog,owns(jane, cat) ,owns(jane ,dog))

true
Output : (X=owns (j ane ,dog))

Figure 9.2 Tracing the substitute predicate

in Prolog. Program 9.3 typifies how Prolog handles changing data struc-
tures. The new term is recursively built as the old term is being traversed,
by logically relating the corresponding subterms of the terms.

Note that the order of the second arg goal and the recursive call to
substitute/5 can be swapped. The modified clause for substitute/5
is logically equivalent to the previous one and gives the same result
in the context of Program 9.3. Procedurally, however, they are radically
different.

Another system predicate for structure inspection is a binary operator
= . . , called, for historical reasons, univ. The goal Term =.. List succeeds
if List is a list whose head is the functor name of the term Term and
whose tail is the list of arguments of Term. For example, the query (fa-
ther (haran, lot) =. . [father, haran, lot]) ? succeeds.

Chapter 9

subterm (Sub, T e r m) -
Sub is a subterm of the ground term T e r m .

subterm(Term,Term).
subterm(Sub,Term) -

compound(Term), Term = . . [F I Args] , subterm-list (~ u b , ~ r g s) .

subterm-list(Sub,[ArglArgsl) -
subterm(Sub,Arg).

subterm-list (Sub, [Arg I Args]) -
subterm-list(Sub,Args).

Program 9.4 Subterm defined using univ

Like functor and arg, univ has two uses. Either it builds a term
given a list, for example, (X =. . [father, haran, lotl) ? with solution
X=f ather (haran, lot), or it builds a list given a term, for example, (fa-
ther (haran, lot) =. . Xs)? with solution Xs= [father, haran, lotl.

In general, programs written using functor and arg can also be written
with univ. Program 9.4 is an alternative definition of subterm, equivalent
to Program 9.2. As in Program 9.2, an auxiliary predicate investigates the
arguments; here it is subterm-list. Univ is used to access the list of
arguments, Args, of whch subterms are recursively found by subterm-
list.

Programs using univ to inspect structures are usually simpler. How-
ever, programs written with functor and arg are in general more effi-
cient than those using univ, since they avoid building intermediate struc-
tures.

A neat use of univ is formulating the chain rule for symbolic differ-
entiation. The chain rule states that d/dx{f(g(x)} = d/dg(x){f(g(x)l x
d/dx{g(x)}. In Section 3.5, we noted that t h s rule could not be expressed
as a single clause of a logic program as part of Program 3.30. A Prolog
rule encapsulating the chain rule is

derivative (F-G-X, X, DF*DG) -
F-G-X =. . [F,G-XI,
derivative(F-G-X,G-X,DF),
derivative(G-X,X,DG).

The function F-G-X is split up by univ into its function F and argument
G-X, checking that F is a function of arity 1 at the same time. The deriva-

Structure Inspection

T e r m =.. List -
List is a list containing the functor of T e r m followed
by the arguments of T e r m .

Term =. . [F I Argsl -
functor(Term,F ,N) , args (0 , ~ , ~ e r m , ~ r g s) .

args (I , N ,Term, [Arg 1 Argsl) -
I < N , I1 is I+1, arg(Il,Term,Arg), a r g s (l l , ~ , ~ e r m , A r g s) .

args(N,N,Term, [I) .

Program 9.5a Constructing a list corresponding to a term

tive of F with respect to its argument is recursively calculated, as is the
derivative of G-X. These are combined to give the solution.
Univ can be defined in terms of functor and arg. Two different def-

initions are necessary, however, to cover both building lists from terms
and building terms from lists. One definition does not suffice, because of
errors caused by uninstantiated variables. Other system predicates are
similarly precluded from flexible use.

Program 9.5a behaves correctly for building a list from a term. The
functor F is found by the call to functor, and the arguments are re-
cursively found by the predicate args. The first argument of args is a
counter that counts up, so that the arguments will appear in order in the
final list. If Program 9.5a is called with Term uninstantiated, an error will
be generated because of an incorrect call of functor.

Program 9.5b behaves correctly for constructing a term from a list. The
length of the list is used to determine the number of arguments. The
term template is built by the call to functor, and a different variant of
args is used to fill in the arguments. Program 9.5b results in an error
if used to build a list, because of the goal length(Args ,N) being called
with uninstantiated arguments.

9.2.1 Exercises for Section 9.2

(i) Define a predicate occurrences (Sub, Term, N), true if N is the num-
ber of occurrences of subterm Sub in Term. Assume that Term is
ground.

(ii) Define a predicate position(Subterm,Term,Position), where Po-
sition is a list of argument positions identifying Subterm withn
Term. For example, the position of X in 2.sin(X) is [2,1l, since

Chapter 9

Tenn =.. List -
The functor of Term is the first element of the list List,
and its arguments are the rest of List's elements.

Term =. . [F I Args] -
length(Args ,N) , functor (Term,F, N) , args(Args ,Term, 1)

args ([Arg l Args] ,Term, N) -
arg(N,Term,Arg), N1 is N+1, args(Args,Term,Nl).

args([1 ,Term,N).

length(Xs, N) - See Program 8.1 1.

Program 9.5b Constructing a term corresponding to a list

sin(X) is the second argument of the binary operator ".", and X
is the first argument of sin(X). (Hint: Add an extra argument for
Program 9.2 for subterm, and build the position list top-down.)

(iii) Rewrite Program 9.5a so that it counts down. (Hint: Use an accumu-
lator.)

(iv) Define functor and arg in terms of univ. How can the programs be
used?

(v) Rewrite Program 9.3 for substitute SO that it uses univ.

9.3 Background

Prolog does not distinguish between object-level and meta-level type
predicates. We have taken a different approach, by defining the type test
predicates to work only on instantiated terms and by treating the meta-
logical test predicates (e.g., var/1, discussed in Section 10.1) separately.
The predicates for accessing and constructing terms, functor, arg, and
=. . , originate from the Edinburgh family. The origin of =. . is in the old
Prolog-10 syntax for lists, whch used the operator , . . instead of the
current I in lists, e.g., [a, b, c, . .Xs] instead of [a, b,clXsl . The . . on
the right-hand side suggested or reminded that the right-hand side of
the equality is a list.

Several of the examples in this section were adapted from O'Keefe
(1983).

Exercises 9.2(i) and 9.2(ii) are used in the equation solver in Chapter 23.

Me ta-Logical Predicates

A useful extension to the expressive power of logic programs is provided
by the meta-logical predicates. These predicates are outside the scope of
first-order logic, because they query the state of the proof, treat variables
(rather than the terms they denote) as objects of the language, and allow
the conversion of data structures to goals.

Meta-logical predicates allow us to overcome two difficulties involving
the use of variables encountered in previous chapters. The first difficulty
is the behavior of variables in system predicates. For example, evaluating
an arithmetic expression with variables gives an error. So does calling
type predicates with variable arguments. A consequence of this behavior
is to restrict Prolog programs to have a single use in contrast to the
multiple uses of the equivalent logic programs.

The second difficulty is the accidental instantiation of variables during
structure inspection. Variables need to be considered as specific objects
rather than standing for an arbitrary unspecified term. In Chapter 9 we
handled the difficulty by restricting inspection to ground terms only.

Ths chapter has four sections, each for a different class of meta-logical
predicates. The first section discusses type predicates that determine
whether a term is a variable. The second section discusses term com-
parison. The next sections describe predicates enabling variables to be
manipulated as objects. Finally, a facility is described for converting data
into executable goals.

1 76 Chapter 10

10.1 Meta-Logical Type Predicates

The basic meta-logical type predicate is var (Term), which tests whether
a given term is at present an uninstantiated variable. Its behavior is simi-
lar to the type predicates discussed in Section 9.1. The query var (Term)?
succeeds if Term is a variable and fails if Term is not a variable. For exam-
ple, var (X)? succeeds, whereas both var (a)? and var ([XIXsl) ? fail.

The predicate var is an extension to pure Prolog programs. A table
cannot be used to give all the variable names. A fact var (X) means that
all instances of X are variables rather than that the letter X denotes a
variable. Being able to refer to a variable name is outside the scope of
first-order logic in general or pure Prolog in particular.

The predicate nonvar(Term) has the opposite behavior to var. The
query nonvar (Term) ? succeeds if Term is not a variable and fails if Term
is a variable.

The meta-logical type predicates can be used to restore some flexibility
to programs using system predicates and also to control goal order. We
demonstrate this by revising some programs from earlier chapters.

Consider the relation plus (X , Y , Z) . Program 10.1 is a version of p lus
that can be used for subtraction as well as addition. The idea is to check
which arguments are instantiated before calling the arithmetic evaluator.
For example, the second rule says that if the first and third arguments,
X and Z, are not variables, the second argument, Y, can be determined as
their difference. Note that if the arguments are not integers, the evalua-
tion will fail, the desired behavior.

The behavior of Program 10.1 resembles that of Program 3.3, the logic
program for plus. Further, it does not generate any errors. Nonetheless,
it does not have the full flexibility of the recursive logic program: it
cannot be used to partition a number into tw7o smaller numbers, for

plus(X,Y,Z) --

The sum of the numbers X and Y is Z.

plus(X,Y,Z) - nonvar(X1, nonvar(~), Z is X+Y.
plus(X,Y,Z) - nonvar(X), nonvar(z), Y is Z-X.
plus(X,Y,Z) - nonvar(Y), nonvar(z), X is Z-Y.

Program 10.1 Multiple uses for plus

me fa-Logical Predicates

length(Xs,N) -
The list X s has length N.

length(Xs ,N) - nonvar(Xs) , lengthl (Xs,N).
length(Xs,N) - var (Xs) , nonvar (N) , lengthZ(Xs ,N) .
lengthl (XS , N) - See Program 8.11.
lengthZ(Xs,N) - See Program 8.10.

Program 10.2 A multipurpose length program

example. To partition a number involves generating numbers, for which
a different program is needed. This is posed as Exercise (ii) at the end of
this section.

Meta-logical goals placed initially in the body of a clause to decide
which clause in a procedure should be used are called meta-logical tests.
Program 10.1 for p lus is controlled by meta-logical tests. These tests re-
fer to the current state of the computation. Knowledge of the operational
semantics of Prolog is required to understand them.

Standard Prolog in fact endows the type predicates with a meta-logical
ability. For example, if X is a variable the goal in teger (XI fails, rather
than giving an error. Ths enables the rules from Program 10.1 to be writ-
ten using the system predicate in teger rather than nonvar, for example,

p lus (X,Y, Z) - in teger (X) , integer(Y) , Z is X+Y

We feel it is preferable to separate type checlung, whlch is a perfectly le-
gitimate first-order operation, from meta-logical tests, which are a much
stronger tool.

Another relation that can have multiple uses restored is length(Xs , N)
determining the length N of a list Xs. Separate Prolog programs (8.10 and
8.11) are needed to find the length of a given list and to generate an
arbitrary list of a given length, despite the fact that one logic program
(3.17) performs both functions. Program 10.2 uses meta-logical tests to
define a single length relation. The program has an added virtue over
Programs 8.10 and 8.1 1. It avoids the non-terminating behavior present
in both, when both arguments are uninstantiated.

Meta-logical tests can also be used to make the best choice of the goal
order of clauses in a program. Section 7.3 discusses the definition of
grandparent:

C h a p t e r 10 Meta-Logical Predicates

g r a n d p a r e n t (X,Z) -
X is the grandparent of Z.

grandparent (X, Z) - nonvar (X) , paren t (X , Y) , paren t (Y , Z) .
grandparent (X, Z) - nonvar (Z) , paren t (Y, Z) , paren t (X,Y).

Program 10.3 A more efficient version of grandparent

g r o u n d (Term) -
Term is a ground term.

ground(Term1 -
nonvar(Term), constant(Term).

ground(Term) -
nonvar(Term),
compound(Term),
f u n c t o r (Term, F , N) ,
ground(N,Term).

Program 10.4 Testing if a term is ground

grandparent (X,Z) - parent (X,Y) , parent (Y ,Z) .

The optimum goal order changes depending on whether you are search-
ing for the grandchildren of a given grandparent or the grandparents of
a given grandchld. Program 10.3 is a version of grandparent that will
search more efficiently.

The basic meta-logical type predicates can be used to define more in-
volved meta-logical procedures. Consider a relation ground(Term) , whch
is true if Term is ground. Program 10.4 gives a definition.

The program is in the style of the programs for structure inspection
given in Section 9.2, in particular Program 9.3 for s u b s t i t u t e . The two
clauses for ground/l are straightforward. In both cases, a meta-logical
test is used to ensure that no error is generated. The first clause says
that constant terms are ground. The second clause deals with structures.

It calls an auxiliary predicate ground/2, which iteratively checks that all
the arguments of the structure are ground.

We look at a more elaborate example of using meta-logical type predi-
cates; writing a unification algorithm. The necessity of Prolog to support
unification for matchng goals with clause heads means that explicit uni-
fication is readily available. Prolog's underlying unification can be used
to give a trivial definition

unify (X , X) .

whch is the definition of the system predicate =/2, namely, X=X.
Note that t h s definition depends on Prolog's underlying mechanism

for unification, and hence does not enforce the occurs check.
A more explicit definition of Prolog's unification is possible using meta-

logical type predicates. Although more cumbersome and less efficient,
t h s definition is useful as a basis for more elaborate unification algo-
rithms. One example is unification with the occurs check, described in
Section 10.2. Another example is unification in other logic programming
languages that can be embedded in Prolog, such as read-only unification
of Concurrent Prolog.

Program 10.5 is an explicit definition of unification. The relation
unify (Terml ,Term2) is true if Terml unifies with Term2. The clauses
of unify outline the possible cases. The first clause of the program says
that two variables unify. The next clause is an encapsulation of the rule
for unification that if X is a variable, then X unifies with Y.

The other case bearing discussion in Program 10.5 is unifying two com-
pound terms, as given in the predicate term-unif y (X , Y) . This predicate
checks that the two terms X and Y have the same principal functor and
arity, and then checks that all the arguments unify, using unif y-args, in
a way similar to the structure inspection programs shown before.

10.1.1 Exercises for Section 10.1

(i) Write a version of Program 8.12 for range that can be used in mul-
tiple ways.

(ii) Write a version of Program 10.1 for p lus that partitions a number
as well as performing addition and subtraction. (Hint: Use between
to generate numbers.)

Chapter 10

unify(Term1 ,Term2) -
Terml and Term2 are unified, ignoring the occurs check.

unify(X,Y) -
var (X) , var (Y) , X=Y.

unify(X,Y) -
var(X), nonvar(Y1, X=Y.

unify(X,Y) -
var (Y) , nonvar (X) , Y=X .

unify(X,Y) -
nonvar (X) , nonvar (Y) , constant (x) , constant (Y) , X=Y .

unify(X,Y) -
nonvar (X) , nonvar (Y) , compound(X), compound(^) , term-unif y(x ,Y) .

term-unify(X,Y) -
functor(X,F,N), functor(Y,F,N), unify-args(N,X,Y).

unify-args(N,X,Y) -
N > 0 , unify-arg(N,X,Y), N1 is N-1, unify-args(N1,x,Y).

unify-args(O,X,Y).

unify-arg(N,X,Y) -
arg(N ,X, ArgX) , arg(N ,Y ,ArgY) , unify .

Program 10.5 Unification algorithm

10.2 Comparing Nonground Terms

Consider the problem of extending the explicit unification program, Pro-
gram 10.5, to handle the occurs check. Recall that the occurs check is
part of the formal definition of unification, whch requires that a variable
not be unified with a term containing this variable. In order to implement
it in Prolog, we need to check whether two variables are identical (not just
unifiable, as any two variables are). This is a meta-logical test.

Standard Prolog provides a system predicate, ==/2, for this purpose.
The query X == Y? succeeds if X and Y are identical constants, identical
variables, or both structures whose principal functors have the same
name and arity, and recursively xi == Yi? succeeds for all corresponding
arguments Xi and Yi of X and Y. The goal fails otherwise. For example, X
== 5? fails (in contrast to X = 5?).

There is also a system predicate that has the opposite behavior to ==.

The query X \== Y? succeeds unless X and Y are identical terms.

Meta-Logical Predicates

unify(Term1,TermZ) -
Terml and Term2 are unified with the occurs check.

unify(X,Y) -
var(X), var(Y), X=Y.

unify(X,Y) -
var(X), nonvar(Y1, not-occurs-in(X,Y), X=Y.

unify(X,Y) -
var(Y), nonvar(X1, not-occurs-in(Y,X), Y=X.

unify(X,Y) -
nonvar(X) , nonvar(Y1, constant (x) , constant (Y) , X=Y.

unify(X,Y) -
nonvar (X) , nonvar (Y) , compound(X) , compound(^) , term-unif (x,Y)

not-occurs-in (X,Term) -
The variable X does not occur in Term

term-unify (X,Y) - See Program 10.5.

Program 10.6 Unification with the occurs check

The predicate \== can be used to define a predicate not-occurs-
in(Sub,Term), which is true if Sub does not occur in Term, the relation
that is needed in the unification algorithm with the occurs check. not-
occurs-in(Sub,Term) is a meta-logical structure inspection predicate. It
is used in Program 10.6, a variant of Program 10.5, to implement unifica-
tion with the occurs check.

Note that the definition of not-occurs-in is not restricted to ground
terms. Lifting the restriction on Program 9.2 for subterm is not as
easy. Consider the query subterm (X , Y) ?. This would succeed using Pro-
gram 9.2, instantiating X to Y.

We define a meta-logical predicate occurs-in(Sub,Term) that has the
desired behavior.

Chapter 10

occurs-in (Sub, Term) -
Sub is a subterm of the (possibly nonground) term Term.

a: Using ==

occurs-in(X,Term) -
subterm(Sub,Term), X == Sub.

b: Using freeze

occurs-in(X,Term) -
freeze (X , Xf) , freeze (Term, Termf , subterm(Xf, Termf) .

subterm(X,Term) - See Program 9.2.

Program 10.7 Occurs in

The predicate == allows a definition of occurs-in based on Pro-
gram 9.2 for subterm. All the subterms of the given term are generated
on backtracking and tested to see if they are identical to the variable.
The code is given in Program 10.7a.

As defined, subterm works properly only for ground terms. However,
by adding meta-logical type tests, as in the definition of not-occurs-in
in Program 10.6, this problem is easily rectified.

10.3 Variables as Objects

The delicate handling of variables needed to define occurs-in in Sec-
tion 10.2 highlights a deficiency in the expressive power of Prolog. Vari-
ables are not easily manipulated. When trying to inspect, create, and
reason about terms, variables can be unwittingly instantiated.

A similar concern occurs with Program 9.3 for substitute. Consider
the goal substitute(a,b,X,Y, substituting a for b in a variable X to
give Y. There are two plausible behaviors for substitute in t h s case.
Logically there is a solution when X is a and Y is b. T h s is the solution
actually given by Program 9.3, acheved by unification with the base fact
substitute(Old,New,Old,New).

In practice, another behavior is usually preferred. The two terms X and
a should be considered different, and Y should be instantiated to X. The
other base case from Program 9.3,

substitute (Old,New ,Term,Term) - constant (Term) , Term f Old.

Meta-Logical Predicates

covers t h s behavior. However, the goal would fail because a variable is
not a constant.

We can prevent the first (logical) solution by using a meta-logical test
to ensure that the term being substituted in is ground. The unification
implicit in the head of the clause is then only performed if the test
succeeds, and so must be made explicit. The base fact becomes the rule

substitute(Old,New,Term,New) -- ground(Term), Old = Term.

Treating a variable as different from a constant is handled by a special
rule, again relying on a meta-logical test:

Adding the two preceding clauses to Program 9.3 for substitute and
adding other meta-logical tests allows the program to handle nonground
terms. However, the resultant program is inelegant. It is a mixture of
procedural and declarative styles, and it demands of the reader an under-
standing of Prolog's control flow. To make a medical analogy, the syrnp-
toms have been treated (undesirable instantiation of variables), but not
the disease (inability to refer to variables as objects). Additional meta-
logical primitives are necessary to cure the problem.

The difficulty of mixing object-level and meta-level manipulation of
terms stems from a theoretical problem. Strictly spealung, meta-level
programs should view object-level variables as constants and be able to
refer to them by name.

We suggest two system predicates, freeze (Term,Frozen) and melt
(Frozen, Thawed), to allow explicit manipulation of variables. Freezing a
term Term makes a copy of the term, Frozen, where all the uninstantiated
variables in the term become unique constants. A frozen term looks like,
and can be manipulated as, a ground term.

Frozen variables are regarded as ground atoms during unification. Two
frozen variables unify if and only if they are identical. Similarly, if a
frozen term and an uninstantiated variable are unified, they become an
identical frozen term. The behavior of frozen variables in system predi-
cates is the behavior of the constants. For example, arithmetic evaluation
involving a frozen variable will fail.

The predicate freeze is meta-logical in a simdar sense to var. It en-
ables the state of a term during the computation to be manipulated di-
rectly.

Chapter 10 Meta-Logical Predicates

The predicate freeze allows an alternative definition of occurs-in
from the one given in Section 10.2. The idea is to freeze the term so that
variables become ground objects. Ths makes Program 9.2 for subterm,
which works correctly for ground terms, applicable. The definition is
given as Program 10.7b.

Freezing gives the ability to tell whether two terms are identical. Two
frozen terms, X and Y, unify if and only if their unfrozen versions are
identical, that is, X == Y. This property is essential to the correct behav-
ior of Program 10.7b.

The difference between a frozen term and a ground term is that the
frozen term can be "melted back" into a nonground term. The compan- I

ion predicate to freeze is melt (Frozen, Thawed). The goal melt (X , Y)
produces a copy Y of the term X where frozen variables become regular
Prolog variables. Any instantiations to the variables in X during the time
when X has been frozen are taken into account when melting Y.

1
I

The combination of freeze and melt allows us to write a variant of I

substitute, non-ground-substitute, where variables are not acciden-
tally instantiated. The procedural view of non-ground-substitute is as
follows. The term is frozen before substitution; the substitution is per-
formed on the frozen term using the version of substitute, which works
correctly on ground terms; and then the new term is melted:

non-ground-substitute(X,Y,Old,New) -
f reeze(Old,Oldl), substitute(X,Y ,Old1 ,old21 ,
melt (0ld2, New) .

The frozen term can also be used as a template for making copies.
The system predicate melt-new (Frozen, Term) makes a copy Term of the
term Frozen, where frozen variables are replaced by new variables.

One use of melt-new is to copy a term. The predicate copy (Term, Copy)
produces a new copy of a term. It can be defined in a single rule:

copy (Term, Copy) - freeze (~erm, Frozen) , melt-new(~roze~9

Standard Prolog provides the predicate copy-term(Term1 ,Term2) for
copying terms. It is true if and only if Term2 unifies with a term T that is
a copy of Terml except that all the variables of Terml have been replaced
by fresh variables.

Unfortunately, the predicates freeze/2, melt/2, and rnelt_new/2 as
described here are not present in existing Prolog implementations. They

numbewars(Term,Nl,NZ) -
The variables in Term are numbered from N1 to N 2 - 1.

numbervars('$VAR'(N),N,NI)
N1 is N+1.

numbervars(Term,N,N) -
nonvar(Term), constant(Term1.

numbervars(Term,Nl ,N2) -
nonvar (Term) , compound(Term) ,
functor (Term, Name, N) ,
numbervars(O,N,Term,Nl,N2).

numbervars(N,N,Term,N1,NI).
numbervars(I,N,Term,Nl,N3) -

I < N
I1 is I+1,
arg(I1 ,Term,Arg) ,
numbervars (Arg,Nl ,N2) ,
numbervars(Il,N,Term,N2,N3).

Program 10.8 Numbering the variables in a term

will be useful nonetheless in expressing and explaining the behavior of
extra-logical predicates, discussed in Chapter 12.

A useful approximation to freeze is the predicate numbervars (Term,
Nl , N2), which is provided in many Edinburgh Prolog libraries. A call to
the predicate is true if the variables appearing in Term can be numbered
from Nl to N2-1. The effect of the call is to replace each variable in the
term by a term of the form '$VARJ (N) where N lies between Nl and N2.
For example, the goal numbervars (append([XIXsl ,Ys , [XIZsl , I, N) suc-
ceeds with the substitution {X='$VAR(I) ' , Xs='$VAR' (2) , Ys='$VAR7
(3), Zs='$VAR1 (4) , N=5}. Code implementing numbervars is given as
Program 10.8. It is in the same style as the structure inspection utilities
given in Chapter 9.

10.4 The Meta-Variable Facility

A feature of Prolog is the equivalence of programs and data - both
can be represented as logical terms. In order for this to be exploited,
programs need to be treated as data, and data must be transformed into
programs. In thls section, we mention a facility that allows a term to be

PROYECTO

Chapter 10

X ; Y -
X or Y .

X ; Y - X .
X ; Y - Y .

Program 10.9 Logical disjunction

converted into a goal. The predicate call (X) calls the goal X for Prolog
to solve.

In practice, most Prolog implementations relax the restriction we have
imposed on logic programs, that the goals in the body of a clause must
be nonvariable terms. The meta-variable facility allows a variable to ap-
pear as a goal in a conjunctive goal or in the body of the clause. During
the computation, by the time it is called, the variable must be instan-
tiated to a term. It will then be treated as usual. If the variable is not
instantiated when it comes to be called, an error is reported. The meta-
variable facility is a syntactic convenience for the system predicate call.

The meta-variable facility greatly facilitates meta-programming, in par-
ticular the construction of meta-interpreters and shells. Two important
examples to be discussed in later chapters are Program 12.6, a simple
shell, and Program 17.5, a meta-interpreter. It is also essential for defin-
ing negation (Program 11.6) and allowing the definition of hlgher-order
predicates to be described in Section 16.3.

We give an example of using the meta-variable facility with a definition
of logical disjunction, denoted by the binary infix operator "; ". The goal
(X;Y) is true if X or Y is true. The definition is given as Program 10.9.

10.5 Background

An excellent discussion of meta-logical system predicates in DEC-10 Pro-
log, and how they are used, can be found in O'Keefe (1983).

The unification procedure for Concurrent Prolog, written in Prolog, is
in Shapiro (1983b).

The difficulty in correctly manipulating object-level variables in Prolog
at the meta-level has been raised by several people. The discussion first
extensive discussion is in Nakashima et al. (1984), where the predicates
freeze, melt, and melt-new are introduced. The name freeze was a little

Meta-Logical Predicates

unfortunate, as it has been suggested for other additions to pure Prolog.
Most notable is Colmerauer's geler (Colmerauer, 1982a), whlch allows
the suspension of a goal and gives the programmer more control over
goal order. Tlvs predicate is provided by Sicstus Prolog as freeze. The
discussion of Nakashima and colleagues, although publicized in the first
editon of thls book, was largely ignored, to be revived by Barklund (1989)
musing over "What is a variable in Prolog?" and by attempts to do meta-
programming in constraint logic programming languages, for example,
Heintze et al. (1989) and Lim and Stuckey (1990).

The Godel project (Hill and Lloyd, 1993) has advocated replacing Pro-
log by a language that facilitates explicit manipulation of variables at a
meta-level. In Lloyd and Hill (1989), the terms ground and nonground
representation are used. Prolog uses a nonground representation, and
adding freeze and numbervars allows a ground representation.

Cuts and Negation

Prolog provides a single system predicate, called cut, for affecting the
procedural behavior of programs. Its main function is to reduce the
search space of Prolog computations by dynamically pruning the search
tree. The cut can be used to prevent Prolog from following fruitless com-
putation paths that the programmer knows could not produce solutions.

The cut can also be used, inadvertently or purposefully, to prune com-
putation paths that do contain solutions. By doing so, a weak form of
negation can be effected.

The use of cut is controversial. Many of its uses can only be inter-
preted procedurally, in contrast to the declarative style of programming
we encourage. Used sparingly, however, it can improve the efficiency of
programs without compromising their clarity.

1 1.1 Green Cuts: Expressing Determinism

Consider the program merge (Xs , Ys , Zs) (Program 11.1), whch merges
two sorted lists of numbers Xs and Ys into the combined sorted list Zs.

Merging two lists of sorted numbers is a deterministic operation. Only
one of the five merge clauses applies for each nontrivial goal in a given
computation. To be more specific, when comparing two numbers X and
Y, for example, only one of the three tests X < Y, X = : = Y, and X > Y can
be true. Once a test succeeds, there is no possibility that any other test
will succeed.

Chapter 11
Cuts and Negation

merge(Xs,Ys,Zs) -
Zs is an ordered list of integers obtained from merging
the ordered lists of integers Xs and Ys.

merge([XIXsl,[YIYsl,CYlZs]) - X > Y, merge(CXIXsl,Ys,Zs).
merge (Xs, C I ,Xs).
merge([I ,Ys,Ys).

Program 11.1 Merging ordered lists

The cut, denoted ! , can be used to express the mutually exclusive
nature of the tests. It is placed after the arithmetic tests. For example,
the first merge clause is written

Operationally, the cut is handled as follows.
The goal succeeds and commits Prolog to all the choices made since the

parent goal was unified with the head of the clause the cut occurs in.
Although t h s definition is complete and precise, its ramifications and

implications are not always intuitively clear or apparent.
Misunderstandings concerning the effects of a cut are a major source

for bugs for experienced and inexperienced Prolog programmers alike.
The misunderstandings fall into two categories: assuming that the cut
prunes computation paths it does not, and assuming that it does not
prune solutions where it actually does.

The following implications may help clarify the foregoing terse defini-
tion:

First, a cut prunes all clauses below it. A goal p unified with a clause
containing a cut that succeeded would not be able to produce solutions
using clauses that occur below that clause.

Second, a cut prunes all alternative solutions to the conjunction of
goals that appear to its left in the clause. For example, a conjunctive
goal followed by a cut will produce at most one solution.

On the other hand, the cut does not affect the goals to its right in
the clause. They can produce more than one solution in the event of
backtraclung. However, once t h s conjunction fails, the search proceeds

Figure 11.1 The effect of cut

from the last alternative prior to the choice of the clause containing the
cut.

Let us consider a fragment of the search tree of the query merge ([I , 3 ,
51 , [2,3] , Xs) ? with respect to Program 11.2, a version of merge with
cuts added. The fragment is given as Figure 11.1. The query is first re-
duced to the conjunctive query 1 < 2 , ! , merge ([3,51 , [2,31, Xs 1) ?; the
goal 1 < 2 is successfully solved, reachng the node marked (*) in the
search tree. The effect of executing the cut is to prune the branches
marked (a) and (b).

Continuing discussion of Program 11.2, the placement of the cuts in
the three recursive clauses of merge is after the test.' The two base cases
of merge are also deterministic. The correct clause is chosen by unifica-
tion, and thus a cut is placed as the first goal (and in fact the only goal) in
the body of the rule. Note that the cuts eliminate the redundant solution
to the goal merge ([] , [I , Xs) . Previously, t h s was accomplished more
awkwardly, by specifying that Xs (or Ys) had at least one element.

1. The cut after the third merge clause is unnecessary in any practical sense. Proce-
durally, it will not cause any reduction of search. But it makes the program more
symmetric, and like the old joke says about chicken soup, it doesn't hurt.

Chapter 11

merge(Xs,Ys,Zs) -
Z s is an ordered list of integers obtained from merging
the ordered lists of integers Xs and Ys.

Program 1 1.2 Merging with cuts

We restate the effect of a cut in a general clause C = A - B1, . . . , Bk, !,
Bk+*, . . . , B, in a procedure defining A. If the current goal G unifies with
the head of C, and BI , . . .,Bk further succeed, the cut has the following
effect. The program is committed to the choice of C for reducing G; any
alternative clauses for A that might unify with G are ignored. Further,
should B, fail for i > k + 1, backtracking goes back only as far as the !.
Other choices remaining in the computation of B,, i I k, are pruned from
the search tree. If backtracking actually reaches the cut, then the cut fails,
and the search proceeds from the last choice made before the choice of
G to reduce C.

The cuts used in the merge program express that merge is determinis-
tic. That is, only one of the clauses can be used successfully for proving
an applicable goal. The cut commits the computation to a single clause,
once the computation has progressed enough to determine that this is
the only clause to be used.

The information conveyed by the cut prunes the search tree, and hence
shortens the path traversed by Prolog, which reduces the computation
time. In practice, using cuts in a program is even more important for
saving space. Intuitively, knowing that a computation is deterministic
means that less information needs to be kept for use in the event of
backtracking. This can be exploited by Prolog implementations with tail
recursion optimization, discussed in Section 11.2.

Let us consider some other examples. Cuts can be added to the pro-
gram for computing the minimum of two numbers (Program 3.7) in pre-
cisely the same way as for merge. Once an arithmetic test succeeds, there

Cuts and Negation

minimum(X,Y,Min) -
Min is the minimum of the numbers X and Y.

Program 11.3 minimum with cuts

polynomial (Term,X) -
T e r m is a polynomial in X .

polynomial(X,X) - ! .
polynomial (Term,X) -

constant (Term), ! .
polynomial(~erml+Term2,X) -

! , polynomial (Term1 , X) , polynomial (Term2, X) .
polynomial (Terml-Term2, X) -

! , polynomial(Terml,X), polynomial(Term2,X).

polynomial(Terml*Term2,X) -
! , polynomial(Terml,X), polynomial(Term2,X).

polynomial(Terml/Term2,X) -
! , polynomial(Terml,X), constant(Term2).

polynomial(TermTN,X) -
! , integer(N), N 2 0, polynomial(Term,X).

Program 11.4 Recognizing polynomials

is no possibility for the other test succeeding. Program 11.3 is the appro-
priately modified version of minimum.

A more substantial example where cuts can be added to indicate that
a program is deterministic is provided by Program 3.29. The program
defines the relation polynomial(Term,X) for recognizing if Term is a
polynomial in X. A typical rule is

Once the term being tested has been recognized as a sum (by unifying
with the head of the rule), it is known that none of the other polynomial
rules will be applicable. Program 11.4 gives the complete polynomial
program with cuts added. The result is a deterministic program that has
a mixture of cuts after conditions and cuts after unification.

Chapter I I

When discussing the Prolog programs for arithmetic, whch use the un-
derlylng arithmetic capabilities of the computer rather than a recursive
logic program, we argued that the increased efficiency is often acheved
at the price of flexibility. The logic programs lost their multiple uses
when expressed as Prolog programs. Prolog programs with cuts also have
less flexibility than their cut-free equivalents. Ths is not a problem if the
intended use of a program is one-way to begin with, as is often the case.

The examples so far have demonstrated pruning useless alternatives
for the parent goal. We give an example where cuts greatly aid efficiency
by removing redundant computations of sibling goals. Consider the re-
cursive clause of an interchange sort program:

sort (Xs ,Ys) -
append(As, [X,Y I Bsl ,Xs),
X > Y,
append(As, [Y,XIBs] ,Xsl),
sort (Xsl ,Ys) .

The program searches for a pair of adjacent elements that are out
of order, swaps them, and continues until the list is ordered. The base
clause is

Consider a goal sort ([3,2,11 , Xs). T h s is sorted by swapping 3 and
2, then 3 and 1, and finally 2 and 1 to produce the ordered list [I, 2,31.
It could also be sorted by first swapping 2 and 1, then swapping 3 and
1, and finally swapping 3 and 2, to arrive at the same solution. We know
there is only one sorted list. Consequently there is no point in searchng
for another alternative once an interchange is made. Ths can be indi-
cated by placing the cut after the test X > Y. Ths is the earliest it is
known that an interchange is necessary. The interchange sort program
with cut is given as Program 11.5.

The addition of cuts to the programs described in t h s section does not
alter their declarative meaning; all solutions to a given query are found.
Conversely, removing the cuts should similarly not affect the meaning of
the program. Unfortunately, t h s is not always the case. A distinction has
been made in the literature between green cuts and red cuts. Green cuts
have been considered in t h s section. The addition and removal of green
cuts from a program do not affect the program's meaning. Green cuts

Cuts and Negation

sort (Xs, Ys) -
Ys is an ordered permutation of the list of integers Xs.

sort (Xs,Ys) -
append(As, [X ,Y I BSI ,Xs),
X > Y,
,

append(As, [Y ,XIBsl ,Xsl),
sort (Xsl ,Ys).

sort (Xs ,Xs) -
ordered(Xs1,
! .

ordered(Xs) - See Program 3.20.

Program 1 1.5 Interchange sort

prune only computation paths that do not lead to new solutions. Cuts
that are not green are red.

The cut interacts with system predicates such as call and ;, intro-
duced in Chapter 10, and with predicates such as not, introduced later in
t h s chapter. The question is what scope should cut have, that is, whch
choice points should be affected. Since such tricky uses of cut are not
presented or advocated in t h s book, we defer discussion of the scope of
cut until Chapter 17 on interpreters.

Exercises for Section 11.1

(i) Add cuts to the partition program from quicksort, Program 3.22.

(ii) Add cuts to the differentiation program, Program 3.30.

(iii) Add cuts to the insertion sort program, Program 3.21.

11.2 Tail Recursion Optimization

As noted in Section 8.3, the main difference from a performance point
of view between recursion and iteration is that recursion requires, in
general, space linear in the number of recursive calls to execute, whereas

Chapter 1 1

iteration can be executed in constant space, independent of the number
of iterations performed.

Recursive programs defined free of side effects might be considered
more elegant and pleasing than their iterative counterparts defined in
terms of iteration and local variables. However, an order of magnitude
in space complexity seems an unacceptable price for such aesthetic plea-
sures. Fortunately, there is a class of recursive programs, precisely those
that can be translated directly into iterative ones, that can be executed in
constant space.

The implementation techmque that achieves t h s space saving is called
tail recursion optimization, or more precisely, last call optimization. Intu-
itively, the idea of tail recursion optimization is to execute a recursive
program as if it were an iterative one.

Consider the reduction of a goal A using the clause

with most general unifier 0. The optimization is potentially applicable to
the last call in the body of a clause, B,. It reuses the area allocated for
the parent goal A for the new goal B,.

The key precondition for t h s optimization to apply is that there be
no choice points left from the time the parent goal A reduced to this
clause to the time the last goal B, is reduced. In other words, A has no
alternative clauses for reduction left, and there are no choice points left
in the computation of goals to the left of B,, namely, the computation of
the conjunctive goal (B1,B2,. . .rBn-l)O, was deterministic.

Most implementations of tail recursion optimization can recognize to
a limited extent at runtime whether t h s condition occurs, by comparing
backtracking-related information associated with the goals Bn and A. An-
other implementation technique, clause indexing, also interacts closely
with tail recursion optimization and enhances the ability of the imple-
mentation to detect that t h s precondition occurs. Indexing performs
some analysis of the goal, to detect which clauses are applicable for
reduction, before actually attempting to do the unifications. Typically,
indexing is done on the type and value of the first argument of the goal.

Consider the append program:

Cuts and Negation

If it is used to append two complete lists, then by the time the recursive
append goal is executed, the preconditions for tail recursion optimiza-
tion hold. No other clause is applicable to the parent goal (if the first
argument unifies with [XIXsl, it certady won't unify with [1, since we
assumed that the first argument is a complete list). There are no other
goals in the body besides append, so the second precondition holds vac-
uously.

However, for the implementation to know that the optimization ap-
plies, it needs to know that the second clause, although not tried yet,
is not applicable. Here indexing comes into play. By analyzing the first
argument of append, it is possible to know that the second clause would
fail even before trying it, and to apply the optimization in the recursive
call to append.

Not all implementations provide indexing, and not all cases of deter-
minism can be detected by the indexing mechanisms available. Therefore
it is in the interest of the programmer to help an implementation that
supports tail recursion optimization to recognize that the preconditions
for applying it hold.

There is a sledgehammer techmque for doing so: Add a cut before the
last goal of a clause, in which tail recursion optimization should always
apply, as in

Ths cut prunes both alternative clauses left for the parent goal A, and
any alternatives left for the computation of (B1,B2,. . .,B,-l)O.

In general, it is not possible to answer if such a cut is green or red, and
the programmer's judgment should be applied.

It should be noted that the effect of tail recursion optimization is en-
hanced greatly when accompanied with a good garbage collector. Stated
negatively, the optimization is not very significant without garbage col-
lection. The reason is that most tail recursive programs generate some
data structures on each iteration. Most of these structures are tempo-
rary and can be reclaimed (see, for instance, the editor in Program 12.5).
Together with a garbage collector, such programs can run, in principle,
forever. Without it, although the stack space they consume would remain
constant, the space allocated to the uncollected temporary data stmc-
tures would overflow.

Chapter 1 I

no tX -
X is not provable.

n o t X - X, ! , f a i l .
no t X.

Program 11.6 Negation as failure

1 1.3 Negation

The cut can be used to implement a version of negation as failure. Pro-
gram 11.6 defines a predicate not (Goal), whch succeeds if Goal fails. As
well as using cut, the program uses the meta-variable facility described in
Chapter 10, and a system predicate fail that always fails.

Standard Prolog provides a predicate f ail-if (Goal), whlch has the
same behavior as not/l. Other Prologs provide the same predicate under
the name \+/I. The rationale for not calling the system predicate not
is that the predicate does not implement true logical negation, and it
is misleading to label it as such. We believe that the user easily learns
how the predicate differs from true negation, as we will explain, and
programmers are helped rather than misled by the name.

Let us consider the behavior of Program 11.6 in answering the query
not G? The first rule applies, and G is called using the meta-variable
facility. If G succeeds, the cut is encountered. The computation is then
committed to the first rule, and not G fails. If the call to G fails, then the
second rule of Program 11.6 is used, which succeeds. Thus not G fails if
G succeeds and succeeds if G fails.

The rule order is essential for Program 11.6 to behave as intended. T h s
introduces a new, not entirely desirable, dimension to Prolog programs.
Previously, changing the rule order only changed the order of solutions.
Now the meaning of the program can change. Procedures where the rule
order is critical in this sense must be considered as a single unit rather
than as a collection of individual clauses.

The termination of a goal not G depends on the termination of G. If G
terminates, so does not G. If G does not terminate, then not G may or
may not terminate depending on whether a success node is found in the
search tree before an infinite branch. Consider the following nonterrni-
nating program:

Cuts and Negation

married(abraham, sarah) .
married(X,Y) - married(Y,X).
The query not married(abraham, sarah)? terminates (with failure) even
though married (abraham , sarah) ? does not terminate.

Program 11.6 is incomplete as an implementation of negation by fail-
ure. The incompleteness arises from Prolog's incompleteness in realizing
the computation model of logic programs. The definition of negation as
failure for logic programs is in terms of a finitely failed search tree. A
Prolog computation is not guaranteed to find one, even if it exists. There
are goals that could fail by negation as failure, that do not terminate un-
der Prolog's computation rule. For example, the query not (p(X) ,q(X)) ?

does not terminate with respect to the program

The query would succeed if the q(X) goal were selected first, since that
gives a finitely failed search tree.

The incorrectness of Program 11.6 stems from the order of traver-
sal of the search tree and arises when not is used in conjunction with
other goals. Consider using not to define a relationshp unmarried-
student(X) for someone who is both not married and a student, as
in the following program:

umarried-student (X) - not married(X), student (X)

student (bill) .
married(joe) .

The query unmarried-student (X)? fails with respect to the preceding
data, ignoring that X=bill is a solution logically implied by the rule and
two facts. The failure occurs in the goal not married(](), since there is a
solution X=j oe. The problem can be avoided here by swapping the order
of the goals in the body of the rule.

A similar example is the query not (X=l), X=2?, whch fails although
there is a solution X=2.

The implementation of negation as failure is not guaranteed to work
correctly for nonground goals, as the foregoing examples demonstrate.
In most implementations of Prolog, it is the responsibility of the pro-
grammer to ensure that negated goals are ground before they are solved.

Chapter 1 I Cuts and Negation

variants (Terml, Term21 -
Terml and Term2 are variants.

variants(Terml,Term2) -
verify((numbervars(Terml,O,N),
numbervars(Term2,O,N),
Terml=Term2)).

verify (Goal) -
Goal has a true instance. Verifying this is not done
constructively, so variables are not instantiated in the process.

verify(Goa1) - nothot Goal).
numbervars (Term, N, N1) - See Program 10.8.

Program 11.7 Testing if terms are variants

Thls can be done either by a static analysis of the program or by a run-
time check, using the predicate ground defined in Program 10.4.

The predicate not is very useful. It allows us to define interesting con-
cepts. For example, consider a predicate disjoint (Xs,Ys), true if two
lists Xs and Ys have no elements in common. It can be defined as

disjoint (Xs ,Ys) - not (member(Z,Xs) , member (z,Ys)).
Many other examples of using not will appear in the programs through-
out this book.

An interesting property of not (Goal) is that it never instantiates the
arguments in Goal. This is because of the explicit failure after the call
to Goal succeeds, which undoes any bindings made. This property can
be exploited to define a procedure verify(Goal1, given as part of Pro-
gram 11.7, whch determines whether a goal is true without affecting
the current state of the variable bindings. Double negation provides the
means.

We note in passing that negation as implemented in Prolog shares a
feature with negation in natural language. A doubly negated statement is
not the same as the equivalent affirmative statement.

The program for verify can be used in conjunction with Program 10.8
for numbervars to define a notion of equality intermediate between unifi-
ability provided by =/2 and syntactic equality provided by ==/2. The
predicate variants(X,Y) defined in Program 11.7 is true if two terms
X and Y are variants. Recall from Chapter 4 that two terms are variants

X f Y -
X and Y are not unifiable.

X # X - ! , fail.
x f Y .

Program 11.8 Implementing f

if they are instances of each other. Ths can be acheved with the follow-
ing trick, implemented in Program 11.7. Instantiate the variables using
numbervars, test whether the terms unify, and undo the instantiation.

The three forms of comparison =/2, variant/2, and ==/2 are pro-
gressively stronger, with unifiability being the weakest and most general.
Identical terms are variants, and variant terms are unifiable. The distinc-
tion between the different comparisons vanishes for ground terms; for
ground terms all three comparisons return the same results.

The conjunction of cut and fail used in the first clause of not in Pro-
gram 11.6 is known as the cut-fail combination. The cut-fail combination
is a technique that can be used more generally. It allows early failure. A
clause with a cut-fail combination says that the search need not (and will
not) proceed.

Some cuts in a cut-fail combination are green cuts. That is, the program
has the same meaning if the clause containing the cut-fail combination
is removed. For example, consider Program 10.4 defining the predicate
ground. An extra clause can be added, which can reduce the search with-
out affecting the meaning:

ground(Term) - var (Term) , ! , fail

The use of cut in Program 11.6 implementing not is not green, but red.
The program does not behave as intended if the cut is removed.

The cut-fail combination is used to implement other system predi-
cates involving negation. For example, the predicate # (written as \= in
Standard Prolog) can be simply implemented via unification and cut-fail,
rather than via an infinite table, with Program 11.8. Ths program is also
only guaranteed to work correctly for ground goals.

With ingenuity, and a good understanding of unification and the ex-
ecution mechanism of Prolog, interesting definitions can be found for
many meta-logical predicates. A sense of the necessary contortions can

Chapter 1 I

be found in the program for same-var (X ,Y), whch succeeds if X and Y
are the same variable and otherwise fails:

same-var (f oo, Y) -- var (Y) , ! , fail.
same-var (X, Y) - var (X) , var (Y) .
The argument for its correctness follows: "If the arguments to same-var
are the same variable, binding X to foo will bind the second argument
as well, so the first clause will fail, and the second clause will succeed.
If either of the arguments is not a variable, both clauses will fail. If the
arguments are different variables, the first clause will fail, but the cut
stops the second clause from being considered."

Exercises for Section 1 1.3

(i) Define the system predicate \== using == and the cut-fail combina-
tion.

(ii) Define nonvar using var and the cut-fail combination.

1 1.4 Red Cuts: Omitting Explicit Conditions

Prolog's sequential choice of rules and its behavior in executing cut are
the key features necessary to compose the program for not. The pro-
grammer can take into account that Prolog ulll only execute a part of
the procedure if certain conditions hold. T h s suggests a new, and rnis-
guided, style of programming in Prolog, where the explicit conditions
governing the use of a rule are omitted.

The prototypical (bad) example in the literature is a modified version
of Program 11.3 for minimum. The comparison in the second clause of
the program can be discarded to give the program

The reasoning offered to justify the program is as follows: "If X is less
than or equal to Y, then the minimum is X. Otherwise the minimum
is Y, and another comparison between X and Y is unnecessary." Such a
comparison is performed, however, by Program 11.3.

Cuts and Negation

There is a severe flaw with t h s reasoning. The modified program has
a different meaning from the standard program for minimum. It succeeds
on the goal minimum (2,5,5). The modified program is a false logic pro-
gram.

The incorrect minimum goal implied by the modified program can be
avoided. It is necessary to make explicit the unification between the first
and th rd arguments, whlch is implicit in the first rule. The modified rule
is

Ths techmque of using the cut to commit to a clause after part of the
unification has been done is quite general. But for minimum the resultant
code is contrived. It is far better to simply write the correct logic pro-
gram, adding cuts if efficiency is important, as done in Program 11.3.

Using cut with the operational behavior of Prolog in mind is problem-
atic. It allows the writing of Prolog programs that are false when read
as logic programs, that is, have false conclusions but behave correctly
because Prolog is unable to prove the false conclusions. For example, if
minimum goals are of the form minimum(X, Y, Z), where X and Y are instan-
tiated, but Z is not, the modified program behaves correctly.

The only effect of the green cuts presented in Section 11.1 is to prune
from the search tree branches that are known to be useless. Cuts whose
presence in a program changes the meaning of that program are called
red cuts. The removal of a red cut from a program changes its meaning,
i.e., the set of goals it can prove.

A standard Prolog programming techmque using red cuts is the omis-
sion of explicit conditions. Knowledge of the behavior of Prolog, specifi-
cally the order in which rules are used in a program, is relied on to omit
conditions that could be inferred to be true. Ths is sometimes essen-
tial in practical Prolog programming, since explicit conditions, especially
negative ones, are cumbersome to specify and inefficient to run. But mak-
ing such omissions is error-prone.

Omitting an explicit condition is possible if the failure of the previous
clauses implies the condition. For example, the failure of the comparison
XIY in the minimum code implies that X is greater than Y. Thus the test
X > Y can be omitted. In general, the explicit condition is effectively the
negation of the previous conditions. By using red cuts to omit conditions,
negation is being expressed implicitly.

Chapter 1 1

delete(Xs,X,Ys) -
Ys is the result of deleting all occurrences of X from the list Xs.

Program 11.9a Deleting elements from a list

delete(Xs,X,Ys) -
Ys is the result of deleting all occurrences of X from the list Xs.

Program 11.9b Deleting elements from a list

Consider Program 11.5 for interchange sort. The first (recursive) rule
applies whenever there is an adjacent pair of elements in the list that
are out of order. When the second sort rule is used, there are no such
pairs and the list must be sorted. Thus the condition ordered(Xs) can
be omitted, leaving the second rule as the fact sort (Xs ,Xs). As with
minimum, this is an incorrect logical statement.

Once the ordered condition is removed from the program, the cut
changes from green to red. Removing the cut from the variant without
the ordered condition leaves a program that gives false solutions.

Let us consider another example of omitting an explicit condition. Con-
sider Program 3.18 for deleting elements in a list. The two recursive
clauses cover distinct cases, corresponding to whether or not the head
of the list is the element to be deleted. The distinct nature of the cases
can be indicated with cuts, as shown in Program 11.9a.

By reasoning that the failure of the first clause implies that the head
of the list is not the same as the element to be deleted, the explicit
inequality test can be omitted from the second clause. The modified
program is given as Program 11.9b. The cuts in Program 11.9a are green
in comparison to the red cut in the first clause of Program 11.9b.

In general, omitting simple tests as in Program 11.9b is inadvisable.
The efficiency gain by their omission is minimal compared to the loss of
readability and modifiability of the code.

Cuts and Negation

if-then-else(P,Q,R) -
Either P and Q , or not P and R.

Program 11.10 If-then-else statement

Let us investigate the use of cut to express the if-then-else control
structure. Program 11.10 defines the relation i f -then-else (P, Q, R) .
Declaratively, the relation is true if P and Q are true, or not P and R are
true. Operationally, we prove P and, if successful, prove Q, else prove R.

The utility of a red cut to implement t h s solution is self-evident. The
alternative to using a cut is to make explicit the condition under whlch R
is run. The second clause would read

if-then-else(P,Q,R) - not P, R.
This could be expensive computationally. The goal P will have to be com-
puted a second time in the determination of not.

We have seen so far two hnds of red cuts. One kind is built into the
program, as in the definitions of not and f . A second lund was a green
cut that became red when conditions in the programs were removed.
However, there is a th rd kind of red cut. A cut that is introduced into
a program as a green cut that just improves efficiency can turn out to be
a red cut that changes the program's meaning.

For example, consider trying to write an efficient version of member
that does not succeed several times when there are multiple copies of
an element in a list. Taking a procedural view, one might use a cut to
avoid backtracking once an element is found to be a member of a list.
The corresponding code is

member (X, [X 1 Xsl) -- ! .
member (X , [Y I Ysl) - member (X , Ys) .
Adding the cut indeed changes the behavior of the program. However,
it is now not an efficient variant of member, since, for example, the
query member (X , [I , 2 , 3]) ? gives only one solution, X=l. It is a variant
of member-check, given as Program 7.3, with the explicit condition X #
Y omitted, and hence the cut is red.

Chapter 11
Cuts a n d Negation

Exercises for Section 1 1.4

(i) Discuss where cuts could be placed in Program 9.3 for substi-
tute. Consider whether a cut-fail combination would be useful, and
whether explicit conditions can be omitted.

(ii) Analyze the relation between Program 3.19 for select and the pro-
gram obtained by adding a single cut:

select (X, [XI Xsl , XS) -- ! .
select (X, [Y IYs] , [Y I Zs]) - select (X,Ys,Zs).
(Hint: Consider variants of select.)

11.5 Default Rules

Logic programs with red cuts essentially consist of a series of special
cases and a default rule. For example, Program 11.6 for not had a special
case when the goal G succeeded and a default fact not G used otherwise.
The second rule for if-then-else in Program 11.10 is

It is used by default if P fails.
Using cuts to acheve default behavior is in the logic programming

folklore. We argue, using a simple example, that often it is better to
compose an alternative logical formulation than to use cuts for default
behavior.

Program 11.1 l a is a naive program for determining social welfare pay-
ments. The relation pension(Person,Pension) determines which pen-
sion, Pension, a person, Person, is entitled to. The first pension rule
says that a person is entitled to an invalid's pension if he is an invalid.
The second rule states that people over the age of 65 are entitled to an
old age pension if they have contributed to a suitable pension scheme
long enough, that is, they must be paid-up. People who are not paid up
are still entitled to supplementary benefit if they are over 65.

Consider extending Program 11.1 l a to include the rule that people re-
ceive nothng if they do not qualify for one of the pensions. The proce-
dural "solution" is to add cuts after each of the three rules, and an extra
default fact

Ths version is given as Program 1 1.1 lb.
Program 11.1 l b behaves correctly on queries to determine the pension

to whch people are entitled, for example, pension (mc-tavish, X) ?. The
program is not correct, though. The query pension (mc-t avish , noth-
ing)? succeeds, whch mc-tavish wouldn't be too happy about, and
pension(X,old-age-pension)? has the erroneous unique answer X=mc-
tavish. The cuts prevent alternatives being found. Program 11.1 l b only
works correctly to determine the pension to whch a given person is
entitled.

A better solution is to introduce a new relation entitlement (X, Y),
whch is true if X is entitled to Y. It is defined with two rules and uses
Program 11.1 la for pension:

entitlement (X,Y) - pension(X,Y) .
entitlement (X ,nothing) - not ~ension(X,Y) .

Ths program has all the advantages of Program 1 l . l l b and neither
of the disadvantages mentioned before. It shows that making a person

pension (Person,Pension) -
Pension is the type of pension received by Person.

Program 11.1 l a Determining welfare payments

pension (Person,Pension) -
Pension is the type of pension rcccivcd by Person.

pension(X,invalid-pension) - invalid()(), ! .
pension(X, old-age-pension) - over-65 (X) , paid-upO() , ! .
pension(X,supplementary-benefit) - over_65(X), ! .

~ension(x,nothing).

Program 11.1 l b Determining welfare payments

Chapter 11
Cuts and Negation

entitled to nothing as the default rule is really a new concept and should
be presented as such.

11.6 Cuts for Efficiency

Earlier in this chapter, we claimed that the efficiency of some Prolog
programs could be improved through sparing use of the cut. Thls sec-
tion explores the claim. Two issues are addressed. The first is the mean-
ing of efficiency in the context of Prolog. The second is appropriate uses
of cut.

Efficiency relates to utilization of resources. The resources used by
computations are space and time. To understand Prolog's use of space
and time, n7e need to consider Prolog implementation technology.

The two major areas of memory manipulated during a Prolog computa-
tion are the stack and the heap. The stack, called the local stack in many
Edinburgh Prolog implementations, is used to govern control flow. The
heap, called the global stack in many Edinburgh Prolog implementations,
is used to construct data structures that are needed throughout the com-
putation.

Let us relate stack management to the computation model of Prolog.
Each time a goal is chosen for reduction, a stack frame is placed on the
stack. Pointers are used to specify subsequent flow of control once the
goal succeeds or fails. The pointers depend on whether other clauses can
be used to reduce the chosen goal. Handling the stack frame is simplified
considerably if it is known that only one clause is applicable. Techrucally,
a choice point needs to be put on the stack if more than one clause is
applicable.

Experience has shown that avoiding placing choice points on the stack
has a large impact on efficiency. Indeed, Prolog implementation tech-
nology has advanced to the stage that deterministic code, i.e., without
choice points, can be made to run almost as efficiently as conventional
languages.

Cuts are one way that Prolog implementations know that only one
clause is applicable. Another way is by the effective use of indexing.
Whether a cut is needed to tell a particular Prolog implementation that
only one clause is applicable depends on the particular indexing scheme.

In this book, we often use the first argument to differentiate between
clauses. Indexing on the first argument is the most common among Pro-
log implementations. For effective use, consult your Prolog manual.

Efficient use of space is determined primarily by controlling the growth
of the stack. Already we have discussed the advantages of iterative code
and last call optimization. Too many frames placed on the stack can
cause computations to abort. In practice this is a major concern. Running
out of stack space is a common symptom of an infinite loop or running a
highly recursive program. For example, Program 3.9 implementing Ack-
ermann's function, when adapted for Prolog arithmetic, quickly exhausts
an implementation's capacity.

Time complexity is approximated by number of reductions. Thus effi-
cient use of time can be determined by analyzing the number of reduc-
tions a program makes. In Part I, we analyzed different logic programs by
the size of proof trees. In Prolog, size of search tree is a better measure,
but it becomes difficult to incorporate Prolog's nondeterminism.

Probably the most important approach to improving time performance
is better algorithms. Although Prolog is a declarative language, the no-
tion of an algorithm applies equally well to Prolog as to other languages.
Examples of good and bad algorithms for the same problem, together
with their Prolog implementations, have been given in previous chap-
ters. Linear reverse using accumulators (Program 3.16b) is clearly more
efficient than naive reverse (Program 3.16a). Quicksort (Program 3.22) is
better than permutation sort (Program 3.20).

Besides coming up with better algorithms, several things can be done
to influence the performance of Prolog programs. One is to choose a bet-
ter implementation. An efficient implementation is characterized by its
raw speed, its indexing capabilities, support for tail recursion optimiza-
tion, and garbage collection. The speed of logic programming languages
is usually measured in LIPS, or logical inferences per second. A logical
inference corresponds to a reduction in a computation. Most Prolog im-
plementations claim a LIPS rating. The standard benchmark, by no means
ideal, is to time Program 3.16a, naive reverse, reversing a list. There are
496 reductions for a list of 30 elements.

Once the implementation is fixed, the programs themselves can be
tuned by

Good goal ordering, where the rule is "fail as early as possible"

Chapter I 1

Exploitation of the indexing facility, by ordering arguments appropri-
ately

Elimination of nondeterminism using explicit conditions and cuts

Let us elaborate on the third item and discuss guidelines for using
cut. As discussed, Prolog implementations will perform more efficiently
if they know a predicate is deterministic. The appropriate sparing use
of cut is primarily for saying that predicates are deterministic, not for
controlling backtraclung.

The two basic principles for using a cut are

Make cuts as local as possible.

Place a cut as soon as it is known that the correct clause has been
chosen.

Let us illustrate the principles with the quicksort program, Program
3.22. The recursive clause is as follows

quicksort ([X I Xsl ,Ys) -
partition(~s , ~ , ~ i t t l e s ,Bigs), quicksort(Littles3Ls) 9

quicksort (Bigs ,Bs) , a p p e n d b , [X I Bsl ,Ys) .

We know there is only one solution for the partition of the list. Rather
than place a cut in the clause for quicksort, the partition predicate
should be made deterministic. Thls is in accordance with the first princi-
ple.

One of the partition clauses is

If the clause succeeds, then no other will be applicable. But the cut
should be placed before the recursive call to partition rather than after,
according to the second principle.

Where and whether to place cuts can depend on the Prolog implemen-
tation being used. Cuts are needed only if Prolog does not know the
determinism of a predicate. If, for example, indexing can determine that
only one predicate is applicable, no cuts are needed. In a system without
indexing, cuts would be needed for the same program.

Having discussed appropriate use of cuts, we stress that adding cuts
to a program should typically be done after the program runs correctly.

Cuts a n d Negation

A common misconception is that a program can be lixed from giving
extraneous answers and behaving incorrectly by adding cuts. Ths is not
so. Prolog code should be debugged as declaratively as possible, a topic
we discuss in Chapter 13. Only when the logic is correct should efficiency
be addressed.

The final factor that we consider in evaluating the efficiency of Prolog
programs is the creation of intermediate data structures, which primarily
affects use of the heap. Minimizing the number of data structures being
generated is a subject that has not received much attention in the Prolog
literature. We analyze two versions of the predicate sublist (Xs ,Ys) to
illustrate the type of reasoning possible.

The two versions of sublist that we consider involve Program 3.13
for calculating prefutes and suffixes of lists. We must also specify the
comparison with respect to a particular use. The one chosen for the
analysis is whether a given list is a sublist of a second given list. The
first clause that follows denotes a sublist as a prefix of a suffix, and the
second clause defines a sublist as a suffix of a prefix:

Although both programs have the same meaning, there is a difference
in the performance of the two programs. If the two arguments to sub-
list are complete lists, the first clause simply goes down the second list,
returning a s u m , then goes down the first list, checlung if the suffix is a
prefix of the first list. Ths execution does not generate any new interme-
diate data structures. On the other hand, the second clause creates a new
list, which is a prefix of the second list, then checks if\this list is a suffix
of the first list. If the check fails, backtraclung occurs, and a new prefix
of the first list is created.

Even though, on the average, the number of reductions performed by
the two clauses is the same, they are different in their efficiency. The first
clause does not generate new structures (does not cons, in Lisp jargon).
The second clause does. When analyzing Lisp programs, it is common to
examine the consing performance in great detail, and whether a program
conses or not is an important efficiency consideration. We feel that the
issue is important for Prolog programs, but perhaps the state of the art
of studying the performance of large Prolog programs has not matured
enough to dictate such analyses.

212 Chapter 11

1 1.7 Background

The cut was introduced in Marseilles Prolog (Colmerauer et al., 1973)
and was perhaps one of the most influential design decisions in Pro-
log. Colmerauer experimented with several other constructs, whch cor-
responded to special cases of the cut, before coming up with its full
definition.

The terminology green cuts and red cuts was introduced by van Emden
(1982), in order to, try to distinguish between legitimate and illegitimate
uses of cuts. Alternative control structures, whlch are more structured
then the cut, are constantly being proposed, but the cut still remains the
workhorse of the Prolog programmer. Some of the extensions are if-then-
else constructs (O'Keefe, 1985) and notations for declaring that a relation
is functional, or deterministic, as well as "weak-cuts," "snips," remote-
cuts (Chikayama, 1984), and not itself, whlch, as currently implemented,
can be viewed as a structured application of the cut.

The controversial nature of cut has not been emphasized in this book.
A good starting place to read about some of cut's problems, and the
variation in its implementation, is Moss (1986). Many of the difficulties
arise from the scope of the cut, and how cuts interact with the system
predicates for control such as conjunction, disjunction, and the meta-
variable facility. For example, two versions of call have been suggested,
one that blocks the cut and one that does not. Further discussion of cut
can be found in O'Keefe (1990), including an exposition on when cut
should be used.

Some Prologs provide i f -then-else (P , 4 , R) under the syntax P - 9;
R and an abridged if-then form P - 9. Whether to include if-then-else
in Standard Prolog has been a controversial issue. The trade-off is con-
venience for some programming tasks versus thorny semantic anoma-
lies. T h s issue has been raised several times on the USENET newsgroup
comp.lang.prolog. Relevant comments were collected in the May 1991 is-
sue of the Newsletter of the Association for Logic Programming, Volume
4, No. 2.

The cut is also the ancestor of the commit operator of concurrent
logic languages, whch was first introduced by Clark and Gregory (1981)
in their Relational Language. The commit cleans up one of the major
drawbacks of the cut, whch is destroying the modularity of clauses.

Cuts and Negation

The cut is asymmetric, because it eliminates alternative clauses below
the clause in whch it appears, but not above. Hence a cut in one clause
affects the meaning of other clauses. The commit, on the other hand, is
symmetric and therefore cannot implement negation as failure; it does
not destroy the modularity of clauses.

The pioneering work on Prolog implementation technology was in
D.H.D. Warren's Ph.D. thesis (1977). Warren later added tail recursion
optimization to h s original DEC-10 compiler (1986). Tail recursion op-
timization was implemented concurrently by Bruynooghe (1982) in h s
Prolog system. A motley collection of papers on Prolog implementations
can be found in Campbell (1984).

Most current compilers and implementation technology are based on
the WAM (Warren Abstract Machne), published as a somewhat cryptic
techmcal report (Warren, 1983). Readers seriously interested in program
efficiency need to understand the WAM. The best places to start reading
about the WAM are Maier and Warren (1988) and Ait-~aci (1991).

References to negation in logic programming can be found in Sec-
tion 5.6. Implementations of a sound negation as failure rule in dialects
of Prolog can be found in Prolog-I1 (van Caneghem, 1982) and MU-Prolog
(Naish, 1985a).

The program for same-var and its argument for correctness are due to
O'Keefe (1983).

Program 1 l . l l b for pension is a variant of an example due to Sam
Steel for a Prolog course at the University of Edinburgh - hence the
Scottish flavor. Needless to say, t h s is not intended as, nor is it an
accurate expression, of the Scottish or British social welfare system.

Extra-Logical Predicates

There is a class of predicates in Prolog that lie outside the logic program-
ming model, and are called extra-logical predicates. These predicates
acheve a side effect in the course of being satisfied as a logical goal.
There are basically three types of extra-logical system predicates: pred-
icates concerned with I/O, predicates for accessing and manipulating the
program, and predicates for interfacing with the underlying operating
system. Prolog 1/0 and program manipulation predicates are discussed
in t h s chapter. The interface to the operating system is too system-
dependent to be discussed in this book.

A very important class of predicates that produces side effects is that
concerned with I/O. Any practical programming language must have a
mechanism for both input and output. The execution model of Prolog,
however, precludes the expression of 1/0 withn the pure component of
the language.

The basic predicate for input is reado[). Ths goal reads a term from
the current input stream, usually from the terminal. The term that has
been read is unified with X, and read succeeds or fails depending on the
result of unification.

The basic predicate for output is wr i t e (X). Ths goal writes the term
X on the current output stream, as defined by the underlying operating
system, usually to the terminal. Neither read nor wri te give alternative
solutions on backtraclung.

Chapter 12 Extra-Log ical Predicates

writeln([XI Xsl) - write (XI, writeln(Xs)
writeln([1) - nl.
Program 12.1 Writing a list of terms

The normal use of read is with a variable argument X, whch acquires
the value of the first term in the current input stream. The instantiation
of X to somethng outside the program lies outside the logical model,
since each time the procedure is called, reado() succeeds with a (pos-
sibly) different value for X.
Read attempts to parse the next term on the input stream. If it fails, it

prints an error message on the terminal.
There is an asymmetry between the extra-logical nature of read and

write. If all calls to write were replaced with the goal true, whch always
succeeded once, the semantics of the program would be unaffected. That
is not true for read.

Early Prolog implementations did not concentrate on input and output
facilities, providing the basic predicates read and write, or their equiva-
lents, and little else. More recent Prolog implementations have a wider
range of formatted 1/0 options, some of which have been adopted in
Standard Prolog. In t h s book, the emphasis is not on I/O, and so we re-
strict outselves to basic predicates and some simple utilities described
in the rest of t h s section. For more elaborate I/O, consult your particular
Prolog manual.

A useful utility is a predicate writeln(Xs), analogous to the Pascal
command, whch writes the list of terms Xs as a line of output on the cur-
rent output stream. It is defined in Program 12.1. The predicate writeln
uses the builtin predicate nl, whch causes the next output character to
be on a new line. As an example of its use, executing the conjunctive goal
(X=3, writeln(['The value of X is ' ,XI) produces the output

The value of X is 3

Note the use of the quoted atom 'The value of X is '. Both read and
write operate at the term level. A lower level for I/O is the character
level. Edinburgh Prolog assumed that characters were represented by
ASCII codes. Standard Prolog takes a broader perspective to support such
character sets as Kanji. The basic output predicate is put-char(Char),

read-word-list (Words) -
Words is a list of words read from the input stream via side effects.

read-word-list(Words) -
get-char(FirstChar1,
read-words(FirstChar,Words).

read-words (Char, [Word l Words]) -
word-char(Char1,
read-word(Char,Word,NextChar),
read-words(NextChar,Words).

read-words(Char,Words) -
f ill-char (Char),
get-char(NextChar),
read-words(NextChar,Words).

read-words(Char,[1) -
end-of-words-char(Char-1.

read-word(Char,Word,NextChar) -
word-chars(Char,Chars,NextChar),
atom-list(Word,Chars).

word-chars(Char,[CharlChars],FinalChar) +

word-char(Char), ! ,
get-char(NextChar1,
word-chars(NextChar,Chars,FinalChar).

word-chars(Char, [],Char) -
not word-char(Chax-).

Program 12.2 Reading in a list of words

which outputs the character Char on the current output stream. Stan-
dard Prolog allows you to specify the output stream, but we do not give
examples here. The basic input predicate at the character level is get-
char (Char), whch reads a character C from the current input stream
and then unifies C with Char.

Program 12.2 defines read-word-list (Words), a utility predicate for
reading in a list of words, Words, from the current input, terminated
by an end-of-words character, for example a period. Specific definitions
of the predicates word-char/l, f ill-char/l, and end-of -words-char/l
need to be added. It can be used to allow freer form input. In Pro-
gram 12.2, words can be separated by arbitrarily many fill characters.

Chapter 12 219 Extra-Logical Predicates

The predicate read-word-list reads a character, FirstChar, and calls
read-words (FirstChar, Words). Ths predicate does one of three ac-
tions, depending on what FirstChar is. If FirstChar is a word character,
then the next word is found. Word characters in Standard Prolog are up-
percase and lowercase letters, underscores, and digits. The second action
is to ignore filling characters, and so the next character is read, and the
program continues recursively. Finally, if the character denoting the end
of the words is reached, the program terminates and returns the list of
words.

It is important that the program must always read a character ahead
and then test what it should do. If the character is useful, for example, a
word character, it must be passed down to be part of the word. Otherwise
characters can get lost when backtracking. Consider the following read
and process loop:

process ([I) -
get-char (C) , end-of -words-char(C) .

process ([W I Words1 -
get-char (C) , word-char (C) , get-word(C ,W) process (Words) '

If the first character in a word is not an end-of-words-char, the first
clause will fail, and the second clause will cause the reading of the next
character.

Returning to Program 12.2, the predicate read-word(Char , Word,
NextChar) reads a word Word given the current character Char and re-
turns the next character after the word, NextChar. The list of characters
composing the word is found by word_chars/3 (with the same argu-
ments as read-word). The word is created from the list of characters
using the system predicate atom_list/2. In word-chars there is the
same property of loolung ahead one character, so that no character is
lost.

Predicates such as f ill-char/l and word-char/l exemplify data ab-
straction in Prolog.

Exercise for Section 12.1

(i) Extend Program 12.2 to handle a wider range of inputs, for example,
numbers.

12.2 Program Access and Manipulation

So far programs have been assumed to be resident in computer memory,
without discussion of how they are represented or how they got there.
Many applications depend on accessing the clauses in the program. Fur-
thermore, if programs are to be modified at runtime, there must be a way
of adding (and deleting) clauses.

The first Prologs, implemented as simple interpreted systems, classi-
fied predicates as'builtin and static or user-defined and dynamic. The
subsequent development of compilers and libraries require a more so-
phsticated classification.

Each user-defined predicate is either dynamic or static. The procedure
of a dynamic predicate can be altered, whereas the procedure of a static
predicate cannot. Builtin predicates are assumed to be static. The system
predicates introduced in t h s section apply only to dynamic predicates
and will probably cause error messages if applied to static predicates.
In this book, we assume all predicates are dynamic unless otherwise
specified. In many Prologs, declarations are needed to make a predicate
dynamic.

The system predicate for accessing a program is clause (Head, Body).
The goal clause (Head,Body) must be called with Head instantiated. The
program is searched for the first clause whose head unifies with Head.
The head and body of this clause are then unified with Head and Body.
On backtraclung, the goal succeeds once for each unifiable clause in the
procedure. Note that clauses in the program cannot be accessed via their
body.

Facts have the atom true as their body. Conjunctive goals are repre-
sented using the binary functor , . The actual representations can be
easily abstracted away, however.

Consider Program 3.12 for member:

member (X, [X I Xsl) .
member (X , [Y I Ys]) - member (X ,Ys)
The goal clause (member (X , Ys) ,Body) has two solutions: {YS= [X/Xs] ,
Body=true) and {Ys= [Y JYsll , Body=member (X, Ysl) 1. Note that a fresh
copy of the variables appearing in the clause is made each time a unifi-
cation is performed. In terms of the meta-logical primitives freeze and

Chapter 12

melt, the clause is stored in frozen form in the program. Each call to
c lause causes a new melt of the frozen clause. Thls is the logical coun-
terpart of the classic notion of reentrant code.

System predicates are provided both to add clauses to the program
and to remove clauses. The basic predicate for adding clauses is as-
s e r t z (Clause), which adds Clause as the last clause of the correspond-
ing procedure. For example, a s s e r t z (f a the r (haran, l o t)) ? adds the
f a t h e r fact to the program. When describing rules an extra level of
brackets is needed for technical reasons concerning the precedence of
terms. For example, a s s e r t z ((parent (X, Y) - f a t h e r (X ,Y))) is the
correct syntax.

There is a variant of a s se r t z , a s se r t a , that adds the clause at the
beginning of a procedure.

If Clause is uninstantiated (or if Clause has the form H-B with H
uninstantiated), an error condition occurs.

The predicate r e t r a c t (C) removes from the program the first clause
in the program unifying with C. Note that to retract a clause such as
a - b, c , d, you need to specify r e t r a c t ((a - C)). A call to r e t r a c t
may only mark a clause for removal, rather than physically removing it,
and the actual removal would occur only when Prolog's top-level query is
solved. This is for implementation reasons, but may lead to anomalous
behavior in some Prologs.

Asserting a clause freezes the terms appearing in the clause. Retracting
the same clause melts a new copy of the terms. In many Prologs this
is exploited to be the easiest way of copying a term. Standard Prolog,
however, provides a builtin predicate copy_term/2 for this purpose.

The predicates a s s e r t and r e t r a c t introduce to Prolog the possibil-
ity of programming with side effects. Code depending on side effects for
its successful execution is hard to read, hard to debug, and hard to rea-
son about formally. Hence these predicates are somewhat controversial,
and using them is sometimes a result of intellectual laziness or incompe-
tence. They should be used as little as possible when programming. Many
of the programs to be given in this book can be written using a s s e r t and
r e t r a c t , but the results are less clean and less efficient. Further, as Pro-
log compiler technology advances, the inefficiency in using a s s e r t and
r e t r a c t will become more apparent.

It is possible, however, to give logical justification for some limited
uses of a s s e r t and r e t r a c t . Asserting a clause is justified, for exam-

Extra-Logical Predicates

ple, if the clause already logically follows from the program. In such a
case, adding it will not affect the meaning of the program, since no new
consequences can be derived. Perhaps program efficiency will improve,
as some consequences could be derived faster. T h s use is exemplified in
the lemma construct, introduced in Section 12.3.

Similarly, retracting a clause is justified if the clause is logically re-
dundant. In t h s case, retracting constitutes a lund of logical garbage
collection, whose purpose is to reduce the size of the program.

1 2.3 Memo-Func tions

Memo-functions save the results of subcomputations to be used later in
a computation. Remembering partial results is impossible withn pure
Prolog, so memo-functions are implemented using side effects to the
program. Programming in this way can be considered bottom-up pro-
gramming.

The prototypical memo-function is lemma(Goa1). Operationally, it at-
tempts to prove the goal Goal and, if successful, stores the result of the
proof as a lemma. It is implemented as

The next time the goal P is attempted, the new solution will be used,
and there will be no unnecessary recomputation. The cut is present to
prevent the more general program being used. Its use is justified only if
P does not have multiple solutions.

Using lemmas is demonstrated with Program 12.3 for solving the Tow-
ers of Hanoi problem. The performance of Program 3.31 in solving the
problem is dramatically improved. It is well known that the solution of
the Towers of Hanoi with N disks requires ZN - 1 moves. For example,
ten disks require 1,023 moves, or in terms of Program 3.31, 1,023 calls
of hanoi (I , A , B , C , Xs) . The overall number of general calls of hanoi/5
is significantly more.

The solution to the Towers of Hanoi repeatedly solves subproblems
moving the identical number of disks. A memo-function can be used to
recall the moves made in solving each subproblem of moving a smaller

Chapter 12 223 Extra-Logical Predicates

hanoi(N,A,B,C,Moves) -
Moves is the sequence of moves required to move N disks
from peg A to peg B using peg C as an intermediary
according to the rules of the Towers of Hanoi puzzle.

hanoi(l,A,B,C, [A to B]) .
hanoi(N,A,B,C,Moves) -

N > 1,
N1 is N-1,
lernma(hanoi(Nl,A,C,B,Msl)),
hanoi(Nl,C,B,A,Ms2),
append(Ms1, [A to B IMs21 ,Moves) .

lemma(P) - P, asserta((P - ! I) .

Testing

test-hanoi(N,Pegs,Moves) -
hanoi (N,A ,B ,C ,Moves) , Pegs = [A ,B ,CI .

Program 12.3 Towers of Hanoi using a memo-function

number of disks. Later attempts to solve the subproblem can use the
computed sequence of moves rather than recomputing them.

The idea is seen with the recursive clause of hanoi in Program 12.3.
The first call to solve hanoi with N - 1 disks is remembered, and can be
used by the second call to hanoi with N - 1 disks.

The program is tested with the prebcate test-hanoi (N, Pegs ,Moves).
N is the number of disks, Pegs is a list of the three peg names, and
Moves is the list of moves that must be made. Note that in order to take
advantage of the memo-functions, a general problem is solved first. Only
when the solution is complete, and all memo-functions have recorded
their results, are the peg names instantiated.

Exercise for Section 12.3

(i) Two players take turns to say a number between 1 and 3 inclusive.
A sum is kept of the numbers, and the player who brings the sum
to 20 wins. Write a program to play the game to win, using memo-
functions.

12.4 Interactive Programs

A common form of a program requiring side effects is an interactive loop.
A command is read from the terminal, responded to, and the next com-
mand read. Interactive loops are implemented typically by while loops in
conventional languages. Program 12.4 gives the basic skeleton of such
programs, where a command is read, then echoed by being written on
the screen.

The read/echo loop is invoked by the goal echo. The heart of the pro-
gram is the relation echo (X), where X is the term to be echoed. The pro-
gram assumes a user-defined predicate last-input/l, which succeeds if
the argument satisfies the termination condition for input. If the terrni-
nation condition is satisfied by the input, the loop terminates; otherwise
the term is written and a new term is read.

Note that the testing of the term is separate from its reading. This
is necessary to avoid losing a term: terms cannot be reread. The same
phenomenon occurred in Program 12.2 for processing characters. The
character was read and then separately processed.

Program 12.4 is iterative and deterministic. It can be run efficiently on
a system with tail recursion optimization, always using the same small
amount of space.

We give two examples of programs using the basic cycle of reading
a term, and then processing it. The first is a line editor. The second
interactive program is a shell for Prolog commands, which is essentially
a top-level interpreter for Prolog in Prolog.

The first decision in writing a simple line editor in Prolog is how to
represent the file. Each line in the file must be accessible, together with
the cursor position, that is the current position within the file. We use a
structure file (Before, Af ter) , where Before is a list of lines before the
cursor, and After is a list of lines after the cursor. The cursor position is

echo - reado() , echo ()o .
echo(X) - last-input ()o, ! .
echo (x) - write(X) , nl, read(Y) , ! , echo(y)

Program 12.4 Basic interactive loop

Chapter 12

edit - edit(file([I,[I)).

edit(Fi1e) -
write-prompt, read(Command), edit(File,Command).

edit(File,exit) - ! .
edit (File ,Command) -

apply(Command,File,Filel), ! , edit(File1).
edit(File,Command) -

writeln([Command, ' is not applicable']), ! , edit(Fi1e).

apply(up,file(CXIXsl ,Ys),file(Xs, [XIYsl)).
apply(up(N),file(Xs,Ys),file(Xsl,Ysl)) -

N > 0, up(N,Xs,Ys,Xsl,Ysl).
apply(down,file(Xs, CYlYsl) ,file([~I~s] ,Ys)).
apply(insert(Line),file(Xs,Ys),file(~s,[Line~Ysl)).
apply(delete,file(Xs,[YIYsl),file(Xs,Ys)).
apply(print,file(~XIXsl,Ys),file(~XIXsl,Ys)) -

write(X) , nl.
apply(print(*) ,file(Xs,Ys) ,file(Xs,Ys)) -

reverse(Xs,Xsl), write-file(Xsl), write-file(Ys).

up(N, [1 ,Ys, [1 ,Ys).
up(0,Xs,Ys,Xs,Ys).
up(N, [XIXsl ,Ys,Xsl,Ysl) -

N > 0, N1 is N-1, up(~l,Xs, [XIYs] ,Xsl,Ysl).

write-f ile([XlXsl) -
write(X), nl, write-file(Xs).

write-file([1).

write-prompt - write(' >> '1, nl.

Program 12.5 A line editor

restricted to be at the end of some line. The lines before the cursor will
be in reverse order to give easier access to the lines nearer the cursor.
The basic loop accepts a command from the keyboard and applies it to
produce a new version of the file. Program 12.5 is the editor.

An editing session is invoked by edit, which initializes the file be-
ing processed to the empty file, file ([I , [I)) . The interactive loop
is controlled by edit (File). It writes a prompt on the screen, using
write-prompt, then reads and processes a command. The process-
ing uses the basic predicate edit (File, Command), whch applies the
command to the file. The application is performed by the goal ap-
ply(Command,File,Filel), where Filel is the new version of the file

Extra-Logical Predicates

after the command has been applied. The editing continues by calling
edit/l on Filel. The thrd edit/2 clause handles the case when no
command is applicable, indicated by the failure of apply. In thls case,
an appropriate message is printed on the screen and the editing contin-
ues. The editing session is terminated by the command exit, whch is
separately tested for by edit/2.

Let us look at a couple of apply clauses, to give the flavor of how
commands are specified. Particularly simple are commands for moving
the cursor. The .clause

says that we move the cursor up by moving the line immediately above
the cursor to be immediately below the cursor. The command fails if the
cursor is at the top of the file. The command for moving the cursor down,
also shown in Program 12.5, is analogous to moving the cursor up.

Moving the cursor up N lines rather than a single line involves using an
auxiliary predicate up/5 to change the cursor position in the file. Issues
of robustness surface in its definition. Note that apply tests that the
argument to up is sensible, i.e., a positive number of lines, before up
is invoked. The predicate up itself handles the case when the number
of lines to be moved up is greater than the number of lines in the file.
The command succeeds with the cursor placed at the top of the file.
Extending the editor program to move a cursor down N lines is posed
as an exercise at the end of this section.

Other commands given in Program 12.5 insert and delete lines. The
command for insert, insert (Line), contains an argument, namely the
line to be inserted. The command for delete is straightforward. It fails
if the cursor is at the bottom of the screen. Also in the editor are com-
mands for printing the line above the cursor, print, and for printing the
whole file, print (*I .

The editor commands are mutually exclusive. Only one apply clause is
applicable for any command. As soon as an apply goal succeeds, there
are no other possible alternatives. Prolog implementations that support
indexing would find the correct clause immediately and leave no choice
points. Imposing determinism via exploitation of indexing is a little dif-
ferent than adding explicit cuts, as described in Section 11.1, where the
cuts would have been applied directly to the apply facts themselves. The
difference between the two approaches is merely cosmetic. Note that a

Chapter 12

shell -
shell-prompt, read(Goal1, shell(Goa1).

shell(exit1 - ! .
shell (Goal) -

ground(Goal) , ! , shell-solve-ground(Goal), shell.
shell(Goa1) -

shell-solve(Goal), shell.

shell-solve(Goa1) -
Goal, write(Goal), nl, fail.

shell-solve(Goa1) -
write('No (more) solutions'), nl.

shell-solve-ground(Goa1) -
Goal, ! , write('Yes'), nl.

shell-solve-ground(Goa1) -
write('NoJ), nl.

shell-prompt - write('Next command? '1.

Program 12.6 An interactive shell

cut is still needed in the second edit clause to indicate that successful
execution of a command and reporting of an error message are mutually
exclusive.

A possible extension to the editor is to allow each command to handle
its own error message. For example, suppose you wanted a more helpful
message than "Command not applicable" when trying to move up when
at the top of the file. T h s would be handled by extending the apply
clause for moving up in the file.

We shift from editors to shells. A shell accepts commands from a
terminal and executes them. We illustrate with an example of a shell for
answering Prolog goals. Ths is presented as Program 12.6.

The shell is invoked by shell. The code is similar to the editor. The
shell gives a prompt, using shell-prompt, then reads a goal and tries
to solve it using shell(Goa1). A distinction is made between solving
ground goals, where a yes/no answer is given, and solving nonground
goals, where the answer is the appropriately instantiated goal. These two
cases are handled by shell-solve-ground and shell-solve, respec-
tively. The shell is terminated by the goal exit.

Extra-Logical Predicates

Both shell-solve-ground and shell-solve use the meta-variable fa-
cility to call the goal to be solved. The success or failure of the goal
determines the output message. These predicates are the simplest exam-
ples of meta-interpreters, a subject discussed in Chapter 17.

The shell-solve procedure shows an interesting solve-write-fail com-
bination, whch is useful to elicit all solutions to a goal by forced back-
traclung. Since we do not wish the shell to fail, an alternative clause is
provided, which succeeds when all solutions to the goal are exhausted. It
is interesting to note that it is not possible to collect all solutions to goals
in a straightforward way without using some sort of side effect. Ths is
explained further in Chapter 16 on second-order programming.

The shell can be used as a basis for a logging facility to keep a record
of a session with Prolog. Such a facility is given as Program 12.7. Ths
new shell is invoked by log, which calls the basic interactive predicate
shell(F1ag) with Flag initialized to log. The flag takes one of two val-
ues, log or nolog, and indicates whether the output is currently being
logged.

The logging facility is an extension of Program 12.6. The principal
predicates take an extra argument, whch indicates the current state of
logging. Two extra commands are added, log and nolog, to turn logging
on and off.

The flag is used by the predicates concerned with I/O. Each message
written on the screen must also be written in the logging file. Also, each
goal read is inserted in the log to increase the log's readability. Thus calls
to read in Program 12.6 are replaced by a call to shell-read, and calls
to write replaced by calls to shell-write.

The definition of shell-write specifies what must be done:

shell-write (X ,nolog) - write (XI .
shell-write (x, log) -- write (x) , file-write ([XI , 'prolog. log') .

If the flag is currently nolog, the output is written normally to the screen.
If the flag is log, an extra copy is written to the file prolog. log. The
predicate f ile-write(X,File) writes the line X to file File.

The remaining two predicates in Program 12.7, f ile_write/2 and
close-logging-f ile, involve interacting with the underlying file sys-
tem. Appropriate commands from Standard Prolog are given, and the
reader is referred to a Prolog manual for more information.

Chapter 12 Extra-Logical Predicates

log - shell(1og) .
shell(F1ag) -

shell-prompt, shell-read(Goal,Flag), shell(~oa1,Flag).

shell (exit ,Flag) -
! , close-logging-file.

shell(nolog,Flag) +-

! , shell(no1og).
shell(log,Flag) -

! , shell(1og).
shell (Goal ,Flag) -

ground(Goa1) , ! , shell-solve-ground(Goa1 ,Flag) , shell (Flag)
shell (Goal ,Flag) -

shell-solve(Goal,Flag), shell(Flag1.

shell~solve(Goal,Flag) +-

Goal, shell-write(Goal,Flag), nl, fail.
shell~solve(Goal,Flag) -

shell-write('No (more) solutions',~lag), nl.

shell-solve-ground(Goa1 ,Flag) -
Goal, ! , shell-write('Yes',Flag), nl.

shell~solve~ground(Goal,Flag) -
shell-write('NoJ,Flag), nl.

shell-prompt - write('Next command? '1.

shell-read(X, log) - read(X) ,
file-write(['Next command? ',~],'prolog.log').

shell-read(X,nolog) - read(X).
shell-write(X,nolog) - write(X).
shell-write(X,log) - write(X), file-write(~,'prolog.log').

file-write(X,File) - write-term(File,Term,[1).
close-logging-file - close('prolog.log').
Program 12.7 Logging a session

Exercises for Section 12.4

(i) Extend Program 12.5, the editor, to handle the following com-
mands:

(a) Move the cursor down N lines,

(b) Delete N lines,

(c) Move to a line containing a given term,

(d) Replace one term by another,

(e) Any command of your choice.

(ii) Modify the logging facility, Program 12.7, so that the user can spec-
ify the destination file of the logged output.

-- -- - -- - -- - -

12.5 Failure-Driven Loops

The interactive programs in the previous section were all based on tail re-
cursive loops. There is an alternative way of writing loops in Prolog that
are analogous to repeat loops in conventional languages. These loops
are driven by failure and are called failure-driven loops. These loops are
useful only when used in conjunction with extra-logical predicates that
cause side effects. Their behavior can be understood only from an opera-
tional point of view.

A simple example of a failure-driven loop is a query Goal, w r i t e

(Goal) , n l , f a i l ? , which causes all solutions to a goal to be written on
the screen. Such a loop is used in the shells of Programs 12.6 and 12.7.

A failure-driven loop can be used to define the system predicate
tab(N) for printing N blanks on the screen. It uses Program 8.5 for be-
tween:

tab(N) - between(1 ,N9 1) 9 ') , f a i l

Each of the interactive programs in the previous section can be rewrit-
ten using a failure-driven loop. The new version of the basic interactive
loop is given as Program 12.8. It is based on a nonterrninating system

Chapter 12 Extra-Logical Predicates

echo - repeat, reado(), echo(X), ! .

echo(X) - last-input (XI, ! .
echo(X) - write(X), nl, fail.

repeat.
repeat - repeat.
Program 12.8 Basic interactive repeat loop

consult (File) -
The clauses of the program in the file File are read and asserted.

consult (File) + open(Fi1e ,read,DD) , consult-loop(DD), close(DD) .
consult-loop(DD) - repeat, read(C1ause) , process (clause ,DD) , ! .
process(Clause,DD) - at-end-of-stream(DD.
process(Clause,DD) - assertz(Clause), fail.

Program 12.9 Consulting a file

predicate repeat , which can be defined by the minimal recursive proce-
dure in Program 12.8. Unlike the Program 12.4 goal, the goal echo(X)
fails unless the termination condition is satisfied. The failure causes
backtracking to the repeat goal, whch succeeds, and the next term is
read and echoed. The cut in the definition of echo ensures that the repeat
loop is not reentered later.

Failure-driven loops that use repeat are called repeat loops and are
the analogue of repeat loops from conventional languages. Repeat loops
are useful in Prolog for interacting with the outside system to repeatedly
read and/or write. Repeat loops require a predicate that is guaranteed
to fail, causing the iteration to continue, unless the loop should be ter-
minated. The goal echo(X) in Program 12.8 serves that function, only
succeeding when the last input is reached. A useful heuristic for building
repeat loops is that there should be a cut in the body of the clause with
the repeat goal, whch prevents a nonterminating computation were the
loop to be reentered via backtraclung.

We use a repeat loop to define the system predicate consult (F i l e)
for reading in a file of clauses and asserting them. Program 12.9 contains
its definition. The system predicates o p e d 3 and c lose / l are used for
opening and closing an input file, respectively.

Tail recursive loops are preferable to repeat loops because the latter
have no logical meaning. In practice, repeat loops are often necessary
to run large computations, especially on Prolog implementations without
tail recursion optimization or garbage collection. Explicit failure typically
initiates some implementation-dependent reclamation of space.

Exercise for Section 12.5

(i) Write your own version of the builtin predicate abol ish (F , N) that
retracts all the clauses for the procedure F of arity N.

12.6 Background

1/0 has never really blended well with the rest of the language of Pro-
log. Its standard implementation, with side effects, relies solely on the
procedural semantics of Prolog and has no connection to the underlying
logic programming model. For example, if an output is issued on a fail-
ing branch of a computation, it is not undone upon backtraclung. If an
input term is read, it is lost on backtraclung, as the input stream is not
backtrackable.

Concurrent logic languages attempt to remedy the problem and to in-
tegrate 1/0 better with the logic programming model by identifying the
1/0 streams of devices with the logical streams in the language (Shapiro,
1986). Perpetual recursive processes can produce or consume incremen-
tally those potentially unbounded streams.

Self-modifying programs are a bygone concept in computer science.
Modern programming languages preclude this ability, and good assem-
bly language practice also avoids such programming tricks. It is ironic
that a programming language attempting to open a new era in computer
programming opens the front door to such arcane techmques, using the
predicates a s s e r t and r e t r a c t .

These program manipulation predicates of Prolog were devised ini-
tially as a low-level mechanism for loading and reloading programs, im-
plemented in DEC-10 Prolog by the consult and reconsult predicates.
However, like any other feature of a language, they ended up being used
for tasks that, we believe, were not intended by their original designers.

Chapter 12

Reluctantly, we must acknowledge that assert and re t rac t are part
of Prolog, and clarify the anomalies. Attempts have been made in t h s
direction. Inconsistencies between hfferent Prolog implementations are
discussed in Moss (1986). The best way of handling retracts seems to be
the logical update view presented in Lindholm and O'Keefe (1987).

The discussion of static and dynamic predicates comes from the Stan-
dard Prolog draft (Scowen, 1991).

The program for the Towers of Hanoi was shown to us by Shmuel Safra.
Memo-functions in the context of artificial intelligence were proposed by
Donald Michie (1968).

The line editor is originally due to Warren (1982b).

Program Development

Software engineering considerations are as relevant for programming
in logic programming languages as in procedural languages. Prolog is
no different from any other language in its need for a methodology to
build and maintain large programs. A good programming style is im-
portant, as is a good program development methodology. This chapter
discusses programming style and layout and program development, and
introduces a method called stepwise enhancement for systematic con-
struction of Prolog programs.

1 3.1 Programming Style and Layout

One basic concern in composing the programs in this book has been to
make them as declarative as possible to increase program clarity and
readability. A program must be considered as a whole. Its readability is
determined by its physical layout and by the choice of names appear-
ing in it. Ths section discusses the guidelines we use when composing
programs.

An important influence in making programs easy to read is the naming
of the various objects in the program. The choice of all predicate names,
variable names, constants, and structures appearing in the program af-
fect readability. The aim is to emphasize the declarative reading of the
program.

We choose predicate names to be a word (or several words) that names
relations between objects in the program rather than describing what the

Chapter 13 Program Development

program is doing. Coining a good declarative name for a procedure does
not come easily.

The activity of programming is procedural. It is often easier to name
procedurally than declaratively (and programs with procedural names
usually run faster :-). Once the program works, however, we often revise
the predicate names to be declarative. Composing a program is a cyclic
activity in whch names are constantly being reworked to reflect our
improved understanding of our creation, and to enhance readability by
us and others.

Mnemonic variable names also have an effect on program readability.
A name can be a meaningful word (or words) or a standard variable form
such as Xs for lists.

Variables that appear only once in a clause can be handled separately.
They are in effect anonymous, and from an implementation viewpoint
need not be named. Standard Prolog supports a special syntactic con-
vention, a single underscore, for referring to anonymous variables. Using
this convention, Program 3.12 for member would be written

member (X, [X I -1) .
member (X, [- 1 Ysl) - member (X,Ys)
The advantage of the convention is to highlight the significant variables
for unification. The disadvantage is related; the reading of clauses be-
comes procedural rather than declarative.

We use different syntactic conventions for separating multiple words
in variable names and predicate functors. For variables, composite words
are run together, each new word starting with a capital letter. Multiple
words in predicate names are linked with underscores. Syntactic conven-
tions are a matter of taste, but it is preferable to have a consistent style.

The layout of individual clauses also has an effect on how easily pro-
grams can be understood. We have found the most helpful style to be

f oo ((Arguments)) +

barl ((Argumentsl)) ,
bar2 ((Arguments2)) ,

bar, ((Arguments,)) .

The heads of all clauses are aligned, the goals in the body of a clause
are indented and occupy a separate line each. A blank line is inserted
between procedures, but there is no space between individual clauses of
a procedure.

Layout in a book and the typography used are not entirely consistent
with actual programs. If all the goals in the body of a clause are short,
then have them on one line. Occasionally we have tables of facts with
more than one fact per line.

A program can be self-documenting if sufficient care is taken with
these two factors and the program is sufficiently simple. Given the nat-
ural aversion of programmers to comments and documentation, this is
very desirable.

In practice, code is rarely self-documenting and comments are needed.
One important part of the documentation is the relation scheme, which
can be presented before the clauses defining that relation, augmented
with further explanations if necessary. The explanations used in t h s
book define the relation a procedure computes. It is not always easy to
come up with a precise, declarative, natural language description of a
relation computed by a logic program. However, the inability to do so
usually indicates that the programmer does not fully understand the
creation, even if the creation actually works. Hence we encourage the use
of the declarative documentation conventions adopted in thls book. They
are a good means of communicating to others what a program defines as
well as a discipline of thought, enabling programmers to thnk about and
reflect on their own creations.

13.2 Reflections on Program Development

Since programming in pure Prolog is as close to writing specifications
as any practical programming language has gotten, one might hope that
pure Prolog programs would be bug-free. Ths, of course, is not the case.
Even when axiomatizing one's concepts and algorithms, a wide spectrum
of bugs, quite similar to ones found in conventional languages, can be
encountered.

Stating it differently, for any formalism there are sufficiently com-
plex problems for whch there are no self-evidently correct formulations

Chapter 13 Program Development

of solutions. The difference between low-level and hgh-level languages,
then, is only the threshold after whch simple examination of the pro-
gram is insufficient to determine its correctness.

There are two schools of thought on what to do on such an occasion.
The "verification" school suggests that such complex programs be ver-
ified by proving that they behave correctly with respect to an abstract
specification. It is not clear how to apply t h s approach to logic programs,
since the distance between the abstract specification and the program is
much smaller then in other languages. If the Prolog axiomatization is not
self-evident, there is very little hope that the specification, no matter in
what language it is written, would be.

One might suggest using full first-order logic as a specification formal-
ism for Prolog. It is the authors' experience that very rarely is a specifi-
cation in full first-order logic shorter, simpler, or more readable then the
simplest Prolog program defining the relation.

Given t h s situation, there are weaker alternatives. One is to prove
that one Prolog program, perhaps more efficient though more complex,
is equivalent to a simpler Prolog program, whch, though less efficient,
could serve as a specification for the first. Another is to prove that a pro-
gram satisfies some constraint, such as a "loop invariant," whch, though
not guaranteeing the program's correctness, increases our confidence in
it.

In some sense, Prolog programs are executable specifications. The al-
ternative to staring at them, trying to convince ourselves that they are
correct, is to execute them, and see if they behave in the way we want.
Ths is the standard testing and debugging activity, carried out in pro-
gram development in any other programming language. All the classical
methods, approaches, and common wisdom concerning program testing
and debugging apply equally well to Prolog.

What is the difference, then, between program development in conven-
tional, even symbolic languages and Prolog?

One answer is that although Prolog programming is "just" program-
ming, there is some improvement in ease of expression and speed of de-
bugging compared to other lower-level formalisms - we hope the reader
has already had a glimpse of it.

Another answer is that declarative programming clears your mind. Said
less dramatically, programming one's ideas in general, and program-
ming in a declarative and high-level language in particular, clarifies one's

thoughts and concepts. For experienced Prolog programmers, Prolog is
not just a formalism for coding a computer, but also a formalism in
whch ideas can be expressed and evaluated - a tool for thinking.

A th rd answer is that the properties of the hgh-level formalism of
logic may eventually lead to practical program development tools that
are an order of magnitude more powerful then the tools used today.
Examples of such tools are automatic program transformers, partial-
evaluators, type inference programs, and algorithrmc debuggers. The lat-
ter are addressed in Section 17.3, where program diagnosis algorithms
and their implementation in Prolog are described.

Unfortunately, practical Prolog programming environments incorpo-
rating these novel ideas are not yet widely available. In the meantime,
a simple tracer, such as explained in Section 17.2, is most of what one
can expect. Nevertheless, large and sophisticated Prolog programs can
be developed even using the current Prolog environments, perhaps with
greater ease than in other available languages.

The current tools and systems do not dictate or support a specific
program development methodology. However, as with other symbolic
programming languages, rapid prototyping is perhaps the most natural
development strategy. In t h s strategy, one has an evolving, usable pro-
totype of the system in most stages of the development. Development
proceeds by either rewriting the prototype program or extending it. An-
other alternative, or complementary, approach to program development
is "think top-down, implement bottom-up." Although the design of a sys-
tem should be top-down and goal-driven, its implementation proceeds
best if done bottom-up. In bottom-up programming each piece of code
written can be debugged immediately. Global decisions, such as repre-
sentation, can be tested in practice on small sections of the system, and
cleaned up and made more robust before most of the programming has
been done. Also, experience with one subsystem may lead to changes in
the design of other subsystems.

The size of the chunks of code that should be written and debugged as
a whole varies and grows as the experience of the programmer grows. Ex-
perienced Prolog programmers can write programs consisting of several
pages of code, knowing that what is left after writing is done is mostly
simple and mundane debugging. Less experienced programmers might
find it hard to grasp the functionality and interaction of more then a few
procedures at a time.

Chapter 13 Program Development

We would like to conclude t h s section with a few moralistic state-
ments. For every programming language, no matter how clean, elegant,
and hgh-level, one can find programmers who will use it to write dirty,
contorted, and unreadable programs. Prolog is no exception. However,
we feel that for most problems that have an elegant solution, there is an
elegant expression of that solution in Prolog. It is a goal of this book to
convey both this belief and the tools to realize it in concrete cases, by
showing that aesthetics and practicality are not necessarily opposed or
conflicting goals. Put even more strongly, elegance is not optional.

13.3 Systematizing Program Construction

The pedagogic style of this book is to present well-constructed programs
illustrating the important Prolog programming techniques. The examples
are explained in sufficient detail so that readers can apply the techniques
to construct similar programs to meet their own programming needs.
Implicitly, we are saying that Prolog programming is a skill that can be
learned by observing good examples and abstracting the principles.

Learning by apprenticeshp, observing other programs, is not the only
way. As experience with programming in Prolog accumulates, more sys-
tematic methods of teaching Prolog programming are emerging. The
emergence of systematic methods is analogous to the emergence of
structured programming and stepwise refinement in the early 1970s af-
ter sufficient experience had accumulated in writing programs in the
computer languages of the 1950s and 1960s.

In this section, w7e sketch a method to develop Prolog programs. The
reader is invited to reconstruct for herself how t h s method could be ap-
plied to develop the programs in Parts 111 and IV of t h s book. Underlying
the method is a desire to provide more structure to Prolog programs so
that software components can be reused and large applications can be
routinely maintained and extended.

Central to the method is identifying the essential flow of control of a
program. A program embodying a control flow is called a skeleton. Extra
goals and arguments can be attached to a skeleton. The extra goals and
arguments are entwined around the central flow of control and perform
additional computations. The program containing the extra arguments

and goals is called an enhancement of the skeleton. Building an enhance-
ment from a skeleton will be called applying a technique.

For example, consider Program 8.6a for summing a list of numbers,
reproduced here:

sumlist ([X I XS] ,Sum) - sumlist (Xs ,XsSm), Sum is X+XsSum.
sumlist ([I ,0> .

The control flow embodied in the sumlist program is traversing the
list of numbers. The skeleton is obtained by dropping the second ar-
gument completely, restricting to a predicate with one argument, and
removing goals that only pertain to the second argument. Ths gives the
following program, which should be identifiable as Program 3.1 1 defining
a list.

list ([XI Xsl) -- list (Xs) .
list([I).

The extra argument of the sumlist program calculates the sum of
the numbers in the list. Thls form of calculation is very common and
appeared in several of the examples in Chapter 8.

Another enhancement of the list program is Program 8.1 1 calculating
the length of a list. There is a clear similarity between the programs
for length and sumlist. Both use a similar technique for calculating a
number, in one case the sum of the numbers in the list, in the second the
length of the list.

length([X I Xs] ,N) - length(Xs,Nl), N is N1+1

length([I ,0) .

Multiple techniques can be applied to a skeleton. For example, we can
apply both summing elements and counting elements in one pass to get
the program sum-length:

sum-length([X I Xsl ,Sum,N) -
sumlist(Xs,XsSum,Nl), Sum is X+XsSum, N is Nl+1

sum-length([1 , 0 , 0) .

Intuitively, it is straightforward to create the sum-length program
from the programs for sumlist and length. The arguments are taken
directly and combined to give a new program. We call t h s operation com-
position. In Chapter 18, a program for composition is presented.

Chapter 13 Program Development

Another example of a techmque is adding a pair of arguments as an
accumulator and a final result. The techmque is informally described in
Section 7.5. Applylng the appropriate version of the techmque to the
list skeleton can generate Program 8.6b for sumlist or the iterative
version of length, whch is the solution to Exercise 8.3(vii).

Identifying control flows of programs may seem contradictory to the
ideal of declarative programming espoused in the previous section. How-
ever, at some level programming is a procedural activity, and describ-
ing well-written chunks of code is fine. It is our belief that recognizing
patterns of programs makes it easier for people to develop good style.
Declarativeness is preserved by ensuring wherever possible that each en-
hancement produced be given a declarative reading.

The programming method called stepwise e n h a n c e m e n t consists of
three steps:

1. Identify the skeleton program constituting the control flow.

2. Create enhancements using standard programming techniques.

3. Compose the separate enhancements to give the final program.

We illustrate stepwise enhancement for a simple example - calculat-
ing the union and intersection of two lists of elements. For simplicity we
assume that there are no duplicate elements in the two lists and that we
do not care about the order of elements in the answer.

A skeleton for this program follows. The appropriate control flow is to
traverse the first list, checking whether each element is a member or not
of the second list. There will be two cases:

skel([XIXs] ,Ys) - member(X,Ys), skel(Xs,Ys).

skel ([XI Xs] ,Ys) - nonmember (X, Ys) , skel (Xs ,Ys) .
skel([1 ,Ys).

To calculate the union, we need a thlrd argument, whch can be built
top-down in the style discussed in Section 7.5. We consider each clause
in turn. When an element in the first list is a member of the second list,
it is not included in the union. When an element in the first list is not
a member of the second list, it is included in the union. When the first
list is empty, the union is the second list. The enhancement for union is
given as Program 13.1.

union(Xs,Ys,Us) -
U s is the union of the elements in Xs and Ys.

union([XIXs] ,Ys,Us) + member(X,Ys), union(Xs,Ys,Us).
union([XIXs],Ys,[XIUsl) - nonmember(X,Ys), union(Xs,Ys,~s).
union([1 ,Ys,Ys) .

Program 13.1 Finding the union of two lists

intersect (Xs, Ys,Is) -
Is is the intersection of the elements in X s and Ys.

intersect(CXIXsl ,Ys, [XI Is1) - member(X,Ys) , intersect (X S , Y ~ , I S)
intersect([XIXs],Ys,Is) - nonmember(X,Ys), intersect(Xs,~s,~s).
intersect([l,Ys,[I).

Program 13.2 Finding the intersection of two lists

union-intersect (Xs, Ys, Us,Is) -
U s and Is are the union and intersection, respectively, of the
elements in X s and Ys.

union-intersect ([X IXsl ,Ys,Us, [XI Is1) -
member(X,Ys), union~intersect(Xs,Ys,Us,Is).

union-intersect ([XI Xs] ,Ys, [X [Us] ,Is) -
nonmember(X,Ys), union-intersect(Xs,Ys,Us,Is).

union-intersect ([I ,Ys,Ys, [I).

Program 13.3 Finding the union and intersection of two lists

The intersection, given as Program 13.2, is determined with a similar
technique. We again consider each clause in turn. When an element in the
first list is a member of the second list, it is included in the intersection.
When an element in the first list is not a member of the second list, it
is not included in the intersection. When the first list is empty, so is the
intersection.

Calculating both the union and the intersection can be determined in a
single traversal of the first list by composing the two enhancements. This
program is given as Program 13.3.

Developing a program is typically straightforward once the skeleton
has been decided. Knowing what skeleton to use is less straightforward

Chapter 13 Program Development

and is learned by experience. Experience is necessary for any design task.
By splitting up the program development into three steps, however, the
design process is simplified and given structure.

A motivation behnd giving programs structure, as is done by stepwise
enhancement, is to facilitate program maintenance. It is easy to extend
a program by adding new techniques to a skeleton, and it is possible to
improve programs by changing skeletons while maintaining techniques.
Further, the structure makes it easy to explain a program.

Skeletons and techtuques can be considered as constituting reusable
software components. Ths will be illustrated in Chapter 17, where the
same skeleton meta-interpreter is useful both for program debugging
and for expert system shells.

Having raised software engineering issues such as maintainability and
reusability, we conclude this chapter by examining two other issues that
must be addressed if Prolog is to be routinely used for large software
projects. The place of specifications should be clarified, and modules are
necessary if code is to be developed in pieces.

It is clear from the previous section that we do not advocate using
first-order logic as a specification language. Still, it is necessary to have
a specification, that is, a document explaining the behavior of a program
sufficiently so that the program can be used without the code having to
be read. We believe that a specification should be the primary form of
documentation and be given for each procedure in a program.

A suggested form for a specification is given in Figure 13.1. It consists
of a procedure declaration, effectively giving the name and arity of the
predicate; a series of type declarations about the arguments; a relation
scheme; and other important information such as modes of use of the
predicate and multiplicities of solutions in each mode of use. We discuss
each component in turn.

Types are emerging as important in Prolog programs. An untyped lan-
guage facilitates rapid prototyping and interactive development, but for
more systematic projects, imposing types is probably worthwhle.

The relation scheme is a precise statement in English that explains the
relation computed by the program. All the programs in this book have
a relation scheme. It should be stressed that relation schemes must be
precise statements. We believe that proving properties of programs will
proceed in the way of mathematics, where proofs are given by precise
statements in an informal language.

procedure p(T1 ,Tr , . . . ,T,)

Types: TI: type 1
T2: type 2

T,: type n

Relation scheme:

Modes of use:

Multiplicities of solution:

Figure 13.1 Template for a specification

Prolog programs ~nherit from logic programs the possibility of be-
ing multi-use. In practice, multi-use is rare. A specification should state
whch uses are guaranteed to be correct. That is the purpose of the
modes of use component in Figure 13.1. Modes of use are specified by
the instantiation state of arguments before and after calls to the predi-
cate.

For example, the most common mode of use of Program 3.15 for ap-
pend(Xs , Ys , Zs) for concatenating two lists X s and Y s to produce a list
Z s is as follows. X s and Y s are instantiated at the time of call, whereas
Z s is not, and all three arguments are instantiated after the goal suc-
ceeds. Calling append/3 with all three arguments instantiated is a dif-
ferent mode of use. A common convention, taken from DEC-10 Prolog
is to use + for an instantiated argument, - for an uninstantiated argu-
ment, and ? for either. The modes for the preceding use of append are
append (+, +, -) before the call and append (+, +, +) after the call.

More precise statements can be made by combining modes with types.
The mode of use of the current example becomes the following: Before
the call the first two arguments are complete lists and the third a vari-
able; after the call all three arguments are complete lists.

Multiplicities are the number of solutions of the predicate, and should
be specified for each mode of use of the program. It is useful to give
both the minimum and maximum number of solutions of a predicate.
The multiplicities can be used to reason about properties of the program.

Modules are primarily needed to allow several people to work on a
project. Several programmers should be able to develop separate compo-
nents of a large system without worrying about undesirable interactions

Chapter 13 Program Development

such as conflict of predicate names. What is needed is a mechanism for
specifying what is local to a module and whch predicates are imported
and exported.

Current Prolog systems provide primitive facilities for handling mod-
ules. The current systems are either atom-based or predicate-based, de-
pending on what is made local to the module. Directives are provided for
specifying imports and exports. Experience is growing in using existing
module facilities, which will be translated into standards for modules
that will ultimately be incorporated into Standard Prolog. The current
draft on modules in Standard Prolog is in too much flux to describe here.
The user needing modules should consult the relevant Prolog manual.

Exercises for Section 13.3

(i) Enhance Program 13.3 to build the list of elements contained in the
first list but not in the second list.

(ii) Write a program to solve the following problem. Given a binary tree
T with positive integers as values, build a tree that has the same
structure as T but with every node replaced by the maximum value
in the tree. It can be accomplished with one traversal of the tree.
(Hint: Use Program 3.23 as a skeleton.)

(iii) Write a program to calculate the mean and mode of an ordered list
of numbers in one pass of the list.

1 3.4 Background

Commenting on Prolog programming style has become more prevalent in
recent Prolog textbooks. There are useful discussions in both Ross (1989)
and O'Keefe (1990). The latter book also introduces program schemas,
which have parallels with skeletons and techniques.

Stepwise enhancement has emerged from ongoing work at Case West-
ern Reserve University, first in the COMPOSERS group and more recently
in the ProSE group. Examples of decomposing Prolog programs into
skeletons and techniques are given in Sterling and Kirschenbaum (1 993)
and presented in tutorial form in Deville, Sterling, and Deransart (1991).

Underlying theory is given in Power and Sterling (1990) and Kirschen-
baum, Sterling, and Jain (1993). An application of structuring Prolog
programs using skeletons and techmques to the inductive inference of
Prolog programs can be found in Kirschenbaum and Sterling (1991).

Automatic incorporation of t echques into skeletons via partial evalu-
ation has been described in Lakhotia (1989).

The discussion on specifications for Prolog programs is strongly influ-
enced by Deville (1990).

Exercise 13.3(ii) was suggested by Gilles Kahn. The example is orig-
inally due to Bird. Exercise 13.3(iii) emerged through interaction with
Marc Kirschenbaum. Solutions to both exercises are given in Deville, Ster-
ling, and Deransart (1991).

111 Advanced Prolog Programming Techniques

The expressive power and hlgh-level nature of logic programming can
be exploited to write programs that are not easily expressed in conven-
tional programming languages. Different problem-solving paradigms can
be supported, and alternative data construction and access mechanisms
can be used.

The simple Prolog programs of the previous part are examples of the
use of basic programming techmques, reinterpreted in the context of
logic programming. T h s part collects more advanced techmques that
have evolved in the logic programming community and exploit the spe-
cial features of logic programs. We show how they can be used to advan-
tage.

Leonardo Da Vinci. Study of a Woman's Hands folded over her Breast. Silver-
point on pink prepared paper, heightened with white. About 1478. Windsor
Castle, Royal Library.

Nondeterministic Programming

One feature of the logic programming computation model laclung in con-
ventional programming models is nondeterminism. Nondeterminism is
a technical concept used to define, in a concise way, abstract computa-
tion models. However, in addition to being a powerful theoretical con-
cept, nondeterminism is also useful for defining and implementing algo-
rithms. Thls chapter shows how, by thinlung nondeterministically, one
can construct concise and efficient programs.

Intuitively, a nondeterministic machne can choose its next operation
correctly when faced with several alternatives. True nondeterministic
machines cannot be realized but can be simulated or approximated. In
particular, the Prolog interpreter approximates the nondeterministic be-
havior of the abstract interpreter of logic programs by sequential search
and backtraclung, as explained in Chapter 6. However, the fact that non-
determinism is only simulated without being "really present" can be ab-
stracted away in many cases in favor of nondeterministic thlnking in
much the same way as pointer manipulation details involved in unifica-
tion can be abstracted away in favor of symbolic thmlung.

Generate-and-test is a common technique in algorithm design and pro-
gramming. Here is how generate-and-test works for problem solving. One
process or routine generates candidate solutions to the problem, and an-
other process or routine tests the candidates, trying to find one or all
candidates that actually solve the problem.

Chapter 14 Nondeterministic Programming

It is easy to write logic programs that, under the execution model of
Prolog, implement the generate-and-test techmque. Such programs typi-
cally have a conjunction of two goals, in whch one acts as the generator
and the other tests whether the solution is acceptable, as in the following
clause:

find (X) - generate (X) , test ()o
T h s Prolog program would actually behave like a conventional, procedu-
ral, generate-and-test program. When called with f ind(X)?, generate (X)
succeeds, returning some X, with whch test (X) is called. If the test goal
fails, execution backtracks to generate (X), which generates the next
element. Ths continues iteratively until the tester successfully finds a
solution with the distinguishng property or until the generator has ex-
hausted all alternative solutions.

The programmer, however, need not be concerned with the generate-
and-test cycle and can view this techmque more abstractly, as an instance
of nondeterministic programming. In this nondeterministic program the
generator guesses correctly an element in the domain of possible solu-
tions, and the tester simply verifies that the guess of the generator is
correct.

A good example of a program with multiple solutions and com-
monly used as a generator is Program 3.12 for member. The query mem-
ber (X , [a, b , cl) ? will yleld the solutions X=a, X=b, and X=c successively
as required. Thus member can be used to nondeterministically choose the
correct element of a list in a generate-and-test program.

Program 14.1 is a simple example of generate-and-test using mem-
ber as a generator. The program identifies parts of speech of a sen-
tence. We assume that a sentence is represented as a list of words
and that there is a database of facts giving the parts of speech of
particular words. Each part of speech is a unary predicate whose
argument is a word, for example, noun(man) indicates that man is a
noun. The relation verb(Sentence,Word) is true if Word is a verb in
sentence Sentence. The analogous meanings are intended for noun/2
and article/2. The query verb([a,man, loves, a, woman1 ,V)? finds
the verb V=loves in the sentence using generate-and-test. Words
in the sentence are generated by member and tested to see if they are
verbs.

verb (Sentence, Verb) -
Verb is a verb in the list of words Sentence.

Vocabulary

noun(man1. noun(woman) .
ar t ic le (a) . verb(1oves) .

mernber(X,Xs) - see Program 3.12.

Program 14.1 Finding parts of speech in a sentence

Another simple example is testing whether two lists have an element
in common. Consider the predicate intersect (Xs,Ys), whch is true if
Xs and Ys have an element in common:

intersect (Xs ,Ys) - member(X,Xs) , member(X,Ys).
The first member goal in the body of the clause generates members

of the first list, which are then tested to see whether they are in the
second list by the second member goal. Thnlung nondeterrninistically, the
first goal guesses an X in Xs, and the second verifies that the guess is a
member of Ys.

Note that when executed as a Prolog program, t h s clause effectively
implements two nested loops. The outer loop iterates over the elements
of the first list, and the inner loop checks whether the chosen element is
a member of the second list. Hence t h s nondeterministic logic program
acheves, under the execution model of Prolog, a behavior very similar to
the standard solution one would compose for this problem in Fortran,
Pascal, or Lisp.

The definition of member in terms of append,

member (X , Xs) - append (As, [X I Bs] 9 Xs) .

is itself essentially a generate-and-test program. The two stages, how-
ever, are amalgamated b y the use of unification. The append goal gen-
erates splits of the list, and immediately a test is made whether the first
element of the second list is X.

Typically, generate-and-test programs are easier to construct than pro-
grams that compute the solution directly, but they are also less efficient.

Chapter 14 Nondeterministic Programming

A standard technique for optimizing generate-and-test programs is to
"push" the tester inside the generator as deeply as possible. Ultimately,
the tester is completely intertwined with the generator, and only correct
solutions are generated.

Let us consider optimizing generate-and-test programs by puslung the
tester into the generator. Program 3.20 for permutation sort is another
example of a generate-and-test program. The top level is as follows:

sort (XS , YS) - permutation (Xs , Ys) , ordered(Ys)
Abstractly, this program guesses nondeterministically the correct permu-
tation via permutation (Xs , Ys), and ordered checks that the permuta-
tion is actually ordered.

Operationally, the behavior is as follows. A query involving sort is re-
duced to a query involving permutation and ordered. A failure-driven
loop ensues. A permutation of the list is generated by permutation and
tested by ordered. If the permuted list is not ordered, the execution
backtracks to the permutation goal, which generates another permuta-
tion to be tested. Eventually an ordered permutation is generated and
the computation terminates.

Permutation sort is a highly inefficient sorting algorithm, requiring
time super-exponential in the size of the list to be sorted. Puslung the
tester into the generator, however, leads to a reasonable algorithm. The
generator for permutation sort, permutation, selects an arbitrary ele-
ment and recursively permutes the rest of the list. The tester, ordered,
verifies that the first two elements of the permutation are in order, then
recursively checks the rest. If we view the combined recursive permuta-
tion and ordered goals as a recursive sorting process, we have the basis
for insertion sort, Program 3.21. To sort a list, sort the tail of the list and
insert the head of the list into its correct place in the order. The arbitrary
selection of an element has been replaced by choosing the first element.

Another example of the advantage of intertwining generating and test-
ing can be seen with programs solving the N queens problem.

The N queens problem requires the placement of N pieces on an N -
by-N rectangular board so that no two pieces are on the same line: hori-
zontal, vertical, or diagonal. The original formulation called for 8 queens
to be placed on a chessboard, and the criterion of not being on the same
line corresponds to two queens not attaclung each other under the rules
of chess. Hence the problem's name.

Figure 14.1 A solution to the 4 queens problem

queens (N,Queens) -
Queens is a placement that solves the N queens problem,
represented as a permutation of the list of numbers [l, 2,. . . , N].

queens(N,Qs) -
range(1 ,N,Ns) , ~ermutation(Ns ,Qs), saf e(Qs).

safe(Qs) -
The placement Q s is safe.

safe([Q 1 Qs]) - saf e(Qs), not attack(Q ,Qs).
safe([1) .

attack(X,Xs) - attack(X, 1 ,Xs).
attack(X,N, [YIYs]) - X is Y+N ; X is Y-N.
attack(X,N, [YIYs]) - N1 is N+1, attack(X,NI,Ys)
permutation(Xs ,YS) - See Program 3.20.

range(M,N,Ns) - See Program 8.12.

Program 14.2 Naive generate-and-test program solving N queens

The program has been well studied in the recreational mathematics lit-
erature. There is no solution for N = 2 and N = 3, and a unique solution
up to reflection for N = 4, shown in Figure 14.1. There are 88 solutions
for N = 8, or 92, depending on strictness with symmetries.

Program 14.2 is a simplistic program solving the N queens problem.
The relation queen(N, Qs) is true if Qs is a solution to the N queens prob-
lem. Solutions are specified as a permutation of the list of the numbers 1
to N. The first element of the list is the row number to place the queen in
the first column, the second element indicates the row number to place
the queen in the second column, etc. Figure 14.1 indicates the solution
[2,4,1,3] to the 4 queens problem. T h s specification of solutions, and

Chapter 14

the program generating them, has implicitly incorporated the observa-
tion that any solution to the N queens problem will have a queen on each
row and a queen on each column.

The program behaves as follows. The predicate range creates a list
Ns of the numbers from 1 to N. Then a generate-and-test cycle begins.
The permutation predicate generates a permutation Qs of Ns, whch is
tested to see whether it is a solution to the problem with the predi-
cate saf e(Qs). This predicate is true if Qs is a correct placement of the
queens. Since two queens are not placed on the same row or column, the
predicate need only check whether two queens attack each other along a
diagonal. Safe is defined recursively. A list of queens is safe if the queens
represented by the tail of the list are safe and the queen represented by
the head of the list does not attack any of the other queens. The def-
inition of attack(Q,Qs) uses a neat encapsulation of the interaction of
diagonals. A queen is on the same diagonal as a second queen N columns
away if the second queen's row number is N units greater than, or N
units less than, the first queen's row number. Ths is expressed by the
first clause of attack/3 in Program 14.2. The meaning of attack(Q, 9s)
is that queen Q attacks some queen in qs. The diagonals are tested itera-
tively until the end of the board is reached.

Program 14.2 cannot recognize when solutions are symmetric. The
program gives two solutions to the query queens (4, Qs) ?, namely
Qs=[2,4,1,31 andQs=[3,1,4,21.

Although it is a well-written logic program, Program 14.2 behaves inef-
ficiently. Many permutations are generated that have no chance of being
solutions. As with permutation sort, we improve the program by pushng
the tester, in this case safe, into the generator.

Instead of testing the complete permutation, that is, placing all the
queens, each queen can be checked as it is being placed. Program 14.3
computes solutions to the N queens problem by placing the queens one
at a time. It also proceeds by generating and testing, in contrast to inser-
tion sort, which became a deterministic algorithm by the transformation.
The generator in the program is select and the tester is attack, or more
precisely its negation.

The positions of the previously placed queens are necessary to test
whether a new queen is safe. Therefore the final solution is built upward
using an accumulator. This is an application of the basic t e c h q u e de-
scribed in Section 7.5. A consequence of using an accumulator is that the
queens are placed on the right-hand edge of the board. The two solu-

Nondeterministic Programming

queens (N,Queens) -
Queens is a placement that solves the N queens problem,
represented as a permutation of the list of numbers [I, 2 , . . . , N] .

queens(N,Qs) + range(l,N,Ns), queens(Ns,C 1,Qs).

queens(UnplacedQs,SafeQs,Qs) -
select (Q ,UnplacedQs ,UnplacedQsl) ,
not attack(Q, Saf eQs) ,
queens(UnplacedQsl,[QISafeQs1,Qs).

queens([I ,Qs,Qs) .
select (X,XS,YS) - See Program 3.19.

attack(X,Xs) - See Program 14.2.

Program 14.3 Placing one queen at a time

Figure 14.2 A map requiring four colors

tions to the query queens (4,Qs)? are given in the opposite order to the
solutions given by Program 14.2.

The next problem is to color a planar map so that no two adjoining re-
gions have the same color. A famous conjecture, an open question for a
hundred years, was proved in 1976, showing that four colors are suffi-
cient to color any planar map. Figure 14.2 gives a simple map requiring
four colors to be colored correctly. Thls can be proved by enumeration of
the possibilities. Hence four colors are both necessary and sufficient.

Program 14.4, whlch solves the map-coloring problem, uses the
generate-and-test programming t e c h q u e extensively. The program im-
plements the following nondeterministic iterative algorithm:

For each region of the map,
choose a color,
choose (or verify) colors for the neighboring regions from the

remaining colors.

Chapter 14 Nondeterministic Programming

color-map (Map,Colors) -
Map is colored with CO/O~S so that no two neighbors have the same
color. The map is represented as an adjacency-list of regions
region(Name,Color,Neighbors) , where Name is the name of the
region, Color is its color, and Neighbors are the colors of its
neighbors.

color-region (Region, Colors) -
Region and its neighbors are colored using Colors so that the
region's color is different from the color of any of its neighbors.

select (X,Xs ,Ys) - See Program 3.19.

members(Xs ,YS) - See Program 7.6.

Program 14.4 Map coloring

A data structure is needed to support the algorithm. The map is repre-
sented as a list of regions. Each region has a name, a color, and a list of
colors of the adjoining regions. The map in Figure 14.2, for example, is
represented as

The sharing of variables is used to ensure that the same region is not
colored with two different colors by different iterations of the algorithm.

The top-level relation is color-map(Map, Colors), where Map is repre-
sented as before, and Colors is a list of colors used to color the map.
Our colors are red, yellow, blue, and whlte. The heart of the algorithm is
the definition of color-region(Region, Colors) :

color-region(region(Name ,color ,Neighbors) ,Colors) -
select (Color, Colors, Colorsl) , members (~ e i ~ h b o r s ,Colorsl) .

Test data

test-color(Name ,Map) -
map(Name,Map),
colors (Name, Colors) ,
color-map(Map,Colors).

UL;: : : z -
map(west~europe,[region(portugal,P,~El), region(spain,E,[F,P]), C , , - ! -

L -.
region(f rance ,F, [E, I, S ,B, WG ,L]) , region(belgium,B, [F ,H, L, WG]) , l : ;!J 2 :?
region(holland,H, [B,WG]) , region(west-germany ,WG, [F,A,S,H,B,L]) , 4 Q 3 !;: 5 r- 7 IS
region(luxembourg,L,[F,B,WG]), region(italy,I,[F,A,S]), w .-. !--

region(switzerland,S, [F,I,A,WGI) , region(austria,A, [I,S,WG])I). 2 6 12 5 :' ..,
5 < '.
5 A. -.

Program 14.5 Test data for map coloring

Both the select and members goals can act as generators or testers,
depending on whether their arguments are instantiated.

Overall, the effect of the program is to instantiate a data structure, the
map. The calls to select and members can be viewed as specifying local
constraints. The predicates either generate by instantiating arguments in
the structure or test whether instantiated values satisfy local constraints.
Program 14.5 tests the map coloring solution.

Instantiating a data structure designed especially for a problem is a
particularly effective means of implementing generate-and-test solutions.
Unification and failure to unify control the building of the final solution
structure, avoiding creation of unnecessary intermediate data structures.
Since unification is supported well by Prolog implementations, solutions
are found quickly. Exercise 14.l(iv) assigns the task of designing a data
structure that can be instantiated to solve the N queens problem. The
resulting program solves the N queens problem much more quickly than
Program 14.3.

Our final example is solving a logic puzzle. The behavior of the pro-
gram is similar to the map-coloring program. The logic puzzle consists
of some facts about some small number of objects that have various at-
tributes. The minimum number of facts is given about the objects and
attributes, to yleld a unique way of assigning attributes to objects.

Chapter 14 Nondeterministic P r o g r a m m i n g

Here is an example that we use to describe the technique of solving
logic puzzles.

Three friends came first, second, and thlrd in a programming competi-
tion. Each of the three has a different first name, likes a different sport,
and has a different nationality.

Michael likes basketball and did better than the American. Simon, the
Israeli, did better than the tennis player. The cricket player came first.

Who is the Australian? What sport does Richard play?
Logic puzzles such as t h s one are elegantly solved by instantiating

the values of a suitable data structure and extracting the solution val-
ues. Each clue is translated into a fact about the data structure. This can
be done before the exact form of the data structure is determined using
data abstraction. Let us analyze the first clue: "Michael likes basketball
and did better than the American." Two distinct people are referred to.
One is named Michael, whose sport is basketball, and the other is Amer-
ican. Further, Michael did better than the American. If we assume the
structure to be instantiated is Friends, then the clue is expressed as the
conjunction of goals

did-better (Manl ,Man2,Friends) , f irst-name(~an1 ,michael) ,
sport (Manl, basketball) , nationality(Man2, american) ,

Similarly, the second clue can be translated to the conditions

did-better (Manl , Man2, Friends) , f irst-name (Man1 , Simon) ,
nationality(Man1, israeli) , sport (~an2,tennis),

and the third clue to the conditions

A framework for solving puzzles is given as Program 14.6. The rela-
tion computed is solve-puzzle (Puzzle, Solution), where Solution is
the solution to Puzzle. The puzzle is represented by the structure puz-
zle (Clues, Queries, Solution), where the data structure being instan-
tiated is incorporated into the clues and queries, and the values to be
extracted are given by Solution.

The code for solve-puzzle is trivial. All it does is successively solve
each clue and query, whch are expressed as Prolog goals and are exe-
cuted with the meta-variable facility.

The clues and queries for our example puzzle are given in Program
14.7. We describe the structure assumed by the clues to solve the puzzle.

solve-puzzle (Puzzle,Solution) -
Solution is a solution of Puzzle,
where Puzzle is puzzle(Clues, Queries,Solution) .

solve~puzzle(puzzle(Clues,~ueries,~olution~,Solution~ -
solve (Clues) ,
solve(Queries).

solve ([Clue l Clues]) -
Clue, solve(C1ues).

solve([1) .

Program 14.6 A puz~le solver

Each person has three attributes and can be represented by the structure
friend (Name, Country, Sport). There are three friends whose order in
the programming competition is significant. This suggests an ordered
sequence of three elements as the structure for the problem, i.e., the list

The programs defining the conditions did-better, f irst-name, na-
tionality, sport, and first are straightforward, and are given in
Program 14.7.

The combination of Programs 14.6 and 14.7 works as a giant generate-
and-test. Each of the did-better and member goals access people, and
the remaining goals access attributes of the people. Whether they are
generators or testers depends on whether the arguments are instanti-
ated or not. The answer to the complete puzzle, for the curious, is that
Michael is the Australian, and Richard plays tennis.

The puzzle given in Program 14.7 is simple. An interesting question is
how well does the framework of Program 14.6 scale. A good example of a
larger puzzle is given in Exercise 14.l(vi). Is the framework adequate for
such a puzzle?

The short answer is yes. Prolog is an excellent language for solving
logic puzzles. However, care must be taken when formulating the clues
and queries. For example, the predicate member is often essential to spec-
ify individuals, as is done to formulate the query in Program 14.7. It may
be tempting to become systematic and begin the puzzle solution by spec-
ifying all individuals by member goals. This can lead to very inefficient
programs because too many choice-points are set up. In general, implicit
checking of a condition is usually more efficient. Another observation is

Chapter 14 Nondeterministic Programming

Test data

test-puzzle(Name,Solution) -
structure(Name,Structure),
clues(Name,Structure,Clues),
queries(Name,Structure,Queries,Solution),
solve-puzzle (puzzle (Clues, Queries, Solution) ,solution)

clues(test,Friends,
[(did-better(ManlCluel,Man2Cluel,Friends), % Clue 1
f irst-name(ManlClue1 ,michael) , sport (ManlCluel ,basketball),
nationality(Man2Cluel,american)),
(did-better(ManlClue2,Man2Clue2,Friends), % Clue 2
first-name(ManlClue2,simon), nationality(~anl~lue2,israeli),
sport(Man2Clue2,tennis)),
(first (Friends ,Manclue31 , sport (ManClue3, cricket)) % Clue 3
1).

queries(test, Friends,
[member(Ql,Friends),

f irst-name (Ql ,Name),
nationality(Q1 ,australian) , % Query 1
member (Q2, Friends) ,
f irst-name(Q2,richard) ,
sport (Q2, Sport) % Query 2

I,
[['The Australian is ' , Name], ['Richard plays ' , Sport]]

) .

did-better(A,B, [A,B,C]).
did-better(A,C, [A,B,CI).
did-better(B,C, [A,B,CI).

first-name(friend(~,~,C),A).
nationality(friend(~,~,~),B).
sport(friend(~,B,C),C).

Program 14.7 A description of a puzzle

that the order of the goals in the queries can significantly affect run-
ning time. It is best to worry about this once the problem formulation
is correct. Determining appropriate goal order is a skill easily learned by
experience.

Another tip concerns negative clues, such as "John is not the tailor."
These clues are best regarded as specifying two separate individuals,
John and the tailor, rather than as setting up a negative condition about
one individual. The predicate select can be used instead of member to
guarantee that individuals are different.

Exercises for Section 14.1

(i) Write a program to compute the integer square root of a natu-
ral number N defined to be the number I such that 12 I N , but
(I + 1)2 > N. Use the predicate between/3, Program 8.5, to generate
successive natural numbers on backtraclung.

(ii) Write a program to solve the stable marriage problem (Sedgewick,
1983), stated as follows:

Suppose there are N men and N women who want to get married. Each
man has a list of all the women in his preferred order, and each woman
has a list of all the men in her preferred order. The problem is to find a
set of marriages that is stable.
A pair o f marriages is unstable i f there are a man and woman who
prefer each other to their spouses. For example, consider the pair of
marriages where David is married to Paula, and Jeremy is married to
Judy. I f David prefers Judy to Paula, and Judy prefers David to Jeremy,
the pair of marriages is unstable. This pair would also be unstable if
Jeremy preferred Paula to Judy, and Paula preferred Jeremy to David.
A set of marriages is stable if there is no pair of unstable marriages.

Your program should have as input lists of preferences, and pro-
duce as output a stable set of marriages. It is a theorem from graph
theory that thls is always possible. Test the program on the follow-
ing five men and five women with their associated preferences:

avraham: chana tamar zvia ruth sarah
binyamin: zvia chana ruth sarah tamar
chaim: chana ruth tamar sarah zvia
david: zvia ruth chana sarah tamar
elazar: tamar ruth chana zvia sarah

Chapter 14 Nondeterministic Programming

zvia: elazar avraham david binyamin chaim
chana: david elazar binyamin avraham chaim
ruth: avraham david binyamin chaim elazar
sarah: chaim binyamin david avraham elazar
tamar: david binyamin chaim elazar avraham

(iii) Use Program 14.4 to color the map of Western Europe. The coun-
tries are given in Program 14.5.

(iv) Design a data structure for solving the N queens problem by instan-
tiation. Write a program that solves the problem by instantiating
the structure.

(v) Explain why the following program solves the N queens problem:

queens(N,Qs) -
gen-list (N,Qs) , place-queens (N,Qs ,Ups ,Downs).

gen-list(0, [I) .
gen-list(N, [QlL]) - N > 0, N1 is N-I, gen-list(N1,L)

place-queens (0, Qs ,Ups ,Downs) .
place-queens (I, Qs ,Ups, [D I Downs1) -

I > 0, 11 is 1-1,
place-queens (11, Qs, [U I Upsl ,Downs) ,
place-queen(I,Qs,Ups,Downs).

place-queen(Q, [Q 1 Qsl , [Q I Upsl , [Q 1 Downs1) .
place-queen (4, [QI 1 Qs1 , [U I Upsl , [D I Downs] -

place-queen (Q, Qs ,Ups, Downs) .

(vi) Write a program to solve the following logic puzzle. There are five
houses, each of a different color and inhabited by a man of a differ-
ent nationality, with a different pet, drink, and brand of cigarettes.

(a) The Englishman lives in the red house.

(b) The Spaniard owns the dog.

(c) Coffee is drunk in the green house.

(d) The Ukrainian drinks tea.

(e) The green house is immediately to the right (your right) of the
ivory house.

(f) The Winston smoker owns snails.

(g) Kools are smoked in the yellow house.

(h) Milk is drunk in the middle house.

(i) The Norwegian lives in the first house on the left.

0) The man who smokes Chesterfields lives in the house next to
the man with the fox.

(k) Kools are smoked in the house next to the house where the
horse is kept.

(1) The Lucky Strike smoker drinks orange juice.

(m) The Japanese smokes Parliaments.

(n) The Norwegian lives next to the blue house.

Who owns the Zebra? Who drinks water?

(vii) Write a program to test whether a graph is planar using the algo-
rithm of Hopcroft and Tarjan (Deo, 1974; Even, 1979).

14.2 Don't-Care and Don't-Know Nondeterminism

Two forms of nondeterminism are distinguished in the logic program-
ming literature. They differ in the nature of the choice that must be made
among alternatives. For don't-care nondeterminism, the choice can be
made arbitrarily. In terms of the logic programming computation model,
any goal reduction will lead to a solution, and it does not matter whch
particular solution is found. For don't-know nondeterminism, the choice
matters but the correct one is not known at the time the choice is made.

Most examples of don't-care nondeterminism are not relevant for the
Prolog programmer. A prototypical example is the code for minimum.
Program 3.7 is the standard, incorporating a limited amount of don't-care
nondeterrninism, namely, when X and Y are the same:

Chapter 14 Nondeterministic Programming

In Section 7.4, we termed this redundancy and advised against its use.
On the other hand, programs ehbi t ing don't-know nondeterrninism

are common. Consider the program for testing whether two binary trees
are isomorphc (Program 3 . 2 5 , reproduced here). Each clause is indepen-
dently correct, but given two isomorphic binary trees, we don't know
which of the two recursive clauses should be used to prove the isomor-
phism. Operationally, only when the computation terminates success-
fully do we know the correct choice:

isotree (void, void) .
isotree(tree(X,Ll ,R1) ,tree(~,~2,R2)) -

isotree(L1 ,L2) , isotree (R1 ,R2) .
isotree(tree(X,Ll,Rl), tree(X,~2,~2)) -

isotree(L1 ,R2), isotree (L2 ,R1).

Composing Prolog programs exhibiting either form of nondeterrninism
can be indistinguishable from composing deterministic programs. Each
clause is written independently. Whether inputs match only one clause
or several is irrelevant to the programmer. Indeed t h s is seen from the
multiple uses that can be made of Prolog programs. With arguments in-
stantiated in one way, the program is deterministic; with another pattern
of instantiation, the program is nondeterministic. For example, append/3
is deterministic if called with its first two arguments instantiated, whle
it is generally nondeterministic if called with the third argument instan-
tiated and the first two arguments uninstantiated.

The behavior of Prolog programs seemingly having don't-know nonde-
terminism such as isotree is known. A given logic program and a query
determine a search tree, as discussed in Chapter 5 , whch is searched
depth-first by Prolog. Writing a program possessing don't-know nonde-
terminism is really specifying a depth-first search algorithm for solving
the problem.

We consider this viewpoint in a little more detail with a particular
example: finding whether two nodes in a graph are connected. Figure
14.3 contains two graphs that will be used to test our ideas. The left-
hand one is a tree, while the right-hand one is not, containing a cycle.
Trees, or more generally, directed acyclic graphs (DAGs), behave better
than graphs with cycles, as we will see in our example programs.

Figure 14.3 Directed graphs

connected (X, Y) -
Node X is connected to node Y,
given an edge/2 relation describing a DAG.

connected(X,X).
connected(X,Y) - edge(X,N) , connected(N,Y) .
Data

edge(a,b). edge(a,c). edge(a,d). edge(a,e). edge(d,j).
edge(c,f). edge(c,g). edge(f,h). edge(e,k). edge(f,i).

edge(x,y). edge(y,z). edge(z,x). edge(y,u). edge(z,v).

Program 14.8 Connectivity in a finite DAG

Our first program is a small modification of a logic program of Section
2 . 3 . Program 14.8 defines the relation connected(X,Y), whch is true if
two nodes in a graph, X and Y, are connected. Edges are directed; the fact
edge(X,Y) states that a directed edge exists from X to Y. Declaratively
the program is a concise, recursive specification of what it means for
nodes in a graph to be connected. Interpreted operationally as a Prolog
program, it is the implementation of an algorithm to find whether two
nodes are connected using depth-first search.

The solutions to the query connected(a,X)? using the data from the
left-hand graph in Figure 14.3 gives as values for X, a, b, c, f, h, i, g, d, j,
e, k. Their order constitutes a depth-first traversal of the tree.

Program 14.9 is an extension of t h s simple program that finds a path
between two nodes. The predicate path(X,Y ,Path) is true if Path is

Chapter 14 Nondeterministic Programming

path(X,Y,Path) -
Path is a path between two nodes X and Y
in the DAG defined by the relation edge/2.

path(X,X, [XI).
path(X,Y, [XIPI) - edge(X,N), path(N,Y,P).
Program 14.9 Finding a path by depth-first search

connected (X,Y) -
Node X is connected to node Y in the graph defined by edge/2.

connected(X,Y) - connectedo(,Y,[X]).
connected(X,X,Visited).
connected(X,Y,Visited) -

edge(X,N), not member(N,Visited), connected(N,Y,[NIVisitedl).

Program 14.10 Connectivityinagraph

a path from the node X to the node Y in a graph. Both endpoints are
included in the path. The path is built downward, which fits well with the
recursive specification of the connected relation. The ease of computing
the path is a direct consequence of the depth-first traversal. Extending
a breadth-first traversal to find the path is much more difficult. Sections
16.2 and 20.1 show how it can be done.

Depth-first search, dfs, correctly traverses any finite tree or DAG (di-
rected acyclic graph). There is a problem, however, with traversing a
graph with cycles. The computation can become lost in an infinite loop
around one of the cycles. For example, the query connected(x ,Node)?,
referring to the right-hand graph of Figure 14.3 gives solutions Node=y,
Node=z, and Node=x repeatedly without reaching u or v.

The problem is overcome by modifying connected. An extra argument
is added that accumulates the nodes visited so far. A test is made to
avoid visiting the same node twice. This is shown in Program 14.10.

Program 14.10 successfully traverses a finite directed graph depth-
first. The pure Prolog program needed for searching finite DAGs must be
extended by negation in order to work correctly. Adding an accumulator
of paths visited to avoid entering loops effectively breaks the cycles in
the graph by preventing traversal of an edge that would complete a cycle.

Figure 14.4 Initial and final states of a blocks world problem

The program is not guaranteed to reach every node of an infinite graph.
To do so, breadth-first search is necessary. Ths is discussed further in
Section 16.2.

Ths section is completed with a program for building simple plans
in the blocks world. The program is written nondeterministically, essen-
tially performing a depth-first search. It combines the two extensions
mentioned before - keeping an accumulator of what has been traversed,
and computing a path.

The problem is to form a plan in the blocks world, that is, to specify
a sequence of actions for restacking blocks to achieve a particular con-
figuration. Figure 14.4 gives the initial state and the desired final state of
a blocks world problem. There are three blocks, a, b, and c, and three
places, p, q, and r. The actions allowed are moving a block from the top
of a block to a place and moving a block from one block to another. For
an action to succeed, the top of the moved block must be clear, and also
the place or block to whch it is being moved must be clear.

The top-level procedure of Program 14.11 solving the problem is
transf orm(State1, State2, Plan). A plan of actions, Plan, is produced
that transforms State1 into State2 when executed.

States are represented by a list of relations of the form on(X,Y),
where X is a block and Y is a block or place. They represent the
facts that are true in the state. For example, the initial and final
states in Figure 14.4 are, respectively, [on(a, b) , on(b,p) , on(c ,r)l and
[on(a,b) ,on(b,c) ,on(c ,r)l. The state descriptions are ordered in the
sense that the on relation for a precedes that of b, whch precedes the
on relation for c. The state descriptions allow easy testing of whether
a block or place X is clear in a given state by checlung that there is no
relation of the form on (A, X). The predicates clear/2 and on/3 in Pro-
gram 14.1 1 take advantage of this representation.

Chapter 14 Nondeterministic Programming

transform(Statel,State2,Plan) -
Plan is a plan of actions to transform State1 into State2.

transform(Statel,State2,Plan) -
transform(Statel.State2, [Statel] ,Plan).

transform(State,State,Visited, C I) .
transform(Statel,State2,Visited,[~ctionIActions]) -

legal-action(Action,Statel),
update(Action,Statel,State),
not member (State ,Visited) ,
transform(State ,State2, [State IVisitedl ,Actions).

legal~action(to~place(Block,Y,Place).State +-

on(Block,Y,State), clear(Block,State),
~lace(Place), clear(Place,State).

legal~action(to~block(Blockl,Y,Block2),State -
on(Block1 ,Y ,State), clear(Block1 ,State), block(~lock2),
Block1 # Block2, clear(Block2 ,State).

clear (X,State) - not member(on(A,X) ,State).
on(X,Y,State) - member(on(X,Y) ,State).
update(to-block(X,Y ,Z) ,State,Statel) -

substitute(on(X,Y),on(X,Z),State,Statel).
update(to-place(X,Y,Z),State,Statel) -

substitute(on(X,Y) ,on(X,Z) ,State,Statel).

substitute(X,Y ,Xs ,Ys) - See Exercise 3.3(1).

Program 14.1 1 A depth-first planner

The nondeterministic algorithm used by the planner is given by the
recursive clause of transf orm/4 in the program:

Whle the desired state is not reached,
find a legal action,
update the current state,
check that it has not been visited before.

There are two possible actions, moving to a block and moving to a place.
For each, the conditions for whch it is legal must be specified, and a
method given for updating the state as a result of performing the action.

Program 14.11 successfully solves the simple problem given as Pro-
gram 14.12. The first plan it produces is horrendous, however:

[to-place(a,b,q) , to-block(a,q,c) ,to-place(b,p,q) ,to-place(a,c,p),
to-block(a,p,b) , to-place(c ,r,p) ,to-place(a,b,r), to-block(a,r, c) ,
to-place(b,q,r) ,to-place(a, c ,q) ,to-block(a,q,b) ,to-place(~ ,p,q),
to-place(a,b,p) ,to-block(a,p,c) ,to-place(b,r,p) ,to-place(a, c,r),
to-block(b,p, a) ,to-place (c,q,p) ,to-block(b,a, c) ,to-place(a,r,q),
to-block(b, c, a), to-place(c ,p,r) ,to-block(b,a, c) ,to-place (a,q,p),
to-block(a,p,b)l .

Block a is first moved to q, then to c. After that, block b is moved to q,
block a is moved to p and b, and after 20 more random moves, the final
configuration is reached.

It is easy to incorporate a little more intelligence by first trying to
acheve one of the goal states. The predicate legal-action can be re-
placed by a predicate choose~action(Action, Statel, State2). A sim-
ple definition suffices to produce intelligent behavior in our example
problem:

choose~action(Action, Statel, State2) -
suggest(Action,State2), legal-action(Action,Statel).

choose~action(Action,Statel,State2) -
legal-action(Action, Statel) .

suggest (t ~ - ~ l a c e (x,Y, Z) ,State) -
member (on(X, Z) ,State), place(Z) .

suggest (to-block(X,Y,Z) ,State) -
member (on(X, Z) , State) , block(Z) .

The first plan now produced is [to-place (a, b, q) , to-block(b ,p, c) ,
to-block(a, q, b)l .

Testing and data

initial-state(test , [on(a,b) ,on(b,p) .on(c,r)l)
final-state(test, [on(a,b) ,on(b,c) ,on(c.r)l).

block(a) . block(b). block(c) .
place (p) . place (q) . place (r) .

Program 14.12 Testing the depth-first planner

Chapter 14

Exercises for Section 14.2

(i) Apply Program 14.11 to solve another simple blocks world prob-
lem.

(ii) Modify Program 14.11 to solve the following planning problem.
Consider a simplified computer consisting of a single accumula-

tor and a large number of general purpose registers. There are four
instructions: load, store, add and subtract. From the initial state
where the accumulator is empty, register1 contains the value cl ,
register2 contains c2, register3 contains c3 and register4 contains
c4, achieve a final state where the accumulator contains

(a) (cl - c2) + (c3 - c4)

(b) (cl - c2) + (cl - c2)

(c) c1, and register1 contains cl + (c2 - c3), and register2 contains
c2 - c3.

--

14.3 Artificial Intelligence Classics: ANALOGY, ELIZA, and McSAM

"The best way to learn a subject is to teach it" is a cliche commonly
repeated to new teachers. An appropriate analogue for new programmers
is that the best way to understand a program is to rewrite or extend it.
In t h s spirit, we present logical reconstructions of three A1 programs.
Each is clear, understandable, and easily extended. The exercises at the
end of the section encourage the reader to add new facts and rules to the
programs.

The three programs chosen are the ANALOGY program of Evans for
solving geometric analogy questions from intelligence tests; the ELIZA
program of Weizenbaum, whch simulates or rather parodies conversa-
tion; and McSAM, a rnicroversion of SAM, a program for "understanding"
stories from the Yale language group. Each logical reconstruction is ex-
pressed very simply. The nondeterminism of Prolog allows the program-
mer to ignore the issues of search.

Consider the task of solving the geometric analogy problems typically
used in intelligence tests. Several diagrams are presented in a prototypi-

Nondeterministic Programming

Figure 14.5 A geometric analogy problem

cal problem. Diagrams A, B, and C are singled out from a list of possible
answers and the following question is posed: "A is to B as C is to which
one of the 'answer' diagrams?" Figure 14.5 gives a simple problem of t h s
type.

Here is an intuitive algorithm for solving the problem, where terms
such as find, apply, and operation are left unspecified:

Find an operation that relates A to B.
Apply the operation to C to give a diagram X.
Find X, or its nearest equivalent, among the answers.

In the problem in Figure 14.5, the positions of the square and triangle
are swapped (with appropriate scaling) between diagrams A and B. The
"obvious" answer is to swap the square and the circle in diagram C. The
resultant diagram appears as no. 2 in the possible answers.

Program 14.13 is a simple program for solving analogy problems. The
basic relation is analogy (Pair1 , Pair2, Answers), where each Pair is of
the form X is-to Y. To parse the program, is-to must be declared as
an infm operator. The two elements in Pair1 bear the same relation as
the two elements in Pair2, and the second element in Pair2 appears in
Answers. The definition of analogy implements the intuitive algorithm:

analogy(A is-to B,C is-to X,Answers) -- match(A,B,Operation),
match (C, X, Operation) , member (X, Answers) .

Chapter 14 Nondeterministic Programming

analogy (Pairl,PairZ,Answers) -
An analogy holds between the pairs of figures Pair1 and Pair2.
The second element of Pair2 is one of the possible Answers.

analogy(A is-to B,C is-to X,Answers) -
match(A,B, Operation) ,
match(C,X,Operation),
member(X,Answers).

match(inside(Figure1 ,Figure2), inside(Figure2 , ~ i ~ u r e l) , invert).
match (above (Figure1 , Figure2) ,above (Figure2 ,~igurel) , invert) .

Program 14.13 A program solving geometric analogies

A fundamental decision is how the figures in the problem should be
represented. In Program 14.13, figures are represented as Prolog terms.
Diagram A in Figure 14.5 is a square inside a triangle and is represented
as the term inside (square, triangle).

The relation between two diagrams is found by the predicate match
(A, B , Operat ion). This relation is true if Operat ion matches A and B.
The operation invert is used to solve our example problem. The behav-
ior of invert is to swap its arguments.

The predicate match is used in two distinct ways in thls program. The
first time it produces an operation matchlng two given diagrams. The
second time it produces a second diagram given an operation and a di-
agram. These details are, however, irrelevant from the nondeterministic
viewpoint. Finding the answer is implemented simply, checlung whether
a given diagram appears in the list of answers. Note that the second
match goal and the member goal can be swapped. The behavior then be-
comes guessing an answer using member as a generator, and verifying
that the guess has the same relation to diagram C as A does to B. Pro-
gram 14.14 tests the analogy program.

Exercise 14.3(i) poses three additional problems to be solved by anal-
ogy, which can be expressed w i t h the framework of Program 14.13. The
representation of pictures by terms, and the description of operations
becomes increasingly ad hoc. Indeed, much of the "intelligence" of the
program is embedded in the representation. The original ANALOGY pro-
gram did not assume as much knowledge. It took a line drawing and tried
to recognize the objects. Triangles, squares, and so on, were not assumed
to be the primitives.

Testing and data

test-analogy(Name,X) -
f igures(Name ,A,B,C) ,
answers (Name ,Answers),
analogy(A is-to B,C is-to X,Answers).

figures (testl, inside (square, triangle), inside(triangle, square) ,
inside(circle,square)).

answers (test 1, [inside (circle, triangle), inside (square, circle),
inside(triangle,square)]).

Program 14.14 Testing ANALOGY

I am unhappy.
> > How long have you been unhappy?

Six months. Can you help me.
>> \+hat makes you think I help you'>

You remind me of my father and brother.
2> Please tell me more about father.

I like teasing father.
> > Does anyone else in your family llke teasing father?

No, only me.
>> Please go on.

Figure 14.6 Sample conversation with ELIZA

The next A1 classic considered is a simplified version of ELIZA. The pro-
gram aims to simulate a conversation. A user types in a sentence, and
ELIZA responds with an appropriate question or comment. ELIZA does
not understand in any real sense, responding to its input by recognizing
word patterns and replying by using a corresponding response pattern.
To make the patterns of responses more credible, a psychiatrist setting
is adopted. A sample interaction with ELIZA is given in Figure 14.6. Com-
puter responses are preceded by > >.

The heart of ELIZA is a procedure for matchlng the input sentence
against a pattern. The resulting match is applied to another pattern to de-
termine the program reply. The pair of patterns can be considered a stim-
ulus/response pair, where the input is matched against the stimulus and

PROYECTO

Chapter 14 Nondeterministic Programming

the output generated from the response. A typical stimulus/response
pair is

I am (statement) How long have you been (statement)?

Using t h s pair, the response of the program to the input statement "I am
unhappy" will be the question "How long have you been unhappy?" The
(statement) can be viewed as a slot to be filled.

Program 14.15 is a simple version of ELIZA. It implements the follow-
ing algorithm:

Read the input.
Whle the input is not bye,

choose a stimulus/response pair,
match the input to the stimulus,
generate the reply from the response and the above match,
output the response,
read the next input.

The stimulus/response pairs are represented as facts of the form pat-
tern (Stimulus , Response), where both Stimulus and Response are lists
of words and slots. Slots in the patterns are represented by integers. The
predicate match(Pattern,Table ,Words) is used for both the second and
third steps of the algorithm. It expresses a relation between a pattern
Pattern, a list of words Words, and a table Table, where the table records
how the slots in the pattern are filled. A central part of the match proce-
dure is played by a nondeterministic use of append to break up a list
of words. The table is represented by an incomplete data structure, dis-
cussed in more detail in Chapter 15. The missing procedure lookup/3 is
given in Section 15.3. The reply is generated by reply (Words). whch is a
modified version of Program 12.1 for writeln that leaves spaces between
words.

The final program presented in t h s section is Micro SAM or McSAM. It
is a simplified version of the SAM (Script Applier Mechanism) program
developed in the natural language group at Yale University. The aim of
McSAM is to "understand" stories. Given a story, it finds a relevant script
and matches the individual events of the story against the patterns in the
script. In the process, events in the script not explicitly mentioned in the
story are filled in.

eliza -
Simulates a conversation via side effects.

eliza - read-word-list(1nput) , eliza(Input), ! .

eliza([bye]) -
reply(['Goodbye. I hope I have helped you'])

eliza(1nput) -
pattern(Stimu1us ,Response),
match(Stimulus,Dictionary,Input),
match(Response,Dictionary,0utput),
reply(Output),
read-word-list (Inputl) ,
! , eliza(Input1).

match(Pattern,Dictionary, Words) -
Pattern matches the list of words Words, and matchmgs are
recorded in the Dictionary.

match([N I Pattern] ,Dictionary ,Target) -
integer(N), lookup(N,Dictionary,LeftTarget),
append(LeftTarget,RightTarget,Target),
match(Pattern,Dictionary,RightTarget).

match([Word l Pattern] ,Dictionary, [Word 1 Target]) -
atom(Word), match(Pattern,Dictionary,Target).

match([1 ,Dictionary, [1) .

lookup(Key , Dictionary, Value) - See Program 15.8.

pattern (Stimulus,Response) -
Response is an applicable response pattern to the pattern Stimulus.

pattern(~i,am,l],~'How',long,have,you,been,l,?]).

pattern([l,you,2,mel, ['What' ,makes,you,think, 'IJ YOU,?]).
pattern([i,like, 11, ['Does' ,anyone,else,in, your,family,like, 1 , ? I) .
pattern([i,feel,ll, ['DoJ ,you,often,feel,that,way,?]).
pattern([I , ~ , 2 1 , ['please', tell ,me,more ,about ,X, .I) -

important (X) .
pattern(C11, ['Please',go,on, . I) .
important (f ather) . important (mother) . important (son) .
important(sister). important(br0ther). important(daughter).

reply([HeadlTail]) - write(Head), write(' '1, reply(Tai1).
reply([1) - nl.
read-word-list (Xs) - See Program 12.2.

Program 14.1 5 ELIZA

Chapter 14 Nondeterministic Programming

Input: John went to Leones, ate a hamburger, and left.

Output: John went to Leones. He was shown from the door to a seat.
A waiter brought John a hamburger, which John ate by mouth.
The waiter brought John a check, and John left Leones for
another place.

Figure 14.7 A story filled in by McSAM

Both the story and the script are represented in terms of Schank's
theory of conceptual dependency. For example, consider the input story
in Figure 14.7, whlch is used as an example in our version of McSAM. The
English version

"John went to Leones, ate a hamburger, and left"

is represented in the program as a list of lists:

[[p t r a n s , john , john , XI, l eones] ,
[i n g e s t , X2, hamburger, X3] ,
[p t r a n s , A c t o r , A c t o r , X4, X51 1

The first element in each list, p t r a n s and i n g e s t , for example, is a term
from conceptual dependency theory. The representation of the story as a
list of lists is chosen as a tribute to the original Lisp version.

Programming McSAM in Prolog is a triviality, as demonstrated by
Program 14.1 6. The top-level relation is mcsam (S t o r y , S c r i p t) , which
expands a S t o r y into its "understood" equivalent according to a rele-
vant S c r i p t . The script is found by the predicate f i n d (S t o r y , S c r i p t ,
D e f a u l t s) . The story is searched for a nonvariable argument that trig-
gers the name of a script. In our example of John visiting Leones, the
atom l e o n e s triggers the r e s t a u r a n t script, indicated by the fact t r i g -
g e r (l e o n e s , r e s t a u r a n t) in Program 14.17.

The matching of the story to the script is done by m a t c h (S c r i p t ,
S t o r y) , which associates lines in the story with lines in the script. Re-
maining slots in the script are filled in by name-defaults(Defau1ts).
The "output" is

[p t r a n s , john , j o h n , p l a c e l , l eones1
[p t r a n s , john , john , d o o r , s e a t]
[mtrans,john,waiter,hamburger]

mcsam (Story,Script) -
Script describes Story.

match (Script,Story) -
Story is a subsequence of Script.

match(Script , [1) .
match([Line I Scr ipt] , [Line I Story]) +- match(Script ,Story) .
rnatch([LineIScriptl,Story) - match(Script ,Story).

filler (Slot,Story) -
Slot is a word in Story.

f i l l e r (~ l o t , S t o r y) -
member ([Action 1 Argsl ,Story) ,
member (Slot ,Args) ,
nonvar(S1ot).

name-defaults (Defaults) -
Unifies default pairs in Defaults.

name-defaults([: I) .
name-def aul ts ([EN, N] I L 1) + name-def au l t s (L) .
name-def au l t s ([[N l ,N21 I L 1) - N1 f N2, name-def au l t s (L) .

Program 14.16 McSAM

[i n g e s t , j ohn, hamburger, [mouth, j ohn] 1
[a t r a n s , john , check, john , w a i t e r]
[p t r a n s , j o h n , j ohn, l e o n e s , p lace21 .

Its translation to English is given in Figure 14.7.
The work done on the original McSAM was all in the searching and

pattern matching. This is accomplished in Prolog by nondeterministic
programming and unification.

Chapter 14 Nondeterministic Programming

Testing and data

test-mcsam(Name,UnderstoodStory) -
s t o r y (Name, Story) , mcsam(~tory , ~ n d e r s t o o d S t o r y) .

s t o r y (t e s t , [[p t rans , john, john, XI, l eones] ,
[i n g e s t , X2, hamburger, X3] ,
[p t r a n s , Actor , Actor , X4, X51 I) .

s c r i p t (r e s t a u r a n t ,
[[p t r a n s , Actor , Actor , E a r l i e r P l a c e , Restaurant] ,

[p t r a n s , Actor , Actor , Door, S e a t] ,
[mtrans, Actor , Waiter , Food],
[i n g e s t , Actor , Food, [mouth, Actor] 1 ,
[a t r a n s , Actor , Money, Actor , w a i t e r] ,
[p t r a n s , Actor , Actor , Res tauran t , Gone] 1 ,

[[Actor, customer] , [E a r l i e r P l a c e , place11 ,
[Restaurant , r e s t a u r a n t] , [Door, door] ,
[Sea t , s e a t] , [Food, meal] , [Waiter, wa i te r] ,
[Money, check] , [Gone, place21 1 1.

Program 14.1 7 Testing McSAM

Exercises for Section 14.3

(i) Extend ANALOGY, Program 14.13, to solve the three problems in
Figure 14.8.

(ii) Extend ELIZA, Program 14.15, by adding new stimulus/response
patterns.

(iii) If the seventh statement in Figure 14.6 is changed to be "I like
teasing my father," ELIZA responds with "Does any one else in your
family like teasing my father." Modify Program 14.15 to "W t h s
behavior, changing references such as I, my, to you, your, etc.

(iv) Rewrite McSAM to use structures.

(v) Reconstruct another A1 classic. A good candidate is the general
problem solver GPS.

(i) Given: 0

(ii) Given: A // @

Figure 14.8 Three analogy problems

280 Chapter 14 Nondeterministic Programming

14.4 Background

Applylng Prolog to generate-and-test problems has been very common.
Many researchers have discussed the behavior of Prolog in solving the
N queens problem and map coloring. A good discussion of how Prolog
handles the N queens problem can be found in Elcock (1983). The N
queens program given in Exercise 14.l(v), the fastest of whch we are
aware, is due to Thomas Fruewirth. A classification of generate-and-test
programs in Prolog is given in Bansal and Sterling (1989).

Several researchers have used Prolog's behavior on generate-and-
test problems as a reason to investigate alternative control of logic
programs. Suggestions for improvement include co-routining incorpo-
rated in IC-Prolog (Clark and McCabe, 1979) and intelligent backtraclung
(Bruynooghe and Pereira, 1984). Neitlier have been widely adopted into
Prolog.

Other examples of solving puzzles by instantiating structures are given
in a book by Evan Tick (1991) comparing Prolog program performance
with concurrent logic programming languages.

The zebra puzzle, Exercise 14.l(iv) did the rounds on the Prolog Digest
in the early 1980s. It was used as an unofficial benchmark to test both
the speed of Prolog implementations and the ability of Prolog program-
mers to write clear code. The description of clues given in Program 14.7
was influenced by one of the solutions. The framework of Program 14.6
was tested extensively by Steven Kaminslu in a course project at Case
Western Reserve University. He took the first 20 puzzles of an avail-
able puzzle book and solved them using the framework. Although very
much a Prolog novice, he was able to use Prolog fairly easily to find so-
lutions. His experience hghlighted some interesting points, namely, how
to handle negative information and the undesirability of too many choice
points with redundant calls to s e l ec t and member.

The definitive discussion of don't-care and don't-know nondetermin-
ism in logic programming appears in Kowalski (1979a).

Program 14.11 for planning is a variant of an example from Kowalski
(1979a). The original planning program in Prolog was WARPLAN (Warren,
1976), reproduced in Coelho et al. (1980). Exercise 14.2(ii) was adapted
from descriptions of WARPLAN1s abilities in Coelho and Cotta (1988).

ANALOGY constituted the Ph.D. thesis of Thomas Evans at MIT in the
mid-1960s. A good description of the program appears in Semantic Infor-
mation Processing (Minsky, 1968). Evans's program tackled many aspects
of the problem that are made trivial by our choice of representation, for
example, identifying that there are triangles, squares, and circles in the
diagrams. Our version, Program 14.13, emerged from a discussion group
of Leon Sterling with a group of episternics students at the University of
Edinburgh.

ELIZA was originally presented in Weizenbaum (1966). Its performance
led people to believe that a limited form of the Turing test had been
passed. Weizenbaum, its author, was horrified by people's reactions to
the program and to A1 more generally, and he wrote an impassioned plea
against talung the program too seriously (Weizenbaum, 1976). Our ver-
sion, Program 14.15, is a slight variant of a teaching program attributed
to Alan Bundy, hchard O'Keefe, and Henry Thompson, whch was used
for A1 courses at the University of Edinburgh.

McSAM is a version of the SAM program, which was tailored for
teachmg A1 programming (Schank and hesbeck, 1981). Our version,
Program 14.16, is due to Ernie Davis and Ehud Shapiro. More informa-
tion about conceptual dependency can be found in Schank and Abelson
(1977).

A rational reconstruction of GPS, suggested in Exercise 14.3(v), was
shown to us by George Ernst.

Incomplete Data Structures

The programs presented so far have been discussed in terms of relations
between complete data structures. Powerful programming techniques
emerge from extending the discussion to incomplete data structures, as
demonstrated in this chapter.

The first section discusses difference-lists, an alternative data struc-
ture to lists for representing a sequence of elements. The) can be used
to simplify and increase the efficiency of list-processing programs. In
some respects, difference-lists generalize the concept of accumulators.
Data structures built from the difference of incomplete structures other
than lists are discussed in the second section. The third section shows
how tables and dictionaries, represented as incomplete structures, can
be built incrementally during a computation. The final section discusses
queues, an application of difference-lists.

15.1 Difference-Lists

Consider the sequence of elements 1,2,3. It can be represented as the
difference between pairs of lists. It is the difference between the lists
[1,2,3,4,5] and [4,5], the difference between the lists [1,2,3,8] and [8], and
the difference between [1,2,3] and [1. Each of these cases is an instance
of the difference between two incomplete lists [1,2,3 IXs] and Xs.

We denote the difference between two lists as a structure As\Bs, which
is called a difference-list. As is the head of the difference-list and Bs the

Chapter 15 Incomplete Data Structures

tail. In thls example [1,2,3 /Xs] \Xs is the most general difference-list repre-
senting the sequence 1,2,3, where [1,2,3 IXs] is the head of the difference-
list and Xs the tail.

Logical expressions are unified, not evaluated. Consequently the bi-
nary functor used to denote difference-lists can be arbitrary. Of course,
the user must be consistent in using the same functor in any one pro-
gram. Another common choice of functor besides \ is -. The functor for
difference-lists can also be omitted entirely, the head and the tail of the
difference-list becoming separate arguments in a predicate. While t h s
last choice has advantages from a perspective of efficiency, we use the
functor \ throughout for clarity.

Lists and difference-lists are closely related. Both are used to repre-
sent sequences of elements. Any list L can be trivially represented as a
difference-list L\[1. The empty list is represented by any difference-list
whose head and tail are identical, the most general form being As\As.

Difference-lists are an established logic programming techmque. The
use of difference-lists rather than lists can lead to more concise and
efficient programs. The improvement occurs because of the combining
property of difference-lists. Two incomplete difference-lists can be con-
catenated to give a third difference-list in constant time. In contrast, lists
are concatenated using the standard append program in time linear in
the length of the first list.

Consider Figure 15.1. The difference-list Xs\Zs is the result of append-
ing the difference-list Ys\Zs to the difference-list Xs\Ys. This can be
expressed as a single fact. Program 15.1 defines a predicate append-
dl (As ,Bs ,Cs), which is true if the difference-list Cs is the result of
appending the difference-list Bs to the difference-list As. We use the suf-
fix -dl to denote a variant of a predicate that uses difference-lists.

A necessary and sufficient condition characterizing when two differ-
ence-lists As\Bs and Xs\Ys can be concatenated using Program 15.1 is
that Bs be unifiable with Xs. In that case, the two difference-lists are com-
patible. If the tail of a difference-list is uninstantiated, it is compatible
with any difference-list. Furthermore, in such a case Program 15.1 would
concatenate it in constant time. For example, the result of the query
append-dl([a,b,clXsl\Xs, [1,21\[1 ,Ys)? is (Xs=[1,21 ,Ys=[a,b,c,
1,21\C I).

Difference-lists are the logic programming counterpart of Lisp's rplacd,
which is also used to concatenate lists in constant time and save consing

Figure 15.1 Concatenating difference-lists

append-dl(As,Bs,Cs) -
The difference-list Cs is the result of appending Bs to As,
where As and Bs are compatible difference-lists.

append-dl(Xs\Ys, Ys\Zs, Xs\Zs).

Program 15.1 Concatenating difference-lists

(allocating new list-cells). There is a difference between the two: the for-
mer are free of side effects and can be discussed in terms of the abstract
computation model, whereas rplacd is a destructive operation, whch
can be described only by reference to the machine representation of S-
expressions.

A good example of a program that can be improved by using differ-
ence-lists is Program 9.la for flattening a list. It uses double recursion to
flatten separately the head and tail of a list of lists, then concatenates
the results. We adapt that program to compute the relation flatten-
dl (Xs ,Ys), where Ys is a difference-list representing the elements that
appear in a list of lists Xs in correct order. The direct translation of
Program 9.la to use difference-lists follows:

f latten-dl([X I Xsl , Ys\Zs) -
f latten-dl (X, As\Bs) , f latten-dl (Xs, Cs\Ds) ,
append-dl(As\Bs,Cs\Ds,Ys\Zs).

f latten-dl(X, CX I Xsl \Xs) -
constant (X) , Xf [1 .

f latten-dl (C I , Xs\Xs) .

PROYECTO

PROYECTO

Chapter 15 Incomplete Data Structures

flatten (Xs, Ys) -
Ys is a flattened list containing the elements in Xs.

flatten(Xs,Ys) - flatten-dl(xs,~s\ [I).
f latten-dl([XI Xsl ,Ys\Zs) -

f latten-dl(X,Ys\Ysl) , flatten-dl(Xs ,Ysl\Zs) .
f latten-dl(X, [XI Xsl \XS) -

constant (X) , X# [I .
f latten-dl([1 ,Xs\Xs) .

Program 15.2 Flattening a list of lists using difference-lists

The doubly recursive clause can be simplified by unfolding the append-
dl goal with respect to its definition in Program 15.1. Unfolding is dis-
cussed in more detail in Chapter 18 on program transformation. The
result is

f latten-dl([X I XS] , As\Ds) -
f latten-dl (X, As\Bs) , f latten-dl (Xs, Bs\Ds) .

The program for flatten-dl can be used to implement flatten by ex-
pressing the connection between the desired flattened list and the
difference-list computed by f latten-dl as follows:

Collecting the program and renaming variables yields Program 15.2.
Declaratively Program 15.2 is straightforward. The explicit call to ap-

pend is made unnecessary by flattening the original list of lists into a
difference-list rather than a list. The resultant program is more efficient,
because the size of its proof tree is linear in the number of elements in
the list of lists rather than quadratic.

The operational behavior of programs using difference-lists, such as
Program 15.2, is harder to understand. The flattened list seems to be
built by magic.

Let us investigate the program in action. Figure 15.2 is a trace of the
query flatten([[a] , [b, [c]]] ,Xs)? with respect to Program 15.2.

The trace shows that the output, Xs, is built top-down (in the terminol-
ogy of Section 7.5). The tail of the difference-list acts like a pointer to the
end of the incomplete structure. The pointer gets set by unification. By
using these "pointers" no intermediate structures are built, in contrast
to Program 9.la.

flatten([[al, [b, [clll ,Xs)
f latten-dl([[a] , [b, [clll ,Xs\ [1)

f latten-dl([a] ,Xs\Xsl)
f latten_dl(a,Xs\Xs2) Xs = [a1 Xs21

constant (a)

a # [I
f latten-dl([I ,Xs2\Xs1) Xs2 = Xsl

f latten-dl([[b, Cclll ,Xsl\ [1)
flatten-dl([b, [ell ,Xsl\Xs3)

f latten-dl (b ,Xsl\Xs4) Xsl = CblXs41
constant (b)
b f [I

f latten-dl([[ell ,Xs4\Xs3)
f latten-dl([cl ,Xs4\Xs5)

flatten-dl(c,Xs4\Xs6) Xs4 = [C lXs61
constant (c)

c # [I
f latten-dl([1 ,Xs6\Xs5) Xs6 = Xs5

f latten-dl([1 ,Xs5\Xs3) Xs5 = Xs3
f latten-dl([1 ,Xs3\ [1) Xs3 = I

Output: Xs = [a,b,c]

Figure 15.2 Tracing a computation using difference-lists

The discrepancy between clear declarative understanding and difficult
procedural understanding stems from the power of the logical variable.
We can specify logical relations implicitly and leave their enforcement to
Prolog. Here the concatenation of the difference-lists has been expressed
implicitly, and it is mysterious when it happens in the program.

Building structures with difference-lists is closely related to building
structures with accumulators. Loosely, difference-lists build structures
top-down, whle accumulators build structures bottom-up. Exercise 9.l(i)
asked for a doubly recursive version of flatten that avoided the call to
append by using accumulators. A solution is the following program:

flatten([XIXs] ,Zs,Ys) -
flatten(Xs,Zs,Ysl) , flatten(X,Ysl,Ys) .

f latten(X,Xs, [XI Xsl -
constant (XI, X# [I .

flatten([I ,Xs,Xs) .

Chapter 15 Incomplete Data Structures

reverse(Xs,Ys) -
Ys is the reversal of the list Xs.

reverse (Xs ,Ys) - reverse-dl (XS ,YS\ [1) .
reverse-dl([X IXS] ,YS\ZS) -

reverse-dl (XS ,Ys\ [XI Zs]) .
reverse-dl([I ,~s\Xs).

Program 15.3 Reverse with difference-lists

The similarity of this program to Program 15.2 is strilung. There are only
two differences between the programs. The first difference is syntactic.
The difference-list is represented as two arguments, but in reverse order,
the tail preceding the head. The second difference is the goal order in
the recursive clause of flatten. The net effect is that the flattened list is
built bottom-up from its tail rather than top-down from its head.

We give another example of the similarity between difference-lists
and accumulators. Program 15.3 is a translation of naive reverse (Pro-
gram 3.16a) where lists have been replaced by difference-lists, and the
append operation has been unfolded away.

When are difference-lists the appropriate data structure for Prolog pro-
grams? Programs with explicit calls to append can usually gain in effi-
ciency by using difference-lists rather than lists. A typical example is a
doubly recursive program where the final result is obtained by append-
ing the outputs of the two recursive calls. More generally, a program that
independently builds different sections of a list to be later combined is a
good candidate for using difference-lists.

The logic program for quicksort, Program 3.22, is an example of a
doubly recursive program where the final result, a sorted list, is obtained
from concatenating two sorted sublists. It can be made more efficient by
using difference-lists. All the append operations involved in combining
partial results can be performed implicitly, as shown in Program 15.4.

The call of quicksort-dl by quicksort is an initializing call, as for
flatten in Program 15.2. The recursive clause is the quicksort algorithm
interpreted for difference-lists where the final result is pieced together
implicitly rather than explicitly. The base clause of quicksort-dl states
that the result of sorting an empty list is the empty difference-list. Note
the use of unification to place the partitioning element X after the smaller

quicksort (List,SortedList) -
SortedList is an ordered permutation of List.

quicksort (Xs,Ys) - quicksort-dl(Xs,Ys\ [1) .
quicksort-dl ([X 1 X s ,Ys\Zs) -

partition(Xs ,X,Littles ,Bigs),
quicksort~dl(~ittles,~s\[X~Ysll),
quicksort~dl(Bigs,Ys1\Zs).

quicksort-dl([I,Xs\Xs).

partition(Xs,X,Ls,Bs) - See Program 3.22

Program 15.4 Quicksort using difference-lists

elements Ys and before the bigger elements Ysl in the call quicksort-
dl (Littles ,Ys\ [XJYsl]) .

Program 15.4 is derived from Program 3.22 in exactly the same way
as Program 15.2 is derived from Program 9.la. Lists are replaced by
difference-lists and the append-dl goal unfolded away. The initial call of
quicksort-dl by quicksort expresses the relation between the desired
sorted list and the computed sorted difference-list.

An outstanding example of using difference-lists to advantage is a solu-
tion to a simplified version of Dijkstra's Dutch flag problem. The problem
reads: "Given a list of elements colored red, white, or blue, reorder the
list so that all the red elements appear first, then all the white elements,
followed by the blue elements. This reordering should preserve the orig-
inal relative order of elements of the same color." For example, the list
[red(l) ,white(2) ,blue(3) ,red(4) ,white(5)1 should be reordered to
[red(l) ,red(4) ,white(2) ,white(5) ,blue(3)].

Program 15.5 is a simple-minded solution to the problem that collects
the elements in three separate lists, then concatenates the lists. The basic
relation is dutch(&, Ys), where Xs is the original list of colored elements
and Ys is the reordered list separated into colors.

The heart of the program is the procedure distribute, which con-
structs three lists, one for each color. The lists are built top-down. The
two calls to append can be removed by having distribute build three
distinct difference-lists instead of three lists. Program 15.6 is an appro-
priately modified version of the program.

The implicit concatenation of the difference-lists is done in the ini-
tializing call to distribute-dls by dutch. The complete list is finally

Chapter 15 Incomplete Data Structures

dutch(Xs,RedsWhitesBlues) -
RedsWhitesBlues is a list of elements of Xs ordered
by color: red, then whlte, then blue.

dutch(Xs,RedsWhitesBlues) -
distribute(Xs,Reds,Whites,Blues),
append(Whites,Blues,WhitesBlues),
append(Reds,WhitesBlues,RedsWhitesBlues).

distribute(Xs,Reds, Whites,Blues) -
Reds, Whites, and Blues are the lists of the red, white,
and blue elements in Xs, respectively.

distribute([red(X) IXsl, [red(X) (Reds1 ,Whites,Blues) -
distribute(Xs,Reds,W~tes,Blues).

distribute([white(X) lXs] ,Reds, [white(X) IWhitesl ,Blues) -
distribute(Xs,Reds,Whites,Blues).

distribute([blue(X) I Xs] ,Reds ,Whites, [blue(X) 1Bluesl) -
distribute(Xs,Reds,Whites,Blues).

distribute([I,[I,[I,[I).

append(Xs,Ys,Zs) - See Program 3.15.

Program 15.5 A solution to the Dutch flag problem

"assembled" from its parts with the satisfaction of the base clause of
distribute-dls.

The Dutch flag example demonstrates a program that builds parts of
the solution independently and pieces them together at the end. It is a
more complex use of difference-lists than the earlier examples.

Although it makes the program easier to read, the use of an explicit
constructor such as \ for difference-lists incurs noticeable overhead
in time and space. Using two separate arguments to represent the
difference-list is more efficient. When important, t h s efficiency can be
gained by straightforward manual or automatic transformation.

Exercises for Section 15.1

(i) Rewrite Program 15.2 so that the final list of elements is in the
reverse order to how they appear in the list of lists.

(ii) Rewrite Programs 3.27 for reorder (Tree, List), inorder (Tree,
List) and postorder (Tree, L i s t) , whlch collect the elements oc-

dutch (Xs,RedsWhitesBlues) -
RedsWhitesBlues is a list of elements of X s ordered
by color: red, then white, then blue.

dutch(Xs,RedsWhitesBlues) -
distribute-dls(Xs,RedsWhitesBlues\WhitesBlues,

WhitesBlues\Blues,Blues\[1).

distribute-dls (Xs,Reds, Whites,Blues) -
Reds, Whites, and Blues are the difference-lists of the
red, white, and blue elements in Xs, respectively.

distribute-dls ([red(X) I Xsl ,
[red(~)I~eds]\Redsl,Whites,Blues) -

distribute-dls(Xs,Reds\Redsl,Whites,Blues).
distribute-dls([white(X) I Xsl ,

~eds,[white(X)IWhites]\Whitesl,Blues) -
distribute-dls(Xs,Reds,Whites\Whitesl,Blues).

distribute-dls ([blue (XI I Xsl ,
Reds,Whites,[blue(X) IBluesl\Bluesl) -

distribute-dls(Xs,Reds,Whites,Blues\Bluesl).
distribute-dls([1 ,Reds\Reds,Whites\Whites,Blues\Blues)

Program 15.6 Dutch flag with difference-lists

curring in a binary tree, to use difference-lists and avoid an explicit
call to append.

(iii) Rewrite Program 12.3 for solving the Towers of Hanoi so that the
list of moves is created as a difference-list rather than a list.

1 5.2 Difference-Structures

The concept underlying difference-lists is the use of the difference be-
tween incomplete data structures to represent partial results of a compu-
tation. This can be applied to recursive data types other than lists. Ths
section looks at a specific example, sum expressions.

Consider the task of normalizing sum expressions. Figure 15.3 con-
tains two sums (a + b) + (c + d) and (a + (b + (c + d))) . Standard Prolog
syntax brackets the term a + b + c as ((a + b) + c) . We describe a pro-
cedure converting a sum into a normalized one that is bracketed to the
right. For example, the expression on the left in Figure 15.3 would be

Chapter 15 Incomplete Data Structures

Figure 15.3 Unnormalized and normalized sums

normalize(Sum,NormalizedSum) -
NormalizedSum is the result of normalizing the sum expression Sum.

normalize-ds(A+B,Norm++Space)
normalize-ds (A, Norm++NormB) , normalize-ds (B, ~ o r m ~ + + ~ p a c e)

normalize-ds(A,(A+Space)++Space) -
constant (A) .

Program 15.7 Normalizing plus expressions

converted to the one on the right. Such a procedure is useful for doing
algebraic simplification, facilitating writing programs to test whether two
expressions are equivalent.

We introduce a difference-sum as a variant of a difference-list. A
difference-sum is represented as a structure E l ++ E 2 , where E l and
E 2 are incomplete normalized sums. It is assumed that ++ is defined as a
binary infur operator. It is convenient to use 0 to indicate an empty sum.

Program 15.7 is a program for normalizing sums. The relation scheme
is normalize (Exp ,Norm), where Norm is an expression equivalent to Exp
that is bracketed to the right and preserves the order of the constants
appearing in Exp.

T h s program is similar in structure to Program 15.2 for flattening
lists using difference-lists. There is an initialization stage, where the
difference-structure is set up, typically calling a predicate with the same
name but different arity or different argument pattern. The base case
passes out the tail of the incomplete structure, and the goals in the body

of the recursive clause pass the tail of the first incomplete structure to
be the head of the second.

The program builds the normalized sum top-down. By analogy with the
programs using difference-lists, the program can be easily modified to
build the structure bottom-up, whlch is Exercise (ii) at the end of t h s
section.

The declarative reading of these programs is straightforward. Opera-
tionally the programs can be understood in terms of building a structure
incrementally, where the "hole" for further results is referred to explic-
itly. This is entirely analogous to difference-lists.

Exercises for Section 15.2

(i) Define the predicate normalized~sum(Expression), which is true
if Expression is a normalized sum.

(ii) Rewrite Program 15.7 so that

(a) The normalized sum is built bottom-up;

(b) The order of the elements is reversed.

(iii) Enhance Program 15.7 so that numbers appearing in the addends
are added together and returned as the first component of the nor-
malized sum. For example, (3 + x) + 2 + (y + 4) should be normal-
ized to 9 + (x + y) .

(iv) Write a program to normalize products using difference-products,
defined analogously to difference-sums.

1 5.3 Dictionaries

A different use of incomplete data structures enables the implementa-
tion of dictionaries. Consider the task of creating, using, and maintaining
a set of values indexed under keys. There are two main operations we
would like to perform: loolung up a value stored under a certain key, and
entering a new key and its associated value. These operations must en-
sure consistency - for example, the same key should not appear twice

Chapter 15 Incomplete Data Structures

lookup(Key,Dictionary, Value) -
Dictionary contains Value indexed under Key.
Dictionary is represented as an incomplete
list of pairs of the form (Key, Value).

lookup(Key,[(Key,Value) lDict1,Value).
lookup(Key,[(Keyl,Valuel) lDict1,Value) .

Key f Keyl, lookup(Key,Dict ,Value).

Program 15.8 Dictionary lookup from a list of tuples

with two different values. It is possible to perform both operations, look-
ing up values of keys, and entering new keys, with a single simple proce-
dure by exploiting incomplete data structures.

Consider a linear sequence of key-value pairs. Let us see the advan-
tages of using an incomplete data structure for its representation. Pro-
gram 15.8 defines the relation lookup (Key, D ic t iona ry , Value) which is
true if the entry under Key in the dictionary Dic t ionary has value Value.
The dictionary is represented as an incomplete list of pairs of the form
(Key, Value).

Let us consider an example where the dictionary is used to remember
phone extensions keyed under the names of people. Suppose that Dic t is
initially instantiated to [(a rno ld , 8881) , (ba r ry , 4513) , (ca thy ,5950)
/Xsl . The query lookup (a rno ld , Dict , N) ? has as answer N=8881 and
is used for finding Arnold's phone number. The query lookup(bar ry ,
Dict ,4513) ? succeeds, checking that Barry's phone number is 45 13.

The entry of new keys and values is demonstrated by the query
lookup(david, Dict ,1199) ?. Syntactically this appears to check David's
phone number. Its effect is different. The query succeeds, instantiating
Dic t to [(arnold,8881) , (barry,4513) , (ca thy , 5950) , (david , 1199)
IXslI. Thus lookup has entered a new value.

What happens if we check Cathy's number with the query lookup
(ca thy , Dict ,5951)?, where the number is incorrect? Rather than en-
tering a second entry for Cathy, the query fails because of the test Key f
Keyl.

The lookup procedure given in Program 15.8 completes Program 14.1 5,
the simplified ELIZA. Note that when the program begins, the dictionary
is empty, indicated by its being a variable. The dictionary is built up

lookup (Key,Dictionary,Value) -
Dictionary contains Value indexed under Key.
Dictionary is represented as an ordered binary tree.

lookup(Key ,dict (Key ,X ,Left ,Ftight) ,Value) -
! , X = Value.

lookup(Key ,dict (Keyl ,X ,Left ,Flight) ,Value -
Key < Keyl, lookup(Key,Left,Value).

lookup(Key,dict (Keyl,X,Left , ~ i g h t) ,Value -
Key > Keyl, lookup(Key,Right,Value).

Program 15.9 Dictionary lookup in a binary tree

during the matchng against the stimulus half of a stimulus-response
pair. The constructed dictionary is used to produce the correct response.
Note that entries are placed in the dictionary without their values being
known: a strilung example of the power of logical variables. Once an
integer is detected, it is put in the dictionary, and its value is determined
later.

Searchng linear lists is not very efficient for a large number of key-
value pairs. Ordered binary trees allow more efficient retrieval of infor-
mation than linear lists. The insight that an incomplete structure can be
used to allow entry of new keys as well as to look up values carries over
to binary trees.

The binary trees of Section 3.4 are modified to be a four-place structure
d i c t (Key, Value, L e f t ,Right) , where L e f t and Right are, respectively,
the left and right subdictionaries, and Key and Value are as before. The
functor d i c t is used to suggest a dictionary.

Looking up in the dictionary tree has a very elegant definition, simi-
lar in spirit to Program 15.8. It performs recursion on binary trees rather
than on lists, and relies on unification to instantiate variables to dictio-
nary structures. Program 15.9 gives the procedure lookup (Key, Dic t i o -
na ry , Value), whch as before both looks up the value corresponding to
a given key and enters new values.

At each stage, the key is compared with the key of the current node.
If it is less, the left branch is recursively checked; if it is greater, the
right branch is taken. If the key is non-numeric, the predicates < and >
must be generalized. The cut is necessary in Program 15.9, in contrast to

Chapter 15 297 Incomplete Data Structures

freeze(A,B) -
Freeze term A into B.

freeze (A ,B) -
copy-term(A,B) , numbervars(B,O ,N) .

melt- new (A,B) -
Melt the frozen term A into B.

melt ('$VARJ (N) ,X,Dictionary) -
lookup(N,Dictionary,X).

melt(X,X,~ictionary) -
constant (X) .

melt(X,Y,Dictionary) -
compound(X),
functor(X,F,N),
functor(Y ,F,N) ,
melt(N,X,Y,Dictionary).

melt(N,X,Y,Di~ti~nary) -
N > 0,
arg(N,X,ArgX),
melt (ArgX ,ArgY ,Dictionary),

arg(N,Y ,ArgY) ,
N1 is N-1,
melt(Nl,X,Y,Dictionary).

melt(O,X,Y,Di~tionary).

numbervars (Term,N1 ,N2) - See Program 10.8.

lookup(Key,Dictionary,Value) - See Program 15.9.

Program 15.10 Melting a term

Program 15.8, because of the nonlogical nature of comparison operators,
whch will give errors if keys are not instantiated.

Given a number of pairs of keys and values, the dictionary they deter-
mine is not unique. The shape of the dictionary depends on the order in
which queries are posed to the dictionary.

The dictionary can be used to melt a term that has been frozen using
Program 10.8 for numbervars. The code is given as Program 15.10. Each
melted variable is entered into the dictionary, so that the correct shared
variables will be assigned.

15.4 Queues

An interesting application of difference-lists is to implement queues.
A queue is a first-in, first-out store of information. The head of the
difference-list represents the beginning of the queue, the tail represents
the end of the queue, and the members of the difference-list are the ele-
ments in the queue. A queue is empty if the difference-list is empty, that
is, if its head and tail are identical.

Maintaining a queue is different from maintaining a dictionary. We
consider the relation queue(S), where a queue processes a stream of
commands, represented as a list S. There are two basic operations on a
queue-enqueuing an element and dequeuing an element-represented,
respectively, by the structures enqueue (XI and dequeue (X), where X is
the element concerned.

Program 15.11 implements the operations abstractly. The predicate
queue(S) calls queue(S,Q), where Q is initialized to an empty queue.
queue/',? is an interpreter for the stream of enqueue and dequeue com-
mands, responding to each command and updating the state of the
queue accordingly. Enqueuing an element exploits the incompleteness of
the tail of the queue, instantiating it to a new element and a new tail,
which is passed as the updated tail of the queue. Clearly, the calls to
enqueue and dequeue can be unfolded, resulting in a more concise and
efficient, but perhaps less readable, program.

queue(S) -
S is a sequence of enqueue and dequeue operations,
represented as a list of terms enqueue(X1 and dequeue(X)

queue(S) - queue(S ,Q\Q) .
queue ([enqueue (XI I Xsl , Q) -

enqueue(X,Q,Ql), queue(Xs,Ql).
queue ([dequeue (XI I Xs] , Q) -

dequeue(X,Q,Ql), queue(Xs,Ql).
queue([I ,Q).
enqueue (X, Qh\ [X I Qtl , Qh\Qt) .
dequeue(X, [X I Qhl \Qt ,Qh\Qt) .

Program 15.11 A queue process

PROYECTO

Chapter 15 Incomplete Data Structures

flatten(Xs,Ys) -
Ys is a flattened list containing the elements in X s

flatten-q([XI Xsl ,Ps\ [Xs l Qsl ,Ys) -
flatten-q(X,Ps\Qs,Ys).

flatten-q(~, [Q l PSI \Qs, [XIYsI) -
constant(X), X# I , flatten-q(Q,Ps\Qs,Ys).

flatten-q([1 ,Q,Ys) -
non-empty(Q), dequeue(X,Q,Ql), flatten-q(X,Ql,Ys).

flatten-q([I,[I\[I,[I).

non-empty([I\[1) - ! , fail.
non-empty(Q1.

dequeue (X , [X 1 Qhl \Qt, Qh\qt)

Program 15.12 Flattening a list using a queue

The program terminates when the stream of commands is exhausted.
It can be extended to insist that the queue be empty at the end of the
commands by changing the base fact to

A queue is empty if both its head and tail can be instantiated to the
empty list, expressed by the fact empty([I \ [I) . Logically, the clause
empty(Xs\Xs) would also be sufficient; however, because of the lack
of the occurs check in Prolog, discussed in Chapter 4, it may succeed
erroneously on a nonempty queue, creating a cyclic data structure.

We demonstrate the use of queues in Program 15.12 for flattening a
list. Although the example is somewhat contrived, it shows how queues
can be used. The program does not preserve the order of the elements in
the original list.

The basic relation is f latten-q(Ls , Q, Xs), where Ls is the list of lists
to be flattened, Q is the queue of lists waiting to be flattened, and Xs is
the list of elements in Ls. The initial call of f latten-q/3 by f latten/2
initializes an empty queue. The basic operation is enqueuing the tail of
the list and recursively flattening the head of the list:

The explicit call to enqueue can be omitted and incorporated via unifica-
tion as follows:

If the element being flattened is a constant, it is added to the output
structure being built top-down, and an element is dequeued (by unifying
with the head of the difference-list) to be flattened in the recursive call:

f latten-q(X, [Q 1 Qhl \Qt , [X I Ysl) -
constant (X) , X# [I , f latten-q(Q,Qh\Qt,ys).

When the empty list is being flattened, either the top element is de-
queued

or the queue is empty, and the computation terminates:

A previous version of Program 15.12 incorrectly expressed the case
when the list was empty, and the top element was dequeued as

Thls led to a nonterminating computation, since an empty queue Qs\Qs
unified with [Q I Qh] \Qt and so the base case was never reached.

Let us reconsider Program 1 5.1 1 operationally. Under the expected use
of a queue, enqueue()() messages are sent with X determined and de-
queue (X) with X undetermined. As long as more elements are enqueued
than dequeued, the queue behaves as expected, with the difference be-
tween the head of the queue and the tail of the queue being the elements
in the queue. However, if the number of dequeue messages received ex-
ceeds that of enqueue messages, an interesting thing happens - the
content of the queue becomes negative. The head runs ahead of the tail,
resulting in a queue containing a negative sequence of undetermined el-
ements, one for each excessive dequeue message.

It is interesting to observe that this behavior is consistent with the as-
sociativity of appending of difference-lists. If a queue Qs\ [XI ,X2 ,X31Qsl
that contains minus three undetermined elements has the queue [a, b ,

c, d, e/Xs] \Xs that contains five elements appended to it, then the result

Chapter 15

will be the queue Ed, elXs1 \ X s with two elements, where the "negative"
elements XI, X2, X3 are unified with a , b , c.

1 5.5 Background

Difference-lists have been in the logic programming folklore since its
inception. The first description of them in the literature is given by Clark
and Tarnlund (1977).

The automatic transformation of simple programs without difference-
lists to programs with difference-lists, for example, reverse and f l a t -
ten, can be found in Bloch (1984).

Section 15.1 implicitly contains an algorithm for converting from a
program with explicit calls to append to an equivalent, more efficient
program that uses difference-lists to concatenate the elements and which
is much more efficient. Care is needed in application of the algorithm.
There are excellent discussions of a correct algorithm and the dangers
of using difference-lists without the occurs check in Srandergaard (1990)
and Marriott and Srandergaard (1993).

There is an interesting discussion of the Dutch flag problem in O'Keefe
(1990).

Automatic removal of a functor denoting difference-lists is described
in Gallagher and Bruynooghe (1990).

Maintaining dictionaries and queues can be given a theoretical basis as
a perpetual process, as described by Warren (1982) and Lloyd (1987).

Queues are particularly important in concurrent logic programming
languages, since their input need not be a list of requests but a stream,
whch is generated incrementally by the processes requesting the ser-
vices of the queue.

Second-Order Programming

Chapters 14 and 15 demonstrate Prolog programming techniques based
directly on logic programming. Ths chapter, in contrast, shows pro-
gramming techniques that are missing from the basic logic programming
model but can nonetheless be incorporated into Prolog by relying on lan-
guage features outside of first-order logic. These techniques are called
second-order, since they talk about sets and their properties rather than
about individuals.

The first section introduces predicates that produce sets as solutions.
Computing with predicates that produce sets is particularly powerful
when combined with programming techniques presented in earlier chap-
ters. The second section gives some applications. The third section looks
at lambda expressions and predicate variables, whch allow functions
and relations to be treated as "first-class" data objects.

16.1 All-Solutions Predicates

Solving a Prolog query with a program entails finding an instance of
the query that is implied by the program. What is involved in finding
all instances of a query that are implied by a program? Declaratively,
such a query lies outside the logic programming model presented in
Chapter 1. It is a second-order question, since it asks for the set of
elements with a certain property. Operationally, it is also outside the
pure Prolog computation model. In pure Prolog, all information about a
certain branch of the computation is lost on backtraclung. This prevents

Chapter 16 Second-Order Programming

father(terach,abraham). father(haran,lot).
father(terach,nachor). f ather(haran,milcah) .
f ather(terach,haran) . f ather(haran, yiscah) .
father(abraham,isaac).
male(abraham). rnale(haran). fernale(yiscah)
male(isaac1. male(nachor). female(mi1cah)
male(1ot).

Program 16.1 Sample data

a simple way of using pure Prolog to find the set of all solutions to a
query, or even to find how many solutions there are to a given query.

Ths section discusses predicates that return all instances of a query.
We call such predicates all-solutions predicates. Experience has shown
that all-solutions predicates are very useful for programming.

A basic all-solutions predicate is f i n d a l l (Term, Goal, Bag). The pred-
icate is true if and only if Bag unifies with the list of values to whch a
variable X not occurring in Term or Goal would be bound by successive
resatisfaction of c a l l (G o a l) , X=Term? after systematic replacement of
all variables in X by new variables.

Procedurally, f i n d a l l (Term, Goal, Bag) creates an empty list L, re-
names Goal to a goal G, and executes G. If G succeeds, a copy of Term
is appended to L, and G is reexecuted. For each successful reexecution, a
copy of Term is appended to the list. Eventually, when G fails, Bag is uni-
fied with L. The success or failure of f i n d a l l depends on the success or
failure of the unification.

We demonstrate the use of all-solutions predicates using part of the
biblical database of Program 1.1, repeated here as Program 16.1.

Consider the task of finding all the chldren of a particular father. It is
natural to envisage a predicate chi ldren(X,Kids) , where Kids is a list
of chldren of X. It is immediate to define using f i n d a l l , namely,

c h i l d r e n (X, Kids) -- f i n d a l l a id, f a t h e r (x , a id) ,Kids) .

The query c h i l d r e n (t e r a c h , Xs)? with respect to Program 16.1 pro-
duces the answer X s = [abraham,nachor , haran].

The query f i n d a l l (F, f a t h e r (F, K) , Fs) ? with respect to Program
16.1 produces the answer F = [t e r ach , haran , t e r a c h , h a r a n , t e r a c h ,
haran , abrahaml . It would be useful to conceive of t h s query as askmg

forall (Goa1,Condition)
For all solutions of Goal, Condition is true.

for-all(Goa1,Condition) -
findall(Condition,Goal,Cases), check(Cases)

check([Case 1 Cases]) - Case, check(Cases1
check([1) .

Program 16.2 Applying set predicates

who is a father and to receive as solution [t e r ach , haran , abrahaml . Ths
answer can be obtained by removing duplicate solutions.

Another interpretation can be made of the query f i n d a l l (F , f a t h e r
(F, K) , Fs)?. Instead of having a single solution, all fathers, there could
be a solution for each child K. Thus one solution would be K=abraham,
Fs = [terach] ; another would be K=lot , Fs = [haran] ; and so on.

Standard Prolog provides two predicates that distinguish between
these two interpretations. The predicate bagof (Term, Goal, Bag) is like
f i n d a l l except that alternative solutions are found for the variables in
Goal. The predicate se to f (Term, Goal, Bag) is a refinement of bagof
where the solutions in Bag are sorted corresponding to a standard order
of terms and duplicates removed. If we want to emphasize that the solu-
tion should be conceived of as a set, we refer to all-solutions predicates
as set predicates.

Another all-solutions predicate checks whether all solutions to a
query satisfy a certain condition. Program 16.2 defines a predicate f o r -
a l l (Goal ,Condit ion) , which succeeds when Condition is true for all
values of Goal. It uses the meta-variable facility.

The query f o r - a l l (f a t h e r (X ,C) ,male (C)) ? checks whch fathers
have only male children. It produces two answers: X=terach and X=abra-
ham.

A simpler, more efficient, but less general version of f o r - a l l can be
written directly using a combination of nondeterminism and negation by
failure. The definition is

for-al l (Goa1,Condit ion) - not (Goal, not Condi t ion) .

It successfully answers a query such as f o r - a l l (f a t h e r (t e r ach , X) ,
male (X)) ? but fails to give a solution to the query f o r - a l l (f a t h e r (X,
C) ,male (C))?.

Chapter 16 Second-Order Programming

find-all-dl (X,Goal,lnstances) -
Instances is the multiset of
instances of X for whlch Goal is true. The multiplicity
of an element is the number of different ways Goal can be
proved with it as an instance of X.

f ind-all-dl (X , Goal, Xs) -
asserta('$instance'('$mark')), Goal,
asserts('$instance' (X)) , f a i l .

find-all-dl(X,Goal,Xs\Ys) -
retract ('$ ins tance ' (X)) , r e a p (~ , ~ s \ Y s) , ! .

Program 16.3 Implementing an all-solutions predicate using difference-
lists, assert, and retract

We conclude this section by showing how to implement a simple vari-
ant of findall. The discussion serves a dual purpose. It illustrates
the style of implementation for all-solutions predicates and gives a
utility that will be used in the next section. The predicate find-all-
dl(X,Goal, Instances) is true if Instances is the bag (multiset) of
instances of X, represented as a difference-list, where Goal is true.

The definition of f ind-all-dl is given as Program 16.3. The program
can only be understood operationally. There are two stages to the pro-
cedure, as specified by the two clauses for find-all-dl. The explicit
failure in the first clause guarantees that the second will be executed.
The first stage finds all solutions to Goal using a failure-driven loop, as-
serting the associated X as it proceeds. The second stage retrieves the
solutions.

Asserting $mark is essential for nested all-solutions predicates to work
correctly, lest one set should "steal" solutions produced by the other all-
solutions predicate.

Exercise for Section 16.1

(i) Define the predicate intersect (XS , Ys , Zs) using an all-solutions
predicate to compute the intersection Zs of two lists Xs and Ys.

What should happen if the two lists do not intersect? Compare the
code with the recursive definition of intersect.

16.2 Applications of Set Predicates

Set predicates are a significant addition to Prolog. Clean solutions are ob-
tained to many problems by using set predicates, especially when other
programming techniques, discussed in previous chapters, are incorpo-
rated. Ths section presents three example programs: traversing a graph
breadth-first, using the Lee algorithm for finding routes in VLSI circuits,
and producing a keyword in context (KWIC) index.

Section 14.2 presents three programs, 14.8, 14.9, and 14.10, for
traversing a graph depth-first. We discuss here the equivalent programs
for traversing a graph breadth-first.

The basic relation is connected(X,Y), which is true if X and Y are
connected. Program 16.4 defines the relation. Breadth-first search is im-
plemented by keeping a queue of nodes waiting to be expanded. The
connected clause accordingly calls connected-bf s (Queue, Y), which is
true if Y is in the connected component of the graph represented by the
nodes in the Queue.

Each call to connected-bfs removes the current node from the head
of the queue, finds the edges connected to it, and adds them to the tail
of the queue. The queue is represented as a difference-list, and the all-
solutions predicate f ind-all-dl is used. The program fails when the;
queue is empty. Because difference-lists are an incomplete data struc-:

c ture, the test that the queue is empty must be made explicitly. Otherwise j
the program would not terminate. f

Consider the edge clauses in Program 16.4, representing the left-hand
graph in Figure 14.3. Using them, the query connected(a,X)? gives the *

values a, b, c, d, e, f, g, j, k, h, i for X on backtracking, which is a breadth- f
first traversal of the graph. I

Like Program 14.8, Program 16.4 correctly traverses a finite tree or a ;
directed acyclic graph (DAG). If there are cycles in the graph, the program i
will not terminate. Program 16.5 is an improvement over Program 16.4 in 1
whch a list of the nodes visited in the graph is kept. Instead of adding f
all the successor nodes at the end of the queue, each is checked to see if '

PROYECTO

Chapter 16 Second-Order Programming

connected (X, Y) -
Node X is connected to node Y in the DAG defined by
edge/Z facts.

connected(X,Y) - enqueue(~,~\~,Ql), connected-bf s(Q1 ,Y) .
connected-bf s(Q,Y) - empty(Q), ! , fail.
connected-bf s (Q,Y) - dequeue(X,~,~l), X=Y.
connected-bfs(Q,Y) -

dequeue(X,Q,Ql) , enqueue-edges(X,Ql ,Q2), connected-bf s(Q2,~).

enqueue-edges (X,Xs\Ys ,Xs\Zs) - f ind-all-dl(~,edge(~,~) ,YS\ZS), ! .
empty([I\[I).

enqueue/3, dequeue/3 - See Program 15.11.
f ind-all-dl(Term,Goal ,DList) - See Program 16.3.

Data

Program 16.4 Testing connectivity breadth-first in a DAG

it has been visited before. Thls is performed by the predicate filter in
Program 16.5.

Program 16.5 in fact is more powerful than its depth-first equivalent,
Program 14.10. Not only will it correctly traverse any finite graph but it
will also correctly traverse infinite graphs in which every vertex has finite
degree as well. It is useful to summarize what extensions to pure Prolog
have been necessary to increase the performance in searching graphs.
Pure Prolog correctly searches finite trees and DAGs. Adding negation
allows correct searchng of finite graphs with cycles, whle set predicates
are necessary for infinite graphs. This is shown in Figure 16.1.

Calculating the path between two nodes is a little more awkward than
for depth-first search. It is necessary to keep with each node in the queue
a list of the nodes linking it to the original node. The t e c h q u e is demon-
strated in Program 20.6.

The next example combines the power of nondeterministic program-
ming with the use of second-order programming. It is a program for
calculating a minimal cost route between two points in a circuit using
the Lee algorithm.

connected (X, Y) -
Node X is connected to node Y in the graph defined by
edge/Z facts.

connected(X,Y) -
enqueue (X, Q\Q ,Ql), connected-bf s(Q1 ,Y, [XI) .

connected-bf s(Q,Y ,Visited) - empty(Q), ! , fail.
connected-bfs(Q,Y ,Visited) - dequeue(X,Q,Ql), X=Y.
connected-bf s(Q ,Y ,Visited) -

dequeue (X, Q , Ql) ,
f indall (N, edge (X ,N) ,Edges),
filter(~dges,Visited,Visitedl,Ql,Q2),
connected-bfs(Q2,Y,Visitedl).

filter([N INS] ,Visited,Visitedl , Q , Q ~) -
member(N,Visited), ! , filter(Ns,Visited,Visitedl,Q,Ql).

filter([NINs],Visited,Visitedl,Q,Q2) -
not member(N,Visited) , ! , enqueue(N,Q,Ql) ,
filter(Ns,[NI~isitedl,Visitedl,Ql,Q2).

filter([I,~isited,Visited,Q,Q).

empty([I\[I).
enqueue/3, dequeue/3 - See Program 15.1 1.

Program 16.5 Testing connectivity breadth-first in a graph

(1) Finite trees and DAGs
Pure Prolog

(2) Finite graphs
Pure Prolog + negation

(3) Infinite graphs
Pure Prolog + second order + negation

Figure 16.1 Power of Prolog for various searching tasks

Chapter 16 Second-Order Programming

Figure 16.2 The problem of Lee routing for VLSI circuits

The problem is formulated as follows. Given a grid that may have
obstacles, find a shortest path between two specified points. Figure 16.2
shows a grid with obstacles. The heavy solid line represents a shortest
path between the two points A and B. The shaded rectangles represent
the obstacles.

We first formulate the problem in a suitable form for programming.
The VLSI circuit is modeled by a grid of points, conveniently assumed to
be the upper quadrant of the Cartesian plane. A route is a path between
two points in the grid, along horizontal and vertical lines only, subject
to the constraints of remaining in the grid and not passing through any
obstacles.

Points in the plane are represented by their Cartesian coordinates and
denoted X-Y. In Figure 16.2, A is 1-1 and B is 5-5. This representation
is chosen for readability and utilizes the definition of - as an infm binary

operator. Paths are calculated by the program as a list of points from
B to A, including both endpoints. In Figure 16.2 the route calculated is
(5-5,5-4,s-3,s-2,4-2,3-2,2-2,l-2,l-11, and is marked by the heavy solid
line.

The top-level relation computed by the program is l ee - rou te (A, B ,
Obstacles ,Pa th) , where Path is a route (of minimal distance) from
point A to point B in the circuit. Obstacles are the obstacles in the grid.
The program has two stages. First, successive waves of neighboring grid
points are generated, starting from the initial point, until the final point
is reached. Second, the path is extracted from the accumulated waves.
Let us examine the various components of Program 16.6, the overall
program for Lee routing.

Waves are defined inductively. The initial wave is the list [A]. Succes-
sive waves are sets of points that neighbor a point in the previous wave
and that do not already appear in previous waves. They are illustrated by
the lighter solid lines in Figure 16.2.

Wave generation is performed by waves (B, WavesSoFar , Obstac les ,
Waves). The predicate waves/4 is true if Waves is a list of waves to
the destination B avoiding the obstacles represented by Obstacles and
WavesSoFar is an accumulator containing the waves generated so far in
traveling from the source. The predicate terminates when the destina-
tion is in the current wave. The recursive clause calls next_wave/4, whch
finds all the appropriate grid points constituting the next wave using the
all-solutions predicate f i n d a l l .

Obstacles are assumed to be rectangular blocks. They are represented
by the term obs tac le(L,R) , where L is the coordinates of the lower
left-hand corner and R the coordinates of the upper right-hand corner.
Exercise (i) at the end of t h s section requires modifying the program to
handle other obstacles.

The predicate path(A, B, Waves, Path) finds the path Path back from B
to A through the Waves generated in the process. Path is built downward,
whch means the order of the points is from B to A. Ths order can be
changed by using an accumulator in path.

Program 16.6 produces no output while computing the Lee route. In
practice, the user may like to see the computation in progress. Ths can
be easily done by adding appropriate w r i t e statements to the procedures
next-wave and path.

Chapter 16 Second-Order Programming

lee-route(Source,Destination, Obstacles,Path) -
Path is a minimal length path from Source to
Destination that does not cross Obstacles.

lee-route(A,B,Obstacles,Path) -
waves (B, [[A] , [1 I ,Obstacles, Waves) ,
path(A,B,Waves,Path).

waves (Destination, WavesSoFar, Obstacles, Waves) -
Waves is a list of waves including WavesSoFar
(except, perhaps, its last wave) that leads to Destination
without crossing Obstacles.

waves(B,[WavelWaves],Obstacles,Waves) - member(B,Wave), ! .
waves(B,[Wave,LastWavelLastWavesl ,~bstacles,Waves) -

next-wave (Wave ,LastWave, Obstacles ,NextWave) ,
waves (B, [NextWave ,Wave ,LastWave 1 ~astwaves] ,Obstacles ,Waves)

next-wave(Wave,LastWave, Obstacles,NextWave) -
NextWave is the set of admissible points from Wave,
that is, excluding points from LastWave,
LVave and points under Obstacles.

next~wave(Wave,LastWave,0bstacles,NextWa~~~ -
findall(X,admissible(X,Wave,LastWave,~bstacles),~ext~a~e).

admissible(X,Wave,LastWave,Obstacles) -
adjacent(X,Wave,Obstacles),
not member (X, LastWave) ,
not member(X,Wave).

adjacent(X,Wave,Obstacles) -
member(Xl,Wave),
neighbor(X1,X),
not obstructed(X,Obstacles).

neighbor(X1-Y,X2-Y) - next_to(Xl,X2).
neighbor(X-Y1,X-Y2) - next_to(Yl,Y2).
next-to(X,Xl) - XI is X+1.
next-to(X,Xl) - X > 0 , XI is X-1.

obstructed(Point,0bstacles) -
member(Obstacle,Obstacles), obstructs(~oint,0bstacle).

obstructs(X-Y,obstacle(X-Y1,X2-Y2)) - Y1 I Y , Y 5 Y2.
obstructs(X-Y,obstacle(Xl-Y1,X-Y2)) - Y1 5 Y , Y 2 Y2.
obstructs(X-Y,obstacle(Xl-Y,X2-Y2)) - XI I X, X 2 X2.
obstructs(X-Y,obstacle(Xl-Y1,X2-Y)) - X1 I X, X 2 X2.
Program 16.6 Lee routing

path(Source,Destination, Waves,Path) -
Path is a path from Source to Destination going through Waves.

path(A,A,Waves, [A]) - ! .
path(A,B, [Wave l Waves] , [B I Path]) -

member (B1, Wave) ,
neighbor (B ,B1),
! , path(A,Bl,Waves,Path).

Testing and data

Program 16.6 (Continued)

Our final example in t h s section concerns the keyword in context
(KWIC) problem. Again, a simple Prolog program, combining nondeter-
ministic and second-order programming, suffices to solve a complex
task.

Finding keywords in context involves searchng text for all occurrences
of a set of keywords, extracting the contexts in whch they appear. We
consider here the following variant of the general problem: "Given a list
of titles, produce a sorted list of all occurrences of a set of keywords in
the titles, together with their context."

Sample input to a program is given in Figure 16.3 together with the
expected output. The context is described as a rotation of the title with
the end of the title indicated by -. In the example, the keywords are
algorithmic, debugging, logic, problem, program, programming, prolog,
and solving, all the nontrivial words.

The relation we want to compute is kwic(Tit1es ,KwicTitles) where
Titles is the list of titles whose keywords are to be extracted, and Kwic-
Titles is the sorted list of keywords in their contexts. Both the input
and output titles are assumed to be given as lists of words. A more gen-
eral program, as a preliminary step, would convert freer-form input into
lists of words and produce prettier output.

The program is presented in stages. The basis is a nondeterministic
specification of a rotation of a list of words. It has an elegant definition
in terms of append:

Chapter 16 Second-Order Programming

Input: programming in prolog
logic for problem solving
logic programming
algorithmic program debugging

Output: algorithmic program debugging -,
debuggMg - algorithmic program,
logic for problem solving -,
logic programming -,
problem solving - logic for,
program debugging - algorithmic,
programming in prolog -,
programming - logic,
prolog - programming in,
solving - logic for problem

Figure 16.3 Input and output for keyword in context (KWIC) problem

Declaratively, Y s is a rotation of X s if X s is composed of A s followed by
B s , and Y s is Bs followed by As.

The next stage of development involves identifying single words as
potential keywords. This is done by isolating the word in the first call
to append. Note that the new rule is an instance of the previous one:

Thls definition also improves the previous attempt by removing the du-
plicate solution when one of the split lists is empty and the other is the
entire list.

The next improvement involves examining a potential keyword more
closely. Suppose each keyword Word is identified by a fact of the form
keyword(Word). The solutions to the r o t a t e procedure can be filtered
so that only words identified as keywords are accepted. The appropriate
version is

r o t a t e - a n d - f i l t e r (XS ,Ys) - append&, [Key lBs] ,Xs) 9

keyword(Key) , append([Key 1 Bsl , A s ,Ys) .

kwic (Titles,KWTitles) -
KWTitles is a KWIC index of the list of titles Titles.

kwic(Titles,KWTitles)
setof(Ys,Xs~(rnember(Xs,Titles),
rotate-and-f ilter(Xs ,Ys)) ,~WTitles) .

rotate-and-filter (Xs,Ys) -
Ys is a rotation of the list Xs such that
the first word of Ys is significant and -
is inserted after the last word of Xs.

rotate-and-filter(Xs,Ys) -
append(As, [Key lBsl ,Xs),
not insignificant(Key1,
append([~ e y IBsl , ['-' IAsl ,Ys).

Vocabulary of insignificant words

Testing and data

titles(lp,[[logic,for,problem,solving],
[logic, programming] ,
[algorithmic,program,debuggingl,
[programming, in,prologl I) .

Program 16.7 Producing a keyword in context (KWIC) index

Operationally r o t a t e - a n d - f i l t e r considers all keys, filtering out the
unwanted alternatives. The goal order is important here to maximize
program efficiency.

In Program 16.7, the final version, a complementary view to recogniz-
ing keywords is taken. Any word Word is a keyword unless otherwise
specified by a fact of the form i n s i g n i f i c a n t (Word). Further the proce-
dure is augmented to insert the end-of-title mark -, providing the con-
text information. This is done by adding the extra symbol in the second
append call. Incorporating t h s discussion yields the clause for r o t a t e -

and-f i l t e r in Program 16.7.
Finally, a set predicate is used to get all the solutions. Quantification

is necessary over all the possible titles. Advantage is derived from the

Chapter I6 Second-Order Programming

behavior of setof in sorting the answers. The complete program is given
as Program 16.7, and is an elegant example of the expressive power of
Prolog. The test predicate is test_kwic/2.

Exercises for Section 16.2

(i) Modify Program 16.6 to handle other obstacles than rectangles.

(ii) Adapt Program 16.7 for KWIC so that it extracts keywords from
lines of text.

(iii) Modify rotation of a list so that it uses difference-lists.

(iv) Write a program to find a minimal spanning tree for a graph.

(v) Write a program to find the maximum flow in a network design
using the Ford-Fulkerson algorithm.

16.3 Other Second-Order Predicates

First-order logic allows quantification over individuals. Second-order
logic further allows quantification over predicates. Incorporating this
extension into logic programming entails using rules with goals whose
predicate names are variables. Predicate names become "first-class" data
objects to be manipulated and modified.

A simple example of a second-order relation is the determination of
whether all members of a list have a certain property. For simplicity
the property is assumed to be described as a unary predicate. Let us
define has-property(Xs,P), which is true if each element of Xs has
some property P. Extending Prolog syntax to allow variable predicate
names enables us to define has-property as in Figure 16.4. Because has-
property allows variable properties, it is a second-order predicate. An
example of its use is testing whether a list of people Xs is all male with a
query has-property (Xs ,male) ?.

Another second-order predicate is map-list (Xs , P ,Ys). Ys is the map
of the list xs under the predicate P. That is, for each element X of Xs
there is a corresponding element Y of Ys such that P(X,Y) is true. The

has-property ([XI Xsl , P) - P(X), has-property (Xs ,P) .
has-property ([1 , P) .

Figure 16.4 Second-order predicates

order of the elements in Xs is preserved in Ys. We can use map-list
to rewrite some of the programs of earlier chapters. For example, Pro-
gram 7.8 mapping English to French words can be expressed as map-
list (Words, dict , Mots). Like has-property, map-list is easily defined
using a variable predicate name. The definition is given in Figure 16.4.

Operationally, allowing variable predicate names implies dynamic con-
struction of goals while answering a query. The relation to be computed
is not fixed statically when the query is posed but is determined dynam-
ically during the computation.

Some Prologs allow the programmer to use variables for predicate
names, and allow the syntax of Figure 16.4. It is unnecessary to com-
plicate the syntax however. The tools already exist for implementing
second-order predicates. One basic relation is necessary, which we call
apply; it constructs the goal with a variable functor. The predicate apply
is defined by a set of clauses, one for each functor name and arity. For
example, for functor f oo of arity n, the clause is

apply (f oo, XI, . . . , Xn) - f oo (XI, . . . , Xn)
The two predicates in Figure 16.4 are transformed into Standard Prolog
in Program 16.8. Sample definitions of apply clauses are given for the
examples mentioned in the text.

The predicate apply performs structure inspection. The whole collec-
tion of apply clauses can be generalized by using the structure inspec-
tion primitive, univ. The general predicate apply (P,Xs) applies predi-
cate P to a list of arguments Xs:

apply (F,Xs) -- Goal =. . [F I XS] , Goal.

We can generalize the function to be applied from a predicate name, i.e.,
an atom, to a term parameterized by variables. An example is substitut-
ing for a value in a list. The relation substitute/4 from Program 9.3

Chapter 16 Second-Order Programming

has-property(Xs,P) -
Each element in the list Xs has property P

has-property([X I Xsl ,PI '
apply(P,X), has-property(Xs,P).

has-property ([1 ,PI .

apply (male, lo - male (XI.

maplist (Xs,P,Ys) -
Each element in the list Xs stands in relation
P to its corresponding element in the list Ys.

map-list ([XI XS] , P , [Y I Ys]) -
apply(P,X,Y), map-list(Xs,P,Ys)

map-l is t([I , P , 1) .

apply(dict,X,Y) - dic t (X,Y) .

Program 16.8 Second-order predicates in Prolog

can be viewed as an instance of map-list if parameterization is allowed.
Namely, map-list (Xs, substitute(Old,New) ,Ys) has the same effect in
substituting the element New for the element Old in Xs to get Ys - exactly
the relation computed by Program 9.3. In order to handle this correctly,
the definition of apply must be extended a little:

apply(P,Xs) -
P =. . L1, append(LI,Xs,~2), Goal =. . L2, Goal

IJsing apply as part of map-list leads to inefficient programs. For ex-
ample, using substitute directly rather than through map-list results
in far fewer intermediate structures being created, and eases the task
of compilation. Hence these second-order predicates are better used in
conjunction with a program transformation system that can translate
second-order calls to first-order calls at compile-time.

The predicate apply can also be used to implement lambda expres-
sions. A lambda expression is one of the form lambda(Xl,. . .,X,).Expres-
sion. If the set of lambda expressions to be used is known in advance,
they can be named. For example, the above expression would be replaced
by some unique identifier, f oo say, and defined by an apply clause:

apply (f 00, XI, . . . , Xn) - Expression.

Although possible both theoretically and pragmatically, the use of
lambda expressions and second-order constructs such as has-property
and map-list is not as widespread in Prolog as in functional program-
ming languages like Lisp. We conjecture that t h s is a combination of
cultural bias and the availability of a host of alternative programming
techmques. It is possible that the ongoing work on extending the logic
programming model with hgher-order constructs and integrating it with
functional programming will change the picture.

In the meantime, all-solutions predicates seem to be the main and most
useful higher-order construct in Prolog.

16.4 Background

Exercise for Section 16.3

(i) Write a program performing beta reduction for lambda expressions.

The discussion of f indall uses the description contained in the Stan-
dard Prolog document (Scowen, 1991). An excellent discussion of the
all-solutions predicates bagof and setof in Edinburgh Prolog are given
in Warren (1982a). Discussions of "rolling your own" set predicates can
be found in both O'Keefe (1990) and Ross (1989).

Set predicates are a powerful extension to Prolog. They can be used (in-
efficiently) to implement negation as failure and meta-logical type pred-
icates (Kahn, 1984). If a goal G has no solutions, whch is determined by
a predicate such as f indall, then not G is true. The predicate var (XI
is implemented by testing whether the goal X=1; X=2 has tw7o solutions.
Further discussion of such behavior of set predicates and a survey of dif-
ferent implementations of set predicates can be found in Naish (1985a).

Further description of the Lee algorithm and the general routing prob-
lem for VLSI circuits can be found in textbooks on VLSI, for example,
Breuer and Carter (1983). A neat graphic version of Program 16.6 has
been written by Dave Broderick.

Chapter 16

Recent logic programming research has focused somewhat more on
higher-order logic programming. Approaches of note are Lambda-Prolog
(Miller and Nadathur, 1986) and HiLog (Chen et al., 1989).

KWIC was posed as a benchmark for high-level programming languages
by Perlis, and was used to compare several languages. We find the Prolog
implementation of it perhaps the most elegant of all.

Our description of lambda expressions is modeled after Warren
(1982a). Predicates such as apply and map-list were part of the utili-
ties package at'the University of Edinburgh. They were fashionable for
a while but fell out of favor because they were not compiled efficiently,
and no source-to-source transformation tools were available.

Interpreters

Meta-programs treat other programs as data. They analyze, transform,
and interpret other programs. The writing of meta-programs, or meta-
programming, is particularly easy in Prolog because of the equivalence
of programs and data: both are Prolog terms. We have already presented
some examples of meta-programs, namely, the editor of Program 12.5
and the shell process of Program 12.6. This chapter co\,ers interpreters,
an important and useful class of meta-programs, and Chapter 18 dis-
cusses program transformation.

- - -

17.1 Interpreters for Finite State Machines

The sharp distinction between programs and data present in most com-
puter languages is lacking in Prolog. The equivalence of programs and
data greatly facilitates the writing of interpreters. We demonstrate the
facility in this section by considering the basic computation models of
computer science. Interpreters for the various classes of automata are
very easily written in Prolog.

It is interesting to observe that the interpreters presented in this sec-
tion are a good application of nondeterministic programming. The pro-
grams that are presented illustrate typical examples of don't-know non-
determinism. The same interpreter can execute both deterministic and
nondeterministic automata because of the nondeterminism of Prolog.

Definition
A (nondeterministic) finite automaton, abbreviated NDFA, is a 5-tuple
(Q,C,b,I,F), where Q is a set of states, C is a set of symbols, 6 is a

Chapter 17 Interpreters

accept (Xs) -
The string represented by the list Xs is accepted by
the NDFA defined by initial/l, delta/3, and final/l.

accept(Xs) - initial(Q1, accept(~s,Q).
accept([XIXsl ,Q) - delta(Q,X,Ql), accept(Xs,Ql).
accept ([I , Q) - final (9) .
Program 17.1 An interpreter for a nondeterministic finite automaton
(NDFA)

mapping from Q x C to Q, I is an initial state, and F is a set of final
states. If the mapping is a function, then an NDFA is deterministic.

A finite automaton can be specified as a Prolog program by three col-
lections of facts. The predicate i n i t i a l (Q) is true if Q is the initial state.
The predicate f i n a l (Q) is true if Q is a final state. The most interesting is
del ta(Q,X,Ql) , which is true if the NDFA changes from state Q to state
Q 1 on receipt of symbol X. Note that both the set of states and the set
of symbols can be defined implicitly as the constants that appear in the
i n i t i a l , f i n a l , and d e l t a predicates.

An NDFA accepts a string of symbols from the alphabet C*, if when
started in its initial state, and following the transitions specified by 6, the
NDFA ends up in one of the final states. An interpreter for an NDFA must
determine whether it accepts given strings of symbols. Program 17.1 is
an interpreter. The predicate accept (Xs) is true if the NDFA defined
by the collection of i n i t i a l , f i n a l , and d e l t a facts accepts the string
represented as the list of symbols X s .

Figure 17.1 shows a deterministic automaton that accepts the language
(ab)*. There are two states, qO and ql . If in state q0 an a is received, the
automaton moves to state q l . The automaton moves back from ql to q0
if a b is received. The initial state is qO, and q0 is also the single final
state.

To use the interpreter, a specific automaton must be given. Program
17.2 is the realization in Prolog of the automaton in Figure 17.1. The
combination of Programs 17.1 and 17.2 correctly accepts strings of al-
ternating a's and b's.

If an arc from q0 to itself labeled a is added to the automaton in Fig-
ure 17.1, we get a new automaton that recognizes the language (a(a*)b)*.

Figure 17.1 A simple automaton

initial(q0).

final (q0) .

Program 17.2 An NDFA that accepts the language (ab) *

Ths automaton is nondeterministic because on receipt of an a in state q0
it is not determined which path will be followed. Nondeterminism does
not affect the interpreter in Program 17.1. All that is needed to produce
the new automaton is to add the fact del ta(q0, a , q0) and the combined
program will behave correctly.

Another simple computation model is a pushdown automaton that ac-
cepts the class of context-free languages. Pushdown automata extend
NDFAs by providing a single stack for memory in addition to the in-
ternal state of the automaton. Formally, a (nondeterministic) pushdown
automaton, abbreviated NPDA, is a 7-tuple (Q,C,G,G,I,Z,F) where Q, 1, I,
F are as before, G is the set of symbols that can be pushed onto the stack,
Z is the start symbol on the stack, and 6 is changed to take the stack into
account.

Specifically, 6 is a mapping from Q x C x G* to Q x G*. The mapping
controls the change of state of the NPDA and the pushing and popping
of elements onto and off the stack by the NPDA. In one operation, the
NPDA can pop (push) one symbol off (onto) the stack.

Analogously to an NDFA, an NPDA accepts a string of symbols from the
alphabet X*, if when started in its initial state and with the starting syrn-
bol on the stack, and following the transitions specified by 6, the NPDA
ends up in one of the final states with the stack empty. An interpreter
for an NPDA is given as Program 17.3. The predicate accept (Xs) is true
if the NDFA defined by the collection of i n i t i a l , f i n a l , and d e l t a facts

Chapter 17 Interpreters

accept(Xs) -
The string represented by the list X s is accepted by
the NPDA defined by initial/l, delta/5, and final/l.

accept (Xs) - initial (9) , accept (Xs, Q , [I) .

Program 17.3 An interpreter for a nondeterministic pushdown automaton
(NPDA)

delta(qO,X,S,qO, [XIS])
delta(qO,X,S,ql, [XIS])
delta(qO,X,S,ql,S).
delta(ql,X, [XIS] ,ql,S)

Program 17.4 An NPDA for palindromes over a finite alphabet

accepts the string represented as the list of symbols X s . The interpreter
is very similar to the interpreter of an NDFA given as Program 17.1. The
only change is the explicit manipulation of the stack by the d e l t a predi-
cate.

A particular example of an NPDA is given as Program 17.4. Ths au-
tomaton accepts palindromes over a finite alphabet. A palindrome is a
nonempty string that reads the same backwards as forwards. Example
palindromes are noon, madam, and glenelg. Again, the automaton is
specified by i n i t i a l , f i n a l , and d e l t a facts, and the sets of symbols
being defined implicitly. The automaton has two states: q0, the initial
state when symbols are pushed onto the stack, and q l , a final state when
symbols are popped off the stack and compared with the symbols in the
input stream. When to stop pushing and start popping is decided nonde-
terministically. There are two d e l t a facts that change the state from q0
to q l to allow for palindromes of both odd and even lengths.

Programs 17.1 and 17.2 can be combined into a single program for
recognizing the language (ab)*. Similarly, Programs 17.3 and 17.4 can be
combined into a single program for recognizing palindromes. A program
that can achieve this combination is given in Chapter 18.

It is straightforward to build an interpreter for a Turing machine writ-
ten in a similar style to the interpreters in Programs 17.1 and 17.3. This
is posed as Exercise (iii) at the end of this section. Building an interpreter
for Turing machines shows that Prolog has the power of all other known
computation models.

Exercises for Section 17.1

(i) Define an NDFA that accepts the language ab*c.

(ii) Define an NPDA that accepts the language anbn.

(iii) Write an interpreter for a Turing machine.

17.2 Meta-Interpreters

We turn now to a class of especially useful interpreters. A meta-inter-
preter for a language is an interpreter for the language written in the
language itself. Being able to write a meta-interpreter easily is a very pow-
erful feature of a programming language. It gives access to the computa-
tion process of the language and enables the building of an integrated
programming environment. The examples in the rest of this chapter
demonstrate the potential of meta-interpreters and the ease with which
they can be written. In t h s section, we also examine issues in writing
meta-interpreters.

Throughout the remainder of this chapter, the predicate solve is used
for a meta-interpreter. A suitable relation scheme is as follows. The re-
lation solve(Goa1) is true if Goal is true with respect to the program
being interpreted.

The simplest meta-interpreter that can be written in Prolog exploits the
meta-variable facility. It is defined by a single clause:

T h s trivial interpreter is only useful as part of a larger program. For
example, a version of the trivial interpreter forms the basis for the in-
teractive shell given as Program 12.6 and the logging facility given as
Program 12.7. In general, as we suggest here and see in more detail in

Chapter 17 Interpreters

solve(Goal) -
Goal is true given the pure Prolog program defined by clause/2.

solve (true) .
solve((A,B)) - solve(A), solve(B).
solve(A) - clause(A,B), solve(B).

Program 17.5 A meta-interpreter for pure Prolog

Sections 17.3 and 17.4, meta-interpreters are useful and important be-
cause of the easily constructed enhancements.

The best known and most widely used meta-interpreter models the
computation model of logic programs as goal reduction. The three
clauses of Program 17.5 interpret pure Prolog programs. Thls meta-
interpreter, called vanilla, together with its enhancements, is the basis of
the rest of this section and Section 17.3.

The interpreter in Program 17.5 can be given a declarative reading. The
solve fact states that the empty goal, represented by the constant true,
is true. The first solve rule states that a conjunction (A,B) is true if A
is true and B is true. The second solve rule states that a goal A is true if
there is a clause A - B in the interpreted program such that B is true.

We also give a procedural reading of the three clauses in Program
17.5. The solve fact states that the empty goal, represented in Prolog by
the atom true, is solved. The next clause concerns conjunctive goals. It
reads: "To solve a conjunction (A,B), solve A and solve B." The general
case of goal reduction is covered by the final clause. To solve a goal,
choose a clause from the program whose head unifies with the goal, and
recursively solve the body of the clause.

The procedural reading of Prolog clauses is necessary to demonstrate
that the meta-interpreter of Program 17.5 indeed reflects Prolog's choices
of implementing the abstract computation model of logic programming.
The two choices are the selection of the leftmost goal as the goal to
reduce, and sequential search and backtraclung for the nondeterministic
choice of the clause to use to reduce the goal. The goal order of the body
of the solve clause handling conjunctions guarantees that the leftmost
goal in the conjunction is solved first. Sequential search and backtracking
comes from Prolog's behavior in satisfying the clause goal.

The hard work of the interpreter is borne by the thlrd clause of Pro-
gram 17.5. The call to clause performs the unification with the heads

solve (member (X , [a, b, c]))
clause (member (X, [a, b, cl) , B)
solve(true)

true Output: X=a

solve(true)

clause(true,T) f
clause (member (X, [a, b, cl ,B)
solve (member (X, [b, c] 1)

clause (member (X, [b, cI) ,B1)
solve(true)
true Output: x=b

solve (true)
clause(true ,T) f

clause(member(X, [b, c]) ,Bl)
solve (member (X, [c]))

clause (member (X, [c] ,B2)
solve (true)
true Output: X=c

solve (true)
clause(true,T) f

clause (member (X, [cl ,B2))
solve (member (X , [1))

clause (member (X, [1) ,B3) f
no (more) solutions

Figure 17.2 Tracing the meta-interpreter

of the clauses appearing in the program. It is also responsible for giv-
ing different solutions on backtraclung. Backtracking also occurs in the
conjunctive rule reverting from B to A.

Tracing the meta-interpreter of Program 17.5 solving a goal is instruc-
tive. The trace of answering the query solve (member (X, [a, b, cl)) with
respect to Program 3.12 for member is given in Figure 17.2.

The vanilla meta-interpreter inherits Prolog's representation of clauses
using the system predicate clause. Alternative representations of
clauses are certainly possible, and indeed have been used by alter-
native Prologs. Lists are one possible representation. The clause A -
B I , B2,. . . , Bn can be represented by the clause rule(A, CBI,. . . ,Bn]). In

Chapter 17 Interpreters

solve(Goal) -
Goal is true given the pure Prolog program defined by clause/2.

solve(Goa1) - solve (Goal, [1) .
solve([I,[I).
solve ([] , [GI Goals]) - solve (G ,Goals) .
solve([AIB],Goals) - append(B,Goals,Goalsl), solve(A,Goalsl).
solve(A,Goals) - rule(A,B), solve(B,Goals).

Program 17.6 A meta-interpreter for pure Prolog in continuation style

this representation, the empty list represents the empty goal and list
construction represents conjunction. This representation is used in Pro-
gram 17.6.

A different representation imposes a different form on the meta-
interpreter, as illustrated in Program 17.6. Unlike Program 17.5, this
version of the vanilla meta-interpreter makes explicit the remaining goals
in the resol\,ent. Enhancements can be written to exploit the fact that the
resolvent is accessible during the computation, for example, allowing a
more sophisticated computation rule. The behavior of Program 17.6 can
be considered as being in continuation style promoted by languages such
as Scheme.

Differences in meta-interpreters can be characterized in terms of their
granularity, that is the chunks of the computation that are made acces-
sible to the programmer. The granularity of the trivial one-clause meta-
interpreter is too coarse. Consequently there is little scope for applying
the meta-interpreter. It is possible, though not as easy, to write a meta-
interpreter that models unification and backtraclung. The granularity of
such a meta-interpreter is very fine. Working at this fine level is usually
not worthwhile. The efficiency loss is too great to warrant the extra ap-
plications. The meta-interpreter in Program 17.5, at the clause reduction
level, has the granularity most suited for the widest range of applica-
tions.

The vanilla meta-interpreter must be extended to handle language fea-
tures outside pure Prolog. Builtin predicates are not defined by clauses
in the program and need different treatment. The easiest way to incor-
porate builtin predicates is to use the meta-variable facility to call them
directly. A table of builtin predicates is necessary. In this chapter, we
assume a table of facts of the form builtin(Predicate) for each builtin

builtin(A is B). builtin(A > B).
builtin(read(X1) . builtin(write(X)) .
builtin(integer(X1). builtin(functor(T,F,N)).
builtin(clause(A,B)). builtin(builtin(X)).

Figure 17.3 Fragment of a table of builtin predicates

predicate. Figure 17.3 gives part of that table. A table of builtin predi-
cates is provided in some Prologs by another name but is not present in
Standard Prolog.

The clause solve (A) - builtin(A), A. can be added to the meta-
interpreter in Program 17.5 to correctly handle builtin predicates. The
resulting program handles four disjoint cases, one per clause, for solving
goals: the empty goal, conjunctive goals, builtin goals, and user-defined
goals. For compatibility with a number of Prolog systems, the meta-
interpreters in the rest of this section contain cuts to indicate that the
clauses are mutually exclusive.

The extra solve clause makes the behavior of the builtin predicates in-
visible to the meta-interpreter. User-defined predicates that one wants to
make invisible can be handled similarly with a single clause. Conversely,
there are occasions when builtin predicates for negation and second-
order programming should be made visible.

The vanilla meta-interpreter needs to be extended to handle cuts cor-
rectly. A naive incorporation of cuts treats them as a builtin predicate,
effectively adding a clause solve (! - ! . T h s clause does not acheve
the correct behavior of cut. The cut in the clause commits to the current
solve clause rather than pruning the search tree.

To achieve correct behavior of cut in a meta-interpreter, one needs to
understand scope, that is to which clause the cut commits. The scope of
cut, as described in Chapter 11, is the clause in whch the cut is a goal
in the body. The scope of cut when it is contained withn a meta-logical
builtin predicate such as conjunction and disjunction is less distinct and
varies in different Prologs. If a cut is part of a disjunction, should ex-
ecution of the cut commit to the current disjunct or to the clause in
which the disjunction is embedded? Handling cut correctly in a meta-
interpreter is tricky and usually relies on technical details of the scope of
cut in a particular implementation of Prolog. Incorporating cuts withn

Chapter 17 Interpreters

solve- trace (Goal) -
Goal is true given the Prolog program defined by clause/2.
The program traces the proof by side effects.

solve-trace(true,Depth) - ! .
solve-trace((A,B) ,Depth) -

! , solve-trace(A,Depth) , solve-trace(~,~epth) .
solve-trace(A,Depth) -

builtin(A), ! , A, display(A,Depth), nl.
solve-trace (A,Depth) -

clause(A,B) , display(A,Depth) , nl, Depth1 is Depth + 1 ,

solve-trace(B,Depthl).

display(A,Depth) -
Spacing is 3*Depth, put-spaces(Spacing), write(A).

put-spaces (N) -
between(l,N,I), put-char(' '1 , fail

put-spaces(N) .

Program 17.7 A tracer for Prolog

meta-interpreters has been widely studied, and references to solutions
are given in Section 17.5.

We apply meta-interpreters to develop a simple tracer. Program 17.7
handles success branches of computations and does not display failure
nodes in the search tree. It is capable of generating the traces presented
in Chapter 6.

The basic predicate is solve-trace (Goal, Depth), where Goal is
solved at some depth. The starting depth is assumed to be 0. The first
solve_trace/2 clause in Program 17.7 states that the empty goal is
solved at any depth. The second clause indicates that each goal in a con-
junct is solved at the same depth. The th rd clause handles builtins. The
final solve_trace/2 clause matches the goal with the head of a program
clause, displays the goal, increments the depth, and solves the body of
the program clause at the new depth.

The predicate display(Goa1 ,Depth) is an interface for printing the
traced goal. The second argument, Depth, controls the amount of inden-
tation of the first argument, Goal. Level of indentation correlates with
depth in the proof tree.

solve(Goa1,Tree) -
Tree is a proof tree for Goal given the program defined
by clause/2.

solve(true, true) - ! .
solve((A,B),(ProofA,ProofB)) -

! , solve(A,ProofA), solve(B,ProofB).
solve(A,(A-builtin)) - builtin(A), ! , A.
solve(A,(A-Proof)) - clsuse(A,B), solve(B,Proof).

Program 17.8 A meta-interpreter for building a proof tree

There is subtlety in the goal order of the clause

solve-trace (A, Depth) -
(A , B) , display (A, Depth) , nl, Depth1 is + 9

solve-trace (B ,Depthl) .

The display goal is between calls to clause and solve-trace, ensuring
that the goal is displayed each time Prolog backtracks to choose another
clause. If the clause and display goals are swapped, only the initial call
of the goal is displayed.

Using Program 17.7 for the query solve-trace (append(Xs ,Ys, [a,b,
C])) ? with Program 3.15 for append generates a trace like the one pre-
sented in Section 6.1. The output messages and semicolons for alterna-
tive solutions are provided by the underlying Prolog. There is only one
difference from the trace in Figure 6.2. The unifications are already per-
formed. Separating out unifications requires explicit representation of
unification and is considerably harder.

A simple application of meta-interpreters constructs a proof tree while
solving a goal. The proof tree is built top-down. A proof tree is essen-
tial for the applications of debugging and explanation in the next two
sections.

The basic relation is solve (Goal ,Tree), where Tree is a proof tree
for the goal Goal. Proof trees are represented by the structure Goal -
Proof. Program 17.8 implements solve/2 and is a straightforward en-
hancement of the vanilla meta-interpreter. We leave as an exercise for
the reader giving a declarative reading of the program.

Here is an example of using Program 17.8 with Program 1.2. The query
solve (son(1ot , haran) ,Proof) ? has the solution

Chapter 17 Interpreters

solve(Goa1,Certainty) -
Certainty is our confidence that Goal is true.

solve(true, 1) - ! .
solve((A,B) ,C) -

! , solve(A,Cl), solve(B,C2), minimum(Cl,C2,C).
solve(A,l) - builtin(A), ! , A.
solve(A,C) - clause-cf (A,B,CI), solve(B,C2), C is C1 * C2.
minimum(X,Y,z) - See Program 11.3.

Program 17.9 A meta-interpreter for reasoning with uncertainty

Proof = (son (lo t , ha ran) -
((f a t h e r (h a r a n , l o t) - t r u e) ,
(male (l o t) - t r u e))) .

The query so lve (son (X , haran) ,Proof) ? has the solution X=lot and the
same value for Proof.

Our next enhancement of the vanilla meta-interpreter incorporates a
mechanism for uncertainty reasoning. Associated with each clause is a
certainty factor, which is a positive real number less than or equal to 1.
A logic program with certainties is a set of ordered pairs (Clause,Factor),
where Clause is a clause and Factor is a certainty factor.

The simple meta-interpreter in Program 17.9 implements the un-
certainty reasoning mechanism. The program is a straightforward en-
hancement of the vanilla meta-interpreter. The top-level relation is
so lve (Goal, Ce r t a in ty) , whlch is true when Goal is satisfied with cer-
tainty Cer ta in ty .

The meta-interpreter computes the combination of certainty factors in
a conjunction as the minimum of the certainty factors of the conjuncts.
Other combining strategies could be accommodated just as easily. Pro-
gram 17.9 assumes that clauses with certainty factors are represented
using a predicate clause-cf (A , B , CF) .

Program 17.9 can be enhanced to prune computations that do not
meet a desired certainty threshold. An extra argument constituting the
value of the cutoff threshold needs to be added. The enhanced program
is given as Program 17.10. The new relation is so lve (Goal, C e r t a i n t y ,
Threshold).

The threshold is used in the fourth clause in Program 17.10. The cer-
tainty of any goal must exceed the current threshold. If the threshold is

solve(Goal,Certainty, Threshold) -
Certainty is our confidence, greater than Threshold, that Goal is true.

solve(true,l,T) - ! .
solve((A,B),C,T) -

! , solve(A,CI,T), solve(B,C2,T), minimrn(CI,C2,C).
solve(A,I,T) - builtin(A), ! , A.
solve(A,C,T) -

clause-cf (A,B,Cl), C1 > T , TI is T / C 1 ,
solve(B,C2,Tl), C is C1 * C2.

minirnum(X , Y , Z) - See Program 11.3.

Program 17.10 Reasoning with uncertainty with threshold cutoff

exceeded, the computation continues. The new threshold is the quotient
of the previous threshold by the certainty of the clause.

Exercises for Section 17.2

(i) Write a meta-interpreter to count the number of times a procedure
is called in a successful computation.

(ii) Write a meta-interpreter to find the maximum depth reached in a
computation.

(iii) Extend Program 17.6 to give a tracer and build a proof tree.

(iv) Extend Program 17.7 for so lve_ t r ace /2 to print out failed goals.

(v) Modify Program 17.8 to use a different representation for a proof
tree.

- - - - - - - -

1 7.3 Enhanced Meta-Interpreters for Debugging

Debugging is an essential aspect of programming, even in Prolog. The
promise of high-level programming languages is not so much in the
prospect for writing bug-free programs but in the power of the com-
puterized tools for supporting the process of program development. For
reasons of bootstrapping and elegance, these tools are best implemented

Chapter 17 Interpreters

in the language itself. Such tools are programs for manipulating, analyz-
ing, and simulating other programs, or in other words, meta-programs.

Ths section shows meta-programs for supporting the debugging
process of pure Prolog programs. The reason for restricting ourselves
to the pure part is clear: the difficulties in handling the impure parts of
the language.

To debug a program, we must assume that the programmer has some
intended behavior of the program in mind, and an intended domain of
application on which the program should exhibit t h s behavior. Given
those, debugging consists of finding discrepancies between the pro-
gram's actual behavior and the behavior the programmer intended.
Recall the definitions of an intended meaning and a domain from Sec-
tion 5.2. An intended meaning M of a pure Prolog program is the set
of ground goals on which the program should succeed. The intended
domain D of a program is a domain on which the program should ter-
minate. We require the intended meaning of a program to be a subset of
the intended domain.

We say that A, is a solution to a goal A if the program returns on a goal
A its instance A , . We say that a solution A is true in an intended meaning
M if every instance of A is in M. Otherwise it is false in M.

A pure Prolog program can exhibit only three types of bugs, given an
intended meaning and an intended domain. When invoked on a goal A in
the intended domain, the program may do one of three thmgs:

1. Fail to terminate
2. Return some false solution A 8
3. Fail to return some true solution A 8

We describe algorithms for supporting the detection and identification of
each of these three types of bugs.

In general, it is not possible to detect if a Prolog program is nonter-
minating; the question is undecidable. Second best is to assign some a
priori bound on the running time or depth of recursion of the program,
and abort the computation if the bound is exceeded. It is desirable to
save part of the computation to support the analysis of the reasons for
nontermination. The enhanced meta-interpreter shown in Program 17.1 1
achieves ths . It is invoked with a call solve (A, D , Overf low), where A is
an initial goal, and D an upper bound on the depth of recursion. The call

solve(A,D,Overflow) -
A has a proof tree of depth less than D and
Overflow equals no-overflow, or A has a
branch in the computation tree longer than D, and
Overflow contains a list of its first D elements.

solve(true,D,no~overflow) - ! .
solve(A,0,overflow([1)) + ! .
solve ((A, B) , D, Overf low) -

D > O , ! ,

solve(A,D,OverflowA),
solve~conjunction(0verflowA,B,D,Overflow).

solve(A,D,no-overflow) -
D > 0,
builtin(A), ! , A.

solve(A,D,Overflow) -
D > 0,
clause(A,B),
Dl is D-1,
solve(B,Dl,OverflowB),
return~overflow(0verflowB,A,0verflow).

solve~conjunction(overflow(S),B,D,overflow~S~~.
solve~conjunction(no~overflow,B,D,Overflow~ -

solve(B,D,Overflow).

return~overflow(no~overflow,A,no~overflow~.
return~overflow(overflow(S),A,overflow([AISl~~.

Program 17.1 1 A meta-interpreter detecting a stack overflow

succeeds if a solution is found without exceeding the predefined depth
of recursion, with Overflow instantiated to no-overf low. The call also
succeeds if the depth of recursion is exceeded, but in t h s case Over-
flow contains the stack of goals, i.e., the branch of the computation tree,
whch exceeded the depth-bound D.

Note that as soon as a stack overflow is detected, the computation
returns, without completing the proof. Ths is acheved by solve-
conjunction and return-overf low.

For example, consider Program 17.12 for insertion sort. When called
with the goal solve (isort ([2,21 ,Xs) ,6, Overflow), the solution re-
turned is

PROYECTO

Chapter 17 Interpreters

isort (Xs, Ys) -
Ys is an ordered permutation of Xs. Nontermination program.

isort ([XIXs] ,Ys) - isort(Xs,Zs) , insert(~,Zs,Ys).
isort([I,[1).

insert (X , [Y I Ysl , [X ,Y I Ysl) -
X < Y.

insert(X, [YIYS], [YlZsl)
X 2 Y, insert(Y,[XIYsl,Zs)

insert(X,C I, [XI).

Program 17.12 A nonterminating insertion sort

Xs = [2,2,2,2,2,21,
Overflow = overflow ([

isort([2,21, [2,2,2,2,2,21),
insert (2, [21 , [2,2,2,2,2,21) ,
insert (2,121 , [2,2,2,2,21) ,
insert(2, Dl, [2,2,2,21),
insert (2, [21 , [2,2,21) ,
insert(2,[21, [2,21 > I 1

The overflowed stack can be further analyzed, upon return, to diagnose
the reason for nontermination. This can be caused, for example, by a
loop, i.e., by a sequence of goals G1,G2,. . .,G,, on the stack, where GI and
G, are called with the same input, or by a sequence of goals that calls
each goal with increasingly larger inputs. The first situation occurs in the
preceding example. It is clearly a bug that should be fixed in the program.
The second situation is not necessarily a bug, and knowing whether the
program should be fixed or whether a larger machine should be bought
in order to execute it requires further program-dependent information.

The second type of bug is returning a false solution. A program can
return a false solution only if it has a false clause. A clause C is false
with respect to an intended meaning M if it has an instance whose body
is true in M and whose head is false in M. Such an instance is called a
counterexample to C.

Consider, for example, Program 17.13 for insertion sort. On the goal
isort ([3,2, I] ,Xs) it returns the solution isort ([3,2,11 , [3,2,11)
which is clearly false.

isort(Xs,Ys) -
Buggy insertion sort.

isort([XIXs],Ys) - isort(Xs,Zs), insert(X,Zs,Ys).
isort(C 1,C I).

insert(X, CY IYsl , [X,Y IYsl) -
X 2 Y.

insert (X, [Y I Ysl , CY I Zsl -
X > Y, insert(X,Ys,Zs).

insert(X,C],[XI).

Program 17.13 An incorrect and incomplete insertion sort

The false clause in the program is

and a counterexample to it is

Given a ground proof tree corresponding to a false solution, one can
find a false instance of a clause as follows: Traverse the proof tree in
postorder. Check whether each node in the proof tree is true. If a false
node is found, the clause whose head is the false node and whose body
is the conjunction of its sons is a counterexample to a clause in the
program. That clause is false and should be removed or modified.

The correctness of t h s algorithm follows from a simple inductive
proof. The algorithm is embedded in an enhanced meta-interpreter,
shown as Program 17.14.

The algorithm and its implementation assume an oracle that can an-
swer queries concerning the intended meaning of the program. The or-
acle is some entity external to the diagnosis algorithm. It can be the.
programmer, who can respond to queries concerning the intended mean-
ing of the program, or another program that has been shown to have
the same meaning as the intended meaning of the program under de-
bugging. The second situation may occur in developing a new version of
a program whle using the older version as an oracle. It can also occur
when developing an efficient program (e.g., quicksort), given an ineffi-
cient executable specification of it (i.e., permutation sort), and using the
specification as an oracle.

Chapter 17

false-solution (A, Clause) -
If A is a provable false instance, then Clause is
a false clause in the program. Bottom-up algorithm.

false~solution(A,Clause) -
solve(A,Proof),
false~clause(Proof,Clause).

solve (Goal ,Proof) - See Program 17.8.

f alse-clause(true ,ok).
f alse-clause((A,B) ,Clause) -

f alse-clause (A,ClauseA) ,
check~conjunction(C1auseA,B,Clause).

f alse-clause((A-B) ,Clause) -
false-clause(B,ClauseB),
check~clause(ClauseB,A,B,Clause).

check~clause(ok,A,B,Clause) -
query-goal (A,Answer) ,
check~answer(Answer,A,B,Clause).

check-clause((A1-B~),A,B,(A~-B~)).

check-answer(true,A,B,ok).
check-answer(false.A,B,(A-B1)) -

extract-body (B,B1).

extract-body(true,true).
extract-body ((A-B) ,A) .
extract-body(((A-B) ,Bs), (A,As)) +

extract-body (Bs ,AS) .

query-goal(A,true) -
builtin(A).

query-goal(Goal,Answer) -
not builtin(Goal1,
writeln(['Is the goal ',Goal,' true?']),
read(Answer).

Program 17.14 Bottom-up diagnosis of a false solution

Interpreters

When invoked with the goal f alse-solution(isort ([3,2,11 ,X) ,C)
the algorithm e h b i t s the following interactive behavior:

false~solution(isort(~3,2,1] ,X) ,c)?
Is the goal isort ([I , [I) true?
true.

Is the goal insert (I, [I , [I]) true?
true.

Is the goal isort ([I1 , [I]) true?
true.

Is the goal insert (2, [I1 , [2, I]) true?
false.

x = C3,2,11,
C = insert(2, [I], [2,1]) - 2 2 1.

This returns a counterexample to the false clause.
The proof tree returned by solve/2 is not guaranteed to be ground,

in contrast to the assumption of the algorithm. However, a ground proof
tree can be generated by either instantiating variables left in the proof
tree to arbitrary constants before activating the algorithm, or by request-
ing the oracle to instantiate the queried goal when it contains variables.
Different instances might imply different answers. Since the goal of this
algorithm is to find a counterexample as soon as possible, the oracle
should instantiate the goal to a false instance if it can.

One of the main concerns with diagnosis algorithms is improving their
query complexity, i.e., reducing the number of queries they require to
diagnose the bug. Given that the human programmer may have to answer
the queries, this desire is understandable. The query complexity of the
preceding diagnosis algorithm is linear in the size of the proof tree.
There is a better strategy, whose query complexity is linear in the depth
of the proof tree, not its size. In contrast to the previous algorithm,
which is bottom-up, the second algorithm traverses the proof tree top-
down. At each node it tries to find a false son. The algorithm recurses
with any false son found. If there is no false son, then the current node
constitutes a counterexample, as the goal at the node is false, and all its
sons are true.

The implementation of the algorithm is shown in Program 17.15. Note
the use of cut to implement implicit negation in the first clause of false-
goal/2 and the use of query_goal/2 as a test predicate.

Chapter 17

false-solution (A,Clause) -
If A is a provable false instance, then Clause
is a false clause in the program. Top-down algorithm.

false-solution(A,Clause) -
solve (A,Proof),
false~goal(Proof,Clause).

solve (Goal ,Proof) - See Program 17.8.

false-goal((A-B) ,Clause) -
false~conjunction(B,Clause), ! .

fal~e_~oal((A-B),(A-B1)) -
extract-body(B,B1).

false-conjunction(((A-B) ,Bs) ,Clause) -
q ~ e r ~ - ~ o a l (A, f alse) , ! ,
false-goal((A-B),Clause).

false-conjunction((A-B) ,Clause) -
query-goal(A,false), ! ,
f alse-goal((A-B) ,Clause).

false-conjunction((A,As),Clause) -
false-conjunction(As,Clause).

extract-body (Tree ,Body) - See Program 17.14.

query-goal (A,Answer) - See Program 17.14.

Program 17.15 Top-down diagnosis of a false solution

Compare the behavior of the bottom-up algorithm with the following
trace of the interactive behavior of Program 17.1 5:

f alse-solution(isort ([3,2, I] ,x) ,c)?
Is the goal isort ([2,11 , [2,11) true?
false.

Is the goal isort ([I] , [I1) true?
true.
Is the goal insert (2, [I1 , [2,11) true?
false.

X = C3,2,11,
C = insert(2, [I], [2,1]) -- 2 2 1.

There is a diagnosis algorithm for false solutions with an even better
query complexity, called divide-and-query. The algorithm progresses by
splitting the proof tree into two approximately equal parts and querylng

Interpreters

the node at the splitting point. If the node is false, the algorithm is
applied recursively to the subtree rooted by this node. If the node is
true, its subtree is removed from the tree and replaced by true, and a
new middle point is computed. The algorithm can be shown to require
a number of queries logarithmic in the size of the proof tree. In case of
close-to-linear proof trees, this constitutes an exponential improvement
over both the top-down and the bottom-up diagnosis algorithms.

The third possible type of bug is a missing solution. Diagnosing a
missing solution is more difficult than fixing the previous bugs. We say
that a clause covers a goal A with respect to an intended meaning M if it
has an instance whose head is an instance of A and whose body is in M.

For example, consider the goal insert (2, [I, 31 , Xs). It is covered by
the clause

of Program 17.13 with respect to the intended meaning M of the pro-
gram, since in the following instance of the clause

the head is an instance of A and the body is in M.
It can be shown that if a program P has a missing solution with respect

to an intended meaning M, then there is a goal A in M that is not covered
by any clause in P. The proof of this claim is beyond the scope of the
book. It is embedded in the diagnosis algorithm that follows.

Diagnosing a missing solution imposes a heavier burden on the oracle.
Not only does it have to know whether a goal has a solution but it must
also provide a solution, if it exists. Using such an oracle, an uncovered
goal can be found as follows.

The algorithm is given a missing solution, i.e., a goal in the intended
meaning M of the program P, for which P fails. The algorithm starts with
the initial missing solution. For every clause that unifies with it, it checks,
using the oracle, if the body of the clause has an instance in M. If there
is no such clause, the goal is uncovered, and the algorithm terminates.
Otherwise the algorithm finds a goal in the body that fails. At least one
of them should fail, or else the program would have solved the body, and
hence the goal, in contrast to our assumption. The algorithm is applied
recursively to thls goal.

Chapter 17
Interpreters

missing-solution (A,Goal) -
If A is a nonprovable true ground goal, then Goal is a
true ground goal that is uncovered by the program.

missing-solution((A,B) ,Goal) + ! ,
(not A, missing-solution(A,Goal) ;

A, missing-solution(B,Goal)).

missing-solution(A,Goal) -
clause(A,B) ,
query-clause ((A-B)) , ! ,
missing-solution(B,Goal).

missing-solution(A,A) -
not system(A).

query-clause(C1ause) -
writeln(CCEnter a true ground instance of ',Clause,

'if there is such, or "no" otherwise']),
read(Answer) ,
! , check-answer(Answer,Clause).

check-answer(no,Clause) - ! , fail.
check-answer(Clause,Clause) - ! .
check-answer(Answer,Clause) -

write (' Illegal answer') ,
! , query-clause(C1ause).

Program 17.16 Diagnosing missing solution

An implementation of this algorithm is shown in Program 17.16. The
program attempts to trace the failing path of the computation and to find
a true goal whch is uncovered. Following is a session with the program:

Enter a true ground instance of
(isort([2,1,31, [1,2,31) -

isort([1,3] ,XS) ,insert(2,Xs, C1,2,31))

if there is such, or "no" otherwise

(isort([2,1,31, C1,2,3I) -
isort([l,3], [1,3l) ,insert(2, [1,3] [1,293]))

Enter a true ground instance of
(isort([1,31,[1,3]) - isort([3],Ys),insert(l,~s,[1,3]))
if there is such, or 'no' otherwise

Enter a true ground instance of
(insert(l,[31, [1,31) - 1 2 3)
if there is such, or 'no' otherwise

no.

C = insert(1, [31, C1,31).

The reader can verify that the goal insert (I, [31 , [I, 31) is not covered
by Program 17.1 3.

The three algorithms shown can be incorporated in a high-quality in-
teractive program development environment for Prolog.

17.4 An Explanation Shell for Rule-Based Systems

The final section of this chapter presents an application of interpreters
to rule-based systems. An explanation shell is built that is capable of ex-
plaining why goals succeed and fail and that allows interaction with the
user during a computation. The shell is developed with the methodology
of stepwise enhancement introduced in Section 13.3.

The skeleton interpreter in this section is written in the same style as
the vanilla meta-interpreter and has the same granularity. It differs in
two important respects. First, it interprets a rule language rather than
Prolog clauses. Second, the interpreter has two levels to allow explana-
tion of failed goals.

Before describing the interpreter, we give an example of a toy rule-
based system written in the rule language. Program 17.17 contains some
rules for placing a dish on the correct rack in an oven for baking. Facts
have the form fact (Goal). For example, the first fact in Program 17.17
states that dish1 is of type bread.

Rules have the form rule (Head,Body ,Name), where Head is a goal,
Body is (possibly) a conjunction of goals, and Name is the name of the
rule. Individual goals in the body are placed inside a unary postfix func-
tor is-true, for reasons to be explained shortly. Conjunctions in the
body are denoted by the binary infur operator &, whch differs from Pro-
log syntax. Operator declarations for & and is-true are given in Program
17.17. To paraphrase a sample rule, rule place1 in Program 17.17 states:

Chapter 17 Interpreters

Rule base for a simple expert system for placing dishes in an oven.
The predicates used in the rules are
place-in-oven(Dish,Kack) -

Dish should be placed in the oven at level Rack for baking.
pastry(Dish) - Dish is a pastry.
main-meal (Dish) - Dish is a main meal.
slow-cooker (Dish) - Dish is a slow cooker.
type(Dish,Type) - Dish is best described as Type.
size(Dish,Size) - The size of Dish is Size.
The rules have the form rule (Head, Body, Name) .

rule (place-in-oven(~ish, top) ,
pastry (Dish) is-true & size(Dish,small) is-true lac el).

rule (place-in-oven(Dish ,middle),
pastry (Dish) is-true & size(~ish,big) is-true ,place2) .

rule(place~in~oven(Dish,middle),main~meal(~ish is_true,~lace3).
rule (place-in-oven(Dish ,bottom), slow-cooker i s is-true ,~lace4) .

r ~ l e (~ a s t r ~ (Dish) ,type(Dish,cake) is-true ,pastr~l).
rule (pastry (Dish) ,type (Dish, bread) is-true ,pastry2) .

rule(main-meal(Dish),type(Dish,meat) is-true,main-meal).
rule(s1ow-cooker (Dish) ,type (Dish,milk-pudding is-true, slow-cooker) .

Program 17.1 7 Oven placement rule-based system

"A dish should be placed on the top rack of the oven if it is a pastry and
its size is small."

Why use a separate rule language when the syntax is so close to Prolog?
The first rule, placel, could be written as follows.

place-in-oven(Dish, top) - pastry(Dish) size(Dish9

There are two main reasons for the rule language. The first is pedagog-
ical. The rule interpreter is neater, avoiding complicated details associ-
ated with Prolog's impurities such as the behavior of builtin predicates
when called by clause. Avoiding Prolog's impurities also makes it easier
to partially evaluate the interpreter, as described in Chapter 18.

monitor (Goal) -
Succeeds if a result of yes is returned from solving Goal
at the solve level, or when the end of the computation is reached.

monitor(Goa1) - solve(Goal,Result), filter(Resu1t).
monitor(Goa1).

filter(yes).
% filter(no) - fail.
solve (Goa1,Result) -

Given a set of rules of the form rule(A,B,Name), Goal has
Result yes if it follows from the rules and no if it does not.

solve(A, yes) - fact (A).
solve(A,Result) - rule(A,B,Name), solve-body(B,Result).
solve(A,no).

solve-body(A&B,Result) -
solve(A,ResultA), solve~and(ResultA,B,Result).

solve-body(A is-true,Result) - solve(A,Result).

Program 17.18 A skeleton two-level rule interpreter

The second reason is to show by example that the best way to develop
a rule-based application in Prolog is to design a rule language on top of
Prolog. Although the rule language is largely syntactic sugar, experience
has shown that users of a rule-based system are happier worlung in a
customized rule language than in Prolog. Rule languages are straightfor-
ward to proi7ide on top of Prolog.

We now start our presentation of the explanation shell. According to
the method of stepwise enhancement, the skeleton constituting the basic
control flow of the final program is presented first. Program 17.18 con-
tains the skeleton of the rule interpreter. The principal requirement that
shaped the skeleton is the desire to handle both successful and failed
computations in one interpreter.

The rule interpreter presented in Program 17.18 has two levels. The top
level, or monitor level, consists of the predicates monitor and filter.
The bottom level, or solve level, consists of the predicates solve, solve-
body, and solve-and. Two levels are needed to correctly handle failed
computations.

Chapter 17 Interpreters

Let us consider the bottom level first. The three predicates consti-
tute an interpreter at the same level of granularity as the vanilla meta-
interpreter. There is one major difference. There is a result variable that
says whether a goal succeeds or fails. A goal that succeeds, with the re-
sult variable indicating failure, instead of failing gives rise to a different
control flow, compensated for by the top level.

The predicate solve(Goal,Result) solves a single goal. There are
three cases. The result is yes if the goal is a fact in the rule base. The
result is no if no fact or head of a rule matches the goal. If there is a
rule that matches the goal, the result will be returned by the predicate
solve-body (Goal ,Result). The order of the thlrd clause is significant
because we only want to report no for an individual goal if there is no
suitable fact or rule. Effectively, solve succeeds for each branch of the
search tree, the result being yes for successful branches and no for failed
branches.
solve_body/2 has t~7o clauses handling conjunctive goals and goals of

the form A is-true. The functor is-true is a wrapper that allow7s uni-
fication to distinguish between the two cases. A Prolog implementation
with indexing would produce efficient code. The clause handling con-
junctions calls a predicate solve_and/3, which uses the result of solving
the first conjunct to decide whether to continue. The code for solve-
and results in behavior similar to the behavior of solve-conjunction in
Program 1 7.1 1.

The monitor level is essentially a generate-and-test program. The solve
level generates a branch of the search tree, and the test procedure f il-
ter accepts successful branches of the search tree, indicated by the re-
sult being yes. Failed branches, i.e., ones with result no, are rejected. Note
that the second clause for filter could simply be omitted. We leave it in
the program, albeit commented out, to make clear the later enhancement
step for adding a proof tree.

The first enhancement of the rule interpreter makes it interactive. The
interactive interpreter is given as Program 17.19. The user is given the
opportunity to supply information at runtime for designated predicates.
The designated predicates are given as a table of askable facts. For
example, a fact askable (type (Dish, Type)) . appearing in the table
would indicate that the user could ask the type of the dish.

Interaction with the user is achieved by adding a new clause to the
solve level:

solve(Goa1,Result) -
Given a set of rules of the form rule(A,B,Name), Goal has
Result yes if it follows from the rules and no if it does not.
The user is prompted for missing information.

solve(A,yes) - fact(A).
solve (A,Result) - rule (A ,B, Name), solve-body(B ,Result).
solve(A,Result) - askable(A1, solve-askable(A,Result).
solve(A,no).

solve-body(A&B,Result) -
solve-body(A,ResultA), solve-and(ResultA,B,Result).

solve-body(A is-true,Result) - solve(A,Result).
solve-and(no,A,no).
solve-and(yes,B,Result) - solve(B,Result).
solve-askable(A,Result) -

not known(A), ask(A,Response), respond(Response,A,Result).

The following predicates facilitate interaction with the user.

ask(A,Response) - display-query(A), read(Response).

respond(yes,A,yes) - assert(known-to-be-true(A)).
respond(no,A,no) - assert(known-to-be-false(A)).

Program 17.19 An interactive rule interpreter

solve (A , Result) - askable (A) , solve-askable (A , Result) .

An alternative method of making the rule interpreter interactive is to
define a new class of goals in the body. An additional solve-body clause
could be added, for example,

We prefer adding a solve clause and having a table of askable facts
to embedding in the rules the information about whether a predicate
is askable. The rules become more uniform. Furthermore, the askable
information is explicit meta-knowledge, whlch can be manipulated as
needed.

To complete the interactive component of the rule interpreter, code
for solve-askable needs to be specified. The essential components are

PROYECTO

Chapter 17 Interpreters

displaying a query and accepting a response. Experience with users of
rule-based systems shows that it is essential not to ask the same ques-
tion twice. Users get very irritated telling the computer information they
feel it should know. Thus answers to queries are recorded using assert.
Program 17.19 contains appropriate code. Only the solve level is given.
The monitor level would be identical to Program 17.18.

Program 17.19 queries the user. The interaction can be extended to
allow the user also to query the program. The user may want to know
why a particular question is being asked. A facility for giving a why ex-
planation is common in rule-based systems, the answer being the rule
containing the queried goal in its body. In order to give this why explana-
tion, we need to extend the rule interpreter to carry the rules that have
been used so far.

Program 17.20 is an enhancement of Program 17.18 that carries the list
of rules that have been used in solving the query. All the predicates carry
the rules as an extra argument. The rule list is initialized to be empty
in the first monitor clause. The rule list is updated in the second solve
clause when a new rule is invoked.

We now describe how the list of rules can be used to provide a why
explanation. A new respond clause needs to be added to Program 17.19.
The appropriate behavior is to display the rule, then prompt the user
again for the ansber to the query.

respond(why , A, [Rule I Rules]) - display-rule (Rule) ,
ask(A, Answer) , respond(Answer , A ,Rules) .

Repeated responses of why can be handled by giving the rule that
invoked the current rule. The correct behavior is achieved by having
the recursive respond goal use the rest of the rules. Finally, when there
are no more rules to display, an appropriate response must be given. A
suitable respond clause is

respond(why ,A, [1) -
writeln(['NO more explanation possible']) ask(AsAnswer) 9

respond(Answer, A, [1) .

Now let us consider generating explanations of goals that have suc-
ceeded or failed. The explanations will be based on the proof tree for
successful goals and the search tree for failed goals. Note that a search

monitor (Goal) -
Succeeds if a result of yes is returned from solving Goal
at the solve level, or when the end of the computation is reached.

monitor(Goa1) - solve(Goal,Result,[11, filter(Resu1t).
monitor(Goa1).

filter(yes).
% f ilter(no) - fail.
solve(Goal,Result,Rules) -

Given a set of rules of the form rule(A,B,Name), Goal has
Result yes if it follows from the rules and no if it does not.
Rules is the current list of rules that have been used.

solve(A,yes,Rules) - fact(A).
solve(A,Result,Rules) -

rule (A,B ,Name) , RulesB = [Name 1 Rules] ,
solve-body(B,Result,RulesB).

solve(A,no,Rules).

Program 17.20 A two-level rule interpreter carrying rules

tree is a sequence of branches. Each branch is either a proof tree or a fail-
ure branch that is like a proof tree. Program 17.18 can be enhanced to in-
corporate both cases. The enhanced program is given as Program 17.2 1.
The solve level returns a branch of the search tree, and the monitor level
keeps track of the failure branches since the last proof tree. The rela-
tion between the predicate solve/3 in Program 17.21 and solve/2 in
Program 17.18 is analogous to the relation between Programs 17.8 and
17.5.

Four predicates are added to the monitor level to record and remove
branches of the search tree. The fact 'search tree' (Proof) records
the current sequence of branches of the search tree since the last suc-
cess. The predicate set-search-tree, called by the top-level monitor
goal, initializes the sequence of branches to the empty list. Similarly,

Chapter 17 Interpreters

monitor (Goa1,Proof) -
Succeeds if a result of yes is returned from solving Goal at the
solve level, in which case Proof is a proof tree representing the
successful computation, or when the end of the computation is reached,
in which case Proof is a list of failure branches since the last success.

monitor(Goa1,Proof) -
set-search-tree, solve (Goal ,Result ,proof) ,
filter(Result,Proof).

monitor(~oa1,Proof) -
collect-proof (P) , reverse(P, [1 ,PI),
Proof = failed(Goa1,Pl).

filter(yes,~roof) - reset-search-tree.
filter(no,Proof) - store-proof(Proof), fail.

solve(Goal,Result,Proof) -
Given a set of rules of the form rule(A,B,Name), Goal has
Result yes if it follows from the rules and no if it does not.
Proof is a proof tree if the result is yes and a failure branch
of the search tree if the result is no.

solve (A, yes ,Tree) - fact (A) , Tree = fact (A) .
solve(A,Result,Tree) -

rule (A,B ,Name) , solve-body (B ,Result ,proof) ,
Tree = A because B with Proof.

solve(A,no ,Tree) -
not fact (A), not rule(A,B,Name) , Tree = no- match(^) .

solve~body(A&B,Result,Proof) -
solve-body(A,ResultA,ProofA),
solve-and(ResultA,B,Result,ProofB),
Proof = ProofA & ProofB.

solve-body(A is-true,Result,Proof) - solve(~,~esult,Proof).

Program 17.21 A two-level rule interpreter with proof trees

The following predicates use side effects to record and remove
branches of the search tree.

collect-proof(Proof) - retract('search tree'(Proof)).
store-proof(Proof) -

retract('search treeJ(Tree)),
assert('search treeJ([ProoflTreel)).

set-search-tree - assert('search treeJ([I)) .
reset-search-tree -

retract('search tree'(Proof)),
assert('search tree'([I)).

reverse(Xs,Ys) - See Program 3.16.

Program 17.2 1 (Continued)

reset-search-tree initializes the search tree but first removes the cur-
rent set of branches. It is invoked by filter when a successful compu-
tation is detected. The predicate store-proof updates the search tree,
while collect-proof removes the search tree. The failure branches are
reordered in the second clause for monitor/2.

Having generated an explanation, we now consider how to print it.
The proof tree is a recursive data structure that must be traversed to
be explained. Traversing a recursive data structure is a straightforward
exercise. Appropriate code is given in Program 17.22, and a trace of a
computation given in Figure 17.4.

The explanation shell is obtained by combining the enhancements of
Programs 17.19, 17.20, and 17.21. The final program is given as Pro-
gram 17.23. Understanding the program is greatly facilitated by viewing
it as a sum of the three components.

Exercises for Section 17.4

(i) Add the ability to explain askable goals to the proof explainer in
Program 17.22.

(ii) Add the ability to execute Prolog builtin predicates to the explana-
tion shell.

(iii) Write a two-level meta-interpreter to find the maximum depth
reached in any computation of a goal.

Chapter 17 Interpreters

explain (Goal) -
Explains how the goal Goal was proved.

explain(Goa1) - monitor(Goal,Proof), interpret(Proof).

monitor (Goal ,Proof) - See Program 17.21.

interpret(ProofA&ProofB) -
interpret(ProofA), interpret(Pro0fB).

interpret(failed(A,Branches)) +

nl, writeln([A,' has failed with the following failure
branches : 'I) ,

interpret(Branches).
interpret ([Fail I Fails]) -

interpret(Fail), nl, write('NEW BRANCH'), nl,
interpret(Fai1s).

interpret ([I).
interpret (f act (A)) -

nl, writeln([A,' is a fact in the database.']).
interpret(A because B with Proof) -

nl, writeln([A,' is proved using the rule']),
display-rule(rule(A,B)), interpret(Proof).

interpret(n0-match(A)) -
nl, writeln([A,' has no matching fact or rule in the rule base.']).

interpret(unsearched) -
nl, writeln(['The rest of the conjunct is unsearched.']).

display-rule(ru1e (A,B)) -
write('1F ') , write-conjunction(B) , writeln(['THEN ' ,A I).

write-conjunction(A&B) -
write-conjunction(A), write(' AND ') ,

write-conjunction(B).
write_conjunction(A is-true) - write(A).
writeln(Xs) - See Program 12.1

Program 17.22 Explaining a proof

place-in-oven(dish1 ,middle) is proved using the rule
IF pastry (dishl) AND size(dish1 ,big)
THEN place-in-oven(dish1,middle)

pastry (dishl) is proved using the rule
IF type(dish1,bread)
THEN pastry (dishl)

type(dish1,bread) is a fact in the database

size (dishl ,big) is a fact in the database.
X =middle ;

place-in-oven(dish1 ,XI has failed with the following failure branches:

place-in-oven(dish1 ,middle) is proved using the rule
IF main-meal(dish1)
THEN place-in-oven(dish1,middle)

main-meal(dish1) is proved using the rule
IF type(dish1,meat)
THEN main-meal (dish11

type(dish1 ,meat) has no matching fact or rule in the rule base

NEM' BRANCH

place-in-oven(dish1 ,low) is pro\,ed using the rulc
IF slow-cooker(dish1)
THEN place-in-oven(dish1 ,low)

slow-cooker(dlsh1) is pro\.ed using the rule
IF type(dish1,milk-pudding)
THEN slow-cooker (dishl)

type(dish1 ,milk-pudding) has no matching fact or rule in the rule base

Figure 17.4 Explaining a computation

Chapter 17

monitor (Goa1,Proof -
Succeeds if a result of yes is returned from solving Goal at the
solve level, in which case Proof is a proof tree representing the
successful computation, or when the end of the computation is reached,
in which case Proof is a list of failure branches since the last success.

monitor(Goa1,Proof) -
set-search-tree, solve(Goa1 ,Result, [1 ,Proof) ,
filter(Result,Proof).

monitor(Goa1,Proof) -
collect-proof (PI , reverse (P, [I ,PI),
Proof = failed(Goa1,Pl).

filter(yes,Proof) - reset-search-tree.
filter(no,Proof) - store-proof(Proof), fail.

solve(Goal,Result,Rules,Proof -
Given a set of rules of the form rule(A,B,Name), Goal has
Result yes if it follows from the rules and no if it does not.
Rules is the current list of rules that have been used.
Proof is a proof tree if the result is yes and a failure branch
of the search tree if the result is no.

: - op(40,xfy,because).
: - op(30,xfy,with).

solve(A, yes ,Rules ,Tree) - fact (A), Tree = fact (A).
solve(A,Result,Rules,Tree) -

rule(A,B,Name), RulesB = [NamelRules],
solve-body(B,Result,RulesB,Proof),
Tree = A because B with Proof.

solve(A,Result,Rules,Tree) -
askable (A) , solve-askable (A ,Result, Rules) , Tree = user (A) .

solve(A,no,Rules,Tree) -
not fact (A) , not rule(A,~,Name) , Tree = no-match(A) .

solve~body(A&B,Result,Rules,Proof) -
solve~body(A,ResultA,Rules,ProofA),
solve~and(ResultA,B,Result,Rules,ProofB),
Proof = ProofA & ProofB.

solve-body(A is-true,Result,Rules,Proof) -
solve(A,Result,Rules,Proof).

solve~and(no,A,no,Rules,unsearched).

solve-and(yes,B,Result,Rules,Tree) -
solve(B,Result,Rules,Tree).

Program 17.23 An explanation shell

Interpreters

The following predicates use side effects to record and remove
branches of the search tree.

collect-proof(Proof) - retract('search treeJ(Proof)).
store-proof (Proof -

retract ('search tree' (Tree)),
assert('search tree'(CProoflTree1)).

set-search-tree - assert('search tree'([I)).
reset-search-tree -

retract('search tree'(Proof)), assert('search tree'([I))
reverse (Xs ,Ys) - See Program 3.16.

The following predicates facilitate interaction with the user.

respond(yes,A,yes) - assert(known-to-be-true(A)).
respond(no,A,no) - assert(known-to-be-false(A1).
respond(why ,A, [Rule 1 Rules]) -

display-rule(Rule), ask(A,Answer), respond(Answer,A,Rules).
respond(why ,A, C I) -

writeln(CLNo more explanation possibleJ]), ask(A,Answer),
respond(Answer,A,[I) .

display-rule(rule(A,B)) -
write('1F '1, write-conjunction(B) , nl, writeln(['THEN ' ,A]).

write-conjunction(A&B) -
write-conjunction(A), write(' AND ') , write-conjunction(B).

write-conjunction(A is-true) - write(A).
writeln(Xs) - See Program 12.1.

Program 17.23 (Continued)

3 54 Chapter 17 Interpreters

1 7.5 Background

Our notation for automata follows Hopcroft and Ullman (1979).
There is considerable confusion in the literature about the term meta-

interpreter-whether it differs from the term meta-level interpreter,
for example. The lack of clarity extends further to the topic of meta-
programming. A good discussion of meta-programming can be found in
Yalqinalp (1991).

One dimension of the discussion is whether the interpreter is capable
of interpreting itself. An interpreter with that capability is also called
meta-circular or self-applicable. An important early discussion of meta-
circular interpreters can be found in Steele and Sussman (1978). That
paper claims that the ability of a language to specify itself is a funda-
mental criterion for language design.

The vanilla meta-interpreter is rooted in Prolog folklore. A version
was in the suite of programs attached to the first Prolog interpreter
developed by Colmerauer and colleagues, and was given in the early
collection of Prolog programs (Coelho et al., 1980). Subsequently, meta-
interpreters, and more generally meta-programs, have been written to
affect the control flow of Prolog programs. References are Gallaire and
Lasserre (1982), Pereira (1982), and Dincbas and Le Pape (1984). Using
enhanced meta-interpreters for handling uncertainties is described by
Shapiro (1983~).

There have been several papers on handling cuts in meta-interpreters.
A variant of the vanilla meta-interpreter handling cuts correctly is de-
scribed in Coelho et al. (1980) and attributed to Luis Pereira. One easy
method to treat cuts is via ancestor cut, whlch is only present in a few
Prologs like Waterloo Prolog on the IBM and Wisdom Prolog, described
in the first edition of this book. There is a good discussion of meta-
interpreters in general, and cuts in particular, in O'Keefe (1990).

Shapiro suggested that enhanced meta-interpreters should be the basis
of a programming environment. The argument, along with the debugging
algorithms of Section 17.3, can be found in Shapiro (1983a). Shapiro's
debugging work has been extended by Dershowitz and Lee (1987) and
Drabent et al. (1989).

Prolog is a natural language for building rule-based systems. The basic
statements are rules, and the Prolog interpreter can be viewed as a back-

ward chaining inference engine. Early advocates of Prolog for expert sys-
tems were Clark and McCabe (1982), who discussed how explanation fa-
cilities and uncertainty can be added to simple expert systems expressed
as Prolog clauses by adding extra arguments to the predicates. Incorpo-
rating interaction with the user in Prolog was proposed by Sergot (1983).
An explanation facility incorporating Sergot's query-the-user was part
of the APES expert system shell, described in Hammond (1984).

Using meta-interpreters as a basis for explanation facilities was pro-
posed by Sterling (1984). Incorporating failure in a meta-interpreter has
been discussed by several researchers, including Hammond (1984), Ster-
ling and Lalee (1986), and Bruffaerts and Henin (1989). The first descrip-
tion of an integrated meta-interpreter for both success and failure is in
Yalqinalp and Sterling (1989). The rule interpreter given in Section 17.4
is an adaptation of the last paper. The layered approach can be used
to explain cuts clearly, as in Sterling and Yalqinalp (1989), and also for
uncertainty reasoning, as in Yal~inalp and Sterling (1991) and more com-
pletely in Yalqinalp (1991).

Program Transformation

As stated in the introduction to Chapter 17, meta-programming, or the
writing of programs that treat other programs as data, is particularly
easy in Prolog. This chapter gives examples of programs that transform
and manipulate Prolog programs. The first section looks at fold/unfold,
the operation that underlies most applications of program transfor-
mation for Prolog programs. The transformations given in Chapter 1 5
for using difference-lists to avoid explicit concatenation of lists can be
understood as unfold operations, for example. The second section de-
scribes a simple system for controlled unfolding and folding, which is
especially good for removing layers of interpretation. The final section
gives two examples of source-to-source transformation by code wallung.

18.1 Unfold/Fold Transformations

Logic programming arose from research on resolution theorem proving.
The basic step in the logic programming computation model, goal re-
duction, corresponds to a single resolution between a query and a pro-
gram clause. Unfold/fold operations correspond to resolution between
two Horn clauses. Loosely, unfolding corresponds to replacing a goal in
the body of a clause by its definition, while folding corresponds to recog-
nizing that goal(s) in the body of a clause are an instance of a definition.
These two operations, being so similar, are often discussed together.

We demonstrate unfolding and folding with a running example in the
first part of thls chapter. The example is specializing the interpreter for
nondeterministic pushdown automata (Program 17.3) for the particular

Chapter 18 Program Transformation

pushdown automaton for recognizing palindromes (Program 17.4). In
general, specializing interpreters is a good application for unfold/fold
operations.

Definition
Unfolding a goal Bi in a clause A - B1,. . .,B, with respect to a clause B - C,,. . .,C, where B and Bi unify with mgu 8 , produces a clause (A -
Bl,. . ,,Bi-l,Cl,. . .,Cm,Bi+1,. . .,Bn)8.

As an example of unfolding, we specialize the clause accept (Xs) -
initial (4) , accept (Xs, 4, []) to a particular initial state by unfold-
ing the initial(Q) goal with respect to a particular initial fact. Specif-
ically, unfolding with respect to the fact initial (push) produces the
clause accept (Xs) - accept (Xs ,push, [1) . (Note that in our running
example we use the states push and pop for qO and ql, respectively, from
the NPDA of Program 17.4.)

The effect of the unfolding is to instantiate the initial state for the
NPDA to push. In general, the effect of unfolding is to propagate variable
bindings to the right, as in this example, and also to the left, to goals in
the body of the clause and possibly also to the head.

There may be several clauses whose heads unify with a given goal in
the body of a clause. We extend the definition of unfolding accordingly.

Definition
Unfolding a goal B, in a clause A - BI, . . .,Bn with respect to a procedure
defining B, is to unfold the goal with respect to each clause in the proce-
dure whose head unifies with Bi. w

Unfolding the delta/5 goal in the clause accept([XIXsl ,Q,S) -
delta(Q ,X,S, Q1 ,S1) , accept (Xs ,Q1, S1) with respect to the following
procedure for delta adapted from Program 17.4

delta(push,X,S,push, [XIS]). delta(push,X,S,pop, [XIS]).

delta(push,X,S,pop,S). delta(pop,X, [XIS] ,pop,S).

produces four clauses, one for each fact.

accept ([XI Xsl ,push, S) - accept (Xs ,push, [XI S]) .
accept ([XI Xsl ,push,S) - accept (Xs ,pop, 1x1 S1) .
accept ([X I Xsl ,push, S) - accept (Xs, pop, S) .
accept ([XI Xsl ,pop, CX I S1) - accept(~s ,pop,S).

palindrome(Xs) -
The string represented by the list Xs is a palindrome.

palindrorne(CXlXsl,push,S) - palindrome(Xs,push,CXlS1).
palindrome ([X I Xsl ,push, S) - palindrome (Xs , pop, [XI Sl) .
palindrome ([XI Xs] ,push, S) - palindrome (Xs ,pop ,S) .
palindrome(CXIXsl,pop,[XISl) - palindrorne(Xs,pop,S).
palindrome ([1 ,pop, C 1) .

Program 18.1 A program accepting palindromes

This example shows variable bindings being propagated both to the
right, and to the head of the clause left of the goal being unfolded.

Folding is the reverse of unfolding. The occurrence of a body of a
clause is replaced by its head. It is easiest to show with an example.
Folding the goal accept (Xs ,push, [I) in the clause accept (Xs) - ac-
cept (Xs ,push, C I) with respect to the clause palindrome (Xs ,State,
Stack) - accept (Xs ,State ,Stack) produces the clause accept (Xs) - palindrome (Xs ,push, [1) .

Note that if we now unfold the goal palindrome (Xs ,push, C I) in ac-
cept (Xs) - palindrome (Xs ,push, [I) with respect to the clause just
used for folding, palindrome (Xs ,State, Stack) - accept (Xs ,State,
Stack), we arrive back at the original clause, accept (Xs) - accept (Xs,
push, [I 1. Ideally, fold/unfold are inverse operations.

Our example of folding used an iterative clause, i.e., one with a single
goal in the body. Folding can be performed on a conjunction of goals,
but there are technical difficulties arising from the scope of variables.
Here we restrict ourselves to iterative clauses. The reader interested in
the more general case should study the references given at the end of
the chapter.

Specialization of the interpreter of Program 17.3 is completed by un-
folding the final (Q) goal in the t h rd clause of Program 17.3, folding all
occurrences of accept/3, and folding with respect to the clause palin-
drome (Xs) - accept (Xs). Program 18.1 is then obtained.

Propagating bindings leftward in Prolog will not preserve correctness
in general. For example, consider unfolding the goal r (X) with respect to
the fact r (3) in the clause p(X) - var (X) , r (x) . The resulting clause,

Chapter 18 Program Transformation

p (3) - var (3), clearly always fails, in contrast with the original clause.
Unfolding for Prolog can be performed correctly by not propagating
bindings leftward, and replacing the unfolded goal by the unifier. For t h s
example, the result would be p(X) - var (XI , X=3. This will not be an
issue in the examples we consider.

Exercise for Section 18.1

(i) Specialize the interpreter of Program 17.1 to the NDFA of Pro-
gram 17.2, or any other NDFA, by unfold/fold operations.

18.2 Partial Reduction

In this section we develop a simple system for controlled unfold/fold
operations according to prescribed user declarations. Systems for con-
trolled unfolding are known in the logic programming literature as par-
tial evaluators. This name reveals the influence of functional program-
ming, where the basic computation model is evaluation. We prefer to
refer to the system in terms of the computation model of logic program-
ming, goal reduction. We thus, nonstandardly, say our system is doing
partial reduction, and call it a partial reducer.

Considerable research on applying partial reduction has shown that
partial reduction is especially useful for removing levels of interpreta-
tion. The sequence of unfold/fold operations given in Section 18.1 typify
what is possible. The general NPDA interpreter was specialized to a spe-
cific NPDA, removing interpreter overhead. The resulting program, Pro-
gram 18.1, only recognizes palindromes but does so far more efficiently
than the combination of Programs 17.3 and 17.4.

Let us see how to build a system that can apply the unfold and fold
operations that were needed to produce the palindrome program. The
main idea is to recursively perform unfold/fold until no more "progress"
can be achieved. A relation that replaces a goal by its equivalent under
these operations is needed. The resulting equivalent goal is known as a
residue. Let us call our basic relation preduce (Goal, Residue), with in-
tended meaning that Residue is a residue arising from partially reducing
Goal by applying unfold and fold operations.

preduce (Goa1,Residue) -
Partially reduce Goal to leave the residue Residue.

preduce(true,true) - ! .

preduce ((A ,B) , (PA,PB)) - ! , preduce(A,PA) , preduce (B ,PB) .
preduce(A,B) + should-fold(A,B), ! .

preduce(A,Residue) -
should-unfold(A), ! , clause(A,B), preduce(B,Residue).

preduce(A,A).

Program 18.2 A meta-interpreter for determining a residue

Program 18.2 contains code for preduce. There are three possibilities
for handling a single goal. It can be folded, unfolded, or left alone. The
question immediately arises how to decide between the three possibil-
ities. The easiest for a system is to rely on the user. Program 18.2 as-
sumes that the user gives should-f old (Goal, FoldedGoal) declarations
that say which goals should be folded and to what they should be folded,
and also should-unf old(Goa1) declarations that say which goals should
be unfolded. Unification against the program clauses determines to what
they should be unfolded. Goals not covered by either declaration are left
alone. The remaining clauses in Program 18.2 handle the empty goal,
true, and conjunctive goals, which are treated recursively in the obvious
way.

Observe that Program 18.2 is essentially a meta-interpreter at the gran-
ularity level of vanilla (Program 17.5). The meta-interpreter is enhanced
to return the residue. Handling builtins is assigned to the exercises.

The query preduce((initial (a) , accept (Xs, Q, [1)) , Residue)?
assuming appropriate should-f old and should-unf old declarations (to
be given shortly) has as solution Residue = (true, palindrome (Xs ,
push, [I) 1. It would be preferable to remove the superfluous call to
true. This can be done by modifying the clause handling conjunctive
goals to be more careful in computing the conjunctive resolvent. A suit-
able modification is

preduce((A,B) ,Res) +-

! , preduce (A, PA) , preduce (B , PB) , combine (PA ,PB ,Res) .

The code for combine, removing superfluous empty goals, is given in
Program 18.3.

PROYECTO

Chapter 18 Program Transformation

process (Program, RedProgram) -
Partially reduce each of the clauses in Program to produce
RedProgram.

process(Prog,NewProg) -
f indall (PC1 , (member (C1 , Prog) , preduce (C1, PC11) , Newprog) .

test (~ a m e ,Program) -
program(Name ,Clauses) , process (Clauses ,program)

preduce (Goa1,Residue) -
Partially reduce Goal to leave the residue Residue.

preduce((A - B) , (PA - PB)) -
! , preduce(B,PB), preduce(A,~~).

preduce(true,true) - ! .
preduce ((A,B) ,Res) -

! , preduce (A,PA) , preduce (B,PB) , combine (PA,PB , ~ e s) .
preduce(A,B) - sh~uld-fold(A,B), ! .

preduce(A,Residue) -
should-unf old(A) , ! , clause(A ,B) , reduce (B, ~esidue)

preduce(A,A).

Program 18.3 '4 simple partial reduction system

To extend Program 18.2 into a partial reducer, clauses must be han-
dled as well as goals. We saw a need in the previous section to partially
reduce the head and body of a clause. The only question is in which or-
der. Typically, we will want to fold the head and unfold the body. Since
unfolding propagates bindings, unfolding first will allow more specific
folding. Thus our proposed rule for handling clauses is

preduce ((A - B) , (PA - PB)) -
! , preduce (B , PB) , preduce (A, PA)

This goal order is advantageous for the example of the rule interpreter
to be presented later in this section.

To partially reduce a program, we need to partially reduce each of its
clauses. For each clause, there may be several possibilities because of
nondeterminism. For example, the recursive accept/3 clause led to four
rules because of the four possible ways of unfolding the delta goal. The

program(npda, [(accept (Xsl) - initial(Q11, accept (Xsl ,Ql, [1) ,
(accept ([X2 1 Xs21 ,Q2 ,S2) - delta(Q2,X2,S2,Q12,S12),
accept(Xs2,Ql2,S12)), (accept([1 ,Q3, [1) - true)]).

should-unfold(initial(Q)).
should-unf old(f inal (Q)) .
should-unfold(delta(A,B,C,D,E)).

should-fold(accept (Q,Xs ,Ql) ,palindrome(Q,Xs ,Ql) 1.
should-f~ld(acce~t(~s),palindrome(~s)).

Program 18.4 Specializing an NPDA

cleanest way to get the whole collection of program clauses is to use the
all-solutions predicate f indall. That gives

process (Prog,NewProg) -
f indall (PC1 , (member (C1 , Prog) , preduce (C1 ,PC11) , NewProg)

Putting all the preceding actions together gives a simple system for
partial reduction. The code is presented as Program 18.3. The program
also contains a testing clause.

We now concentrate on how to specify should-fold and should-
unfold declarations. Consider the NPDA example for recognizing palin-
dromes. The initial, final, and delta goals should all be unfolded. A
declaration is needed for each. The accept/l and accept/3 goals should
be folded into palindrome goals with the same argument. The declara-
tion for accept/l is should-fold(accept (Xs) ,palindrome(Xs)). All
the necessary declarations are given in Program 18.4. Program 18.4 also
contains the test program as data. Note the need to make all the vari-
ables in the program distinct. Applying Program 18.3 to Program 18.4 by
posing the query test (npda, P)? produces Program 18.1, with the only
difference being an explicit empty body for the last palindrome fact.

We now give a more complicated example of applying partial reduction
to remove a level of overhead. We consider a simpler variant of the rule
interpreter given in Section 17.4. The variant is at the bottom level of
the layered interpreter. The interpreter, whose relation is solve (A, N) ,
counts the number of reductions used in solving the goal A. The code
for solve and related predicate solve-body is given in Program 18.5.
The rules that we will consider constitute Program 17.17 for determining

Chapter 18 Program Transformation

Rule interpreter for counting reductions

Sample rule base

rule(oven(Dish,top),pastry(Dish) is-true
& size(Dish,small) is-true,placel).

rule(oven(Dish,middle),pastry(Dish) is-true
& size(Dish,big) is_true,place2).

rule(oven(Dish,middle),main-meal(Dish) is_true,place3).
rule(oven(Dish,bottom),slow~cooker(Dish) is_true,place4).

rule(pastry(Dish) ,type(Dish, cake) is-true ,~astryl).
r~le(~astry (Dish), type(Dish, bread) is_true,~astry2) .
rule (main-meal (Dish), type(Dish,meat) is-true ,main-meal)
rule(slow~cooker(Dish),type(~ish,milk~pudding~

is-true,slow-cooker).

should-f old(solve(oven(D,P) ,N) ,oven(D,P,N)) .
should-f old(solve(pastry(D) ,N) ,pastry @,Ill).
should~fold(solve(main~meal(~),~),main~meal~D,N~~.
should~fold(solve(slow~cooker(~),~),slow~cooker~D,N~~.
should-f old(solve(type(D,P) ,N) ,type(D,P,N)).
should-fold(solve(size(D,P) ,N) , size(D,P,N) 1.

program(ru1e-interpreter, [(solve(~l, 1) - fact (Al)),
(solve(A2,N) - rule(A2,B,Name), solve-body(B,NB), N is NB+1)1)

Program 18.5 Specializing a rule interpreter

where a dish should be placed in the oven. The rules are repeated in
Program 18.5 for convenience.

The effect of partial reduction in t h s case will be to "compile" the
rules into Prolog clauses where the arithmetic calculations are done. The
resulting Prolog clauses can in turn be compiled, in contrast to the com-
bination of interpreter plus rules. Rule place1 will be transformed to

oven(Dish,top,N) -
pastry (Dish,NI), size(Dish, small ,N2),
N3 is Nl+N2, N is N3+1.

The idea is to unfold the calls to rule so that each rule can be handled,
and also to unfold the component of the interpreter that handles syn-
tactic structure, specifically solve-body. What gets folded are the indi-
vidual calls to solve, such as solve(oven(D, P) , N) , whlch gets replaced
by a predicate oven (D, P , N) . The necessary declarations are given in Pro-
gram 18.5. Program 18.3 applied to Program 18.5 produces the desired
effect.

Specifying what goals should be folded and unfolded is in general
straightforward in cases similar to what we have shown. Nevertheless,
malung such declarations is a burden on the programmer. In many cases,
the declarations can be derived automatically. Discussing how is beyond
the scope of the chapter.

How useful partial reduction is for general Prolog programs is an open
issue. As indicated, care must be taken when handling Prolog's impuri-
ties not to change the meaning of the program. Further, interaction with
Prolog implementations can actually mean that programs that have been
partially reduced can perform worse than the original program. It will be
interesting to see how much partial reduction will be applied for Prolog
compilation.

Exercises for Section 18.2

(i) Extend Program 18.3 to handle builtins.

(ii) Apply Program 18.3 to the two-level rule interpreter with rules
given as Program 17.20.

366 Chapter 18 Program Transformation

18.3 Code Walking

The examples of meta-programming given so far in Chapters 17 and 18
are dynamic in the sense that they "execute" Prolog programs by per-
forming reductions. Prolog is also a useful language for writing static
meta-programs that perform syntactic transformations of Prolog pro-
grams. In t h s section, we give two nontrivial examples in whch pro-
grams are explicitly manipulated syntactically.

The first example of explicit program manipulation is program com-
position. In Section 13.3, stepwise enhancement for systematic construc-
tion of Prolog programs was introduced. The t h rd and final step in the
method is composition of separate enhancements of a common skele-
ton. We now present a program to acheve composition that is capable of
composing Programs 13.1 and 13.2 to produce Program 13.3.

The running example we use to illustrate the program is a variant of
the example in Chapter 13. The skeleton is the same, namely,

skel([X 1 Xs] ,Ys) - member(X,Ys) , skel(Xs ,Ys).
skel ([X (Xs] ,Ys) - nonmember (X,Ys) , skel(Xs ,Ys) .
skel([1 ,Ys).

The union program, Program 13.1, is also the same, namely,

union([X I Xs] ,Ys ,Us) -- member (X,Ys) , union(~s,~s,~s) .
union([XIXs] ,Ys, [XIUS]) - nonmember(X,~s), union(~s,~s,~s).
union([1 ,Ys,Ys).

The second program to be composed is different and represents when
added goals are present. The relation to be used is common (Xs , Ys , N) ,
whch counts the number of common elements N in two lists Xs and Ys.
The code is

common([XI Xs] ,Ys ,N) -
member(X,Ys), common(Xs,Ys,M), N is M+1.

common([XI Xs] ,Ys ,N) - nonmember (X,Ys) , common(Xs ,Ys ,N) .
common([I ,Ys,O).

The program for composition makes some key assumptions that can
be justified by theory underlying stepwise enhancement. Describing the
theory is beyond the scope of t h s book. The most important assump-
tion is that there is a one-to-one correspondence between the clauses of

the two programs being composed, and one-to-one correspondences be-
tween the clauses of each of the programs and the common skeleton.

Programs are represented as lists of clauses. The first clause in the first
program corresponds to the first clause in the second program and to
the first clause in the skeleton. Our assumption implies that the lists of
clauses of programs being composed have the same length. The three
programs have been written with corresponding clauses in the same or-
der. (That the lists 'of clauses do have the same length is not checked
explicitly.)

In order to perform composition, a composition specification is
needed. It states how the arguments of the final program relate to
the two extensions. The relation that we will assume is composition-
specification(Progrml,Progrm2,Skeleton,FinalProgram). An ex-
ample of the specification for our running example is composition-
specif ication(union(Xs ,Ys ,Us), common(Xs ,Ys , N) , skel(Xs ,Ys) ,
uc (Xs , Ys ,Us, N) . The composition specification is given as part of Pro-
gram 18.6.

The program for composition is given as Program 18.6. The top-level
relation is compose/4, which composes the first two programs assumed
to be enhancements of the thlrd argument to produce the composite
program, which is the fourth argument.

The program proceeds clause by clause in the top loop of Pro-
gram 18.6, where compose-clause/4 does the clause composition. The
arguments correspond exactly to the arguments for compose. To com-
pose two clauses, we have to compose the heads and the bodies. Com-
position of the heads of clauses happens through unification with the
composition specification. The predicate compose-bodies/4 is used to
compose the bodies. Note that the order of arguments has been changed
so that we systematically traverse the skeleton. Each goal in the skeleton
must be represented in each of the enhancements so that it can be used
as a reference to align the goals in each of the enhancements.

The essence of compose-bodies is to traverse the body of the skeleton
goal by goal and construct the appropriate output goal as we proceed.
In order to produce tidy output and avoid superfluous empty goals, a
difference-structure is used to build the output body. The first clause
for compose-bodies covers the case when the body of the skeleton is
nonempty. The predicates first and rest, which access the body of the
skeleton, are a good example of data abstraction.

Chapter 18 Program Transformation

compose(Program1 ,Program2,Skeleton,FinalProgram) -
Finalprogram is the result of composing Program1 and
Program2, whch are both enhancements of Skeleton.

compose ([Cll I Clsl] , [C12 1 Cls21 , [ClSkel I ~ l s ~ k e l l , LC1 1 ~ 1 ~ 1) -
compose~clause(C1l ,C12 ,ClSkel ,C1),
compose(Clsl,Cls2,C1sSkel,Cls).

compose([I,[I , [I,[I) .
cornpose-clause((~l-~1),(~2-~2),(~~kel-~~kel),(A-B)) -

cornposition~specification(A1,A2,ASkel,A),
cornpose-bodies(BSkel,Bl,B2,B\true).

compose-bodies(SkelBody,Bodyl,Body2,B\BRest) -
first (SkelBody, G) , ! ,
align(G,Bodyl,Gl,RestB~dyl,B\Bl),
align(~,~ody2,G2,~estBody2,~1\(Goal,B2)),
compose-goal (GI, G2 ,Goal) ,
rest (SkelBody ,Gs),
c o m p o s e ~ b o d i e s (~ s , ~ e s t ~ o d y l , ~ e s t ~ o d y 2 , ~ 2 \ ~ R e s t ~ .

compose-bodies (true, Bodyl , Body2 ,~\BRest) -
rest-goals (Bodyl ,B\Bl) , rest-goals (Body2 , ~ 1 \ ~ R e s t) .

align(Goal,Body,G,RestBody,B\B) -
f irst(Body ,GI, correspond(G,Goal) , ! , r e s t (~ o d ~ , ~ e s t ~ o d y) .

align(Goal,(G,Body),CorrespondingG,RestBod,G,\ -
align(Goal,Body,~orres~ondin~~,~est~ody,B\Bl).

first((G,Gs),G).
first(G,G) - G f (A,B), G f true.

rest ((G,Gs) ,Gs).
rest(G,true) - G f (A,B).

correspond(G,G).
correspond(G,B) - map(G,B).
compose-goal(G,G,G) - ! .
compose-goal (A1 ,A2, A) -

! , composition~specification(~1,~2,ASkel,A).

rest-goals(true,B\B) - ! .
rest-goals(Body,(G,B)\BRest) -

first (Body ,GI, ! , rest (Body ,Body11 , rest-goals(~ody1 , ~ \ ~ ~ e s t) .

Program 18.6 Composing two enhancements of a skeleton

An important assumption made by Program 18.6 concerns finding the
goals in the bodies of the program that correspond to the goals in the
skeleton. The assumption made, embedded in the predicate correspond,
is that a mapping will be given from goals in the enhancement to goals
in the skeleton. In our running example, the predicates member and non-
member map onto themselves, while both union and common map onto
skel. This information, provided by the predicate map/2, is needed to
correctly align goals from the skeleton with goals of the program being
composed. The code for align as presented allows for additional goals
to be present between goals in the skeleton. The only extra goal in our
running example is the arithmetic calculation in common, whch is after
the goals corresponding to the skeleton goals.

The second clause for compose-bodies covers the case when the body
is empty, either from dealing with a fact or because the skeleton has been
traversed. In this case, any additional goals need to be included in the
result. This is the function of rest-goals.

Program 18.7 contains a testing clause for Program 18.6, along with the
specific data for our running example. As with Program 18.4, variables
in the programs being composed must be named differently. Automatic
generation of composition specifications for more complicated examples
is possible.

The second example of explicit manipulation of programs is the con-
version of context-free grammar rules to equivalent Prolog clauses.
Context-free grammars are defined over a language of symbols, divided
into nonterminal symbols and terminal symbols. A context-free grammar
is a set of rules of the form

(head) - (body)

where head is a nonterminal symbol and body is a sequence of one
or more items separated by commas. Each item can be a terminal or
nonterminal symbol. Associated with each grammar is a starting symbol
and a language that is the set of sequences of terminal symbols obtained
by repeated (nondeterministic) application of the grammar rules starting
from the starting symbol. For compatibility with Chapter 19, nonterminal
symbols are denoted as Prolog atoms, terminal symbols are enclosed
w i t h lists, and [] denotes the empty operation.

The language a(bc)* can be defined by the following context-free gram-
mar consisting of four rules:

Chapter 18 Program Transformation

test-compose(X ,Prog) -
programl(X,Pr~gl), program2(~,~rog2),
skeleton(X,~keleton), compose(~rogl,~rog2,~keleton,~rog).

program1 (test, [
(union([xl Ixsll ,Ysl ,Zsl) -

member(X1 ,Ysl) , union(xs1 ,Ysl ,Zsl)),
(union([~ 2 1Xs21 ,Ys2, CX2 1 Zs21) -

nonmember(X2 ,Ys2) , union(Xs2 ,Ys2,Zs2)),
(union([1 ,Ys3,Ys3) - true)]) .

program2(test, [
(cornmon([Xl IXsll ,Ysl,Nl) -

member(X1 ,Ysl) , common(xs1 ,Ysl ,MI), N1 is ~1+1),
(common (CX2 I Xs21 , Ys2, N2) -

nonmember(X2,Ys2), common(Xs2,Ys2,N2)),
(common([1 ,Ys3,0) - true)]).

skeleton(test, [
(skel([Xl IXsl] ,Ysl) - member(Xl,Ysl), skel(Xsl,~sl)),
(skel([X2 1 Xs21 ,Ys2) - nonmember(x2,~~2), skel(~s2,~s2)),
(skel([1 ,Ys3) - true)] 1.

composition-specif ication(union(~s ,Ys ,Us) , common(~s ,YS , N) ,
skel(Xs,Ys),uc(Xs,Ys,Us,N)).

map(union(Xs,Ys,Zs), skel(Xs,~s)).
map(cornmon(Xs,Ys,N), skel(Xs,Ys)).

Program 18.7 Testing program composition

s - [a], b .

b - [b] , C.

b - [I .
c - [c], b .

Another example of a context-free grammar is given in Figure 18.1.
This grammar recognizes the language a*b*c*.

A context-free grammar can be immediately written as a Prolog pro-
gram. Each nonterminal symbol becomes a unary predicate whose argu-
ment is the sentence or phrase it identifies. The naive choice for repre-
senting each phrase is as a list of terminal symbols. The first grammar
rule in Figure 18.1 becomes

Figure 18.1 A context-free grammar for the language a*b*c*

s(As\Xs) - a(As\Bs), b(Bs\Cs), c(Cs\Xs) .
a(Xs\Ys) - connect ([a] ,Xs\Xsl) , a(xsl\Ys) .
a(~s\Ys) - connect ([I ,Xs\Ys) .
b(xs\Ys) - connect ([b] ,xs\xsl) , b(~sl\~s).
b(xs\Ys) - connect ([I ,Xs\Ys) .
c(Xs\Ys) - connect(Ccl ,Xs\Xsl), c(Xsl\Ys).
c (XS\YS> - connect ([1 , Xs\Ys) .
connect ([I ,Xs\Xs) .
connect ([W I Ws] , [W I Xs1 \Ys) - connect (W~,XS\YS) .

Program 18.8 A Prolog program parsing the language a*b*c*

Completing the grammar of Figure 18.1 in the style of the previous
rule leads to a correct program for parsing, albeit an inefficient one.
The calls to append suggest, correctly, that a difference-list might be a
more appropriate structure for representing the sequence of terminals
in the context of parsing. Program 18.8 is a translation of Figure 18.1 to
a Prolog program where difference-lists represent the phrases. The basic
relation scheme is s(Xs), which is true if Xs is a sequence of symbols
accepted by the grammar.

The predicate connect (Xs ,Ws) is true if the list X s represents the same
sequence of elements as Ws. The predicate is used to make explicit the
translation of terminal symbols to Prolog programs.

As a parsing program, Program 18.8 is a top-down, left-to-right re-
cursive parser that backtracks when it needs an alternative solution. Al-
though easy to construct, backtraclung parsers are in general inefficient.
However, the efficiency of the underlying Prolog implementation in gen-
eral more than compensates.

Chapter 18 Program Transformation

translate(Grammar,Program) -
Program is the Prolog equivalent of the context-free
grammar G r a m m a r .

translate ([Rule I Rules] , [Clause I Clauses]) -
translate~rule(Rule,Clause),
translate(Rules,Clauses).

translate(C I , [1) .

translate-rule (GrammarRule,PrologClause) -
PrologClause is the Prolog equivalent of the grammar
rule GrammarRule.

translate-rule((Lhs - Rhs),(~ead - Body)) -
translate-head(Lhs ,Head,Xs\Ys) ,
translate-body (Rhs ,Body ,Xs\Ys) .

translate-body(A,B),(Al,Bl),Xs\Ys) -
! , translate-body(A,Al,Xs\Xsl), translate-b~d~(~,Bl,~sl\~s).

translate-body (A, A1 ,Xs) -
translate-goal(A,Al,Xs).

translate-goal(A,Al,DList) -
nonterminal(A1, functor (A1 ,A, 11, arg(l ,A1 , ~ ~ i s t) .

translate~goal(Terms,connect(Terms,~),S) -
terminals(Terms1.

terminals(Xs) - list (Xs) .
list (XS) - see Program 3.11.

Program 18.9 Translating grammar rules to Prolog clauses

We now present Program 18.9, whlch translates Figure 18.1 to Pro-
gram 18.8. As for Program 18.6, the translation proceeds clause by
clause. There is a one-to-one correspondence between grammar rules
and Prolog clauses. The basic relation is translate (Rules, Clauses).
Individual clauses are translated by translate_rule/2. To translate a
rule, both the head and body must be translated, with the appropriate
correspondence of difference-lists, which will be added as additional
arguments.

Adding an argument is handled by the predicate translate-goal. If
the goal to be translated is a nonterminal symbol, a unary predicate with

the same functor is created. If the goal is a list of terminal symbols, the
appropriate connect goal is created. When executed, the connect goal
connects the two difference-lists. Code for connect is in Program 18.8.

Program 18.9 can be extended for automatic translation of definite
clause grammar rules. Definite clause grammars are the subject of Chap-
ter 19. Most versions of Edinburgh Prolog provide such a translator.

Exercise for Section 18.3

(i) Apply Program 18.6 to one of the exercises posed at the end of
Section 13.3.

1 8.4 Background

Often research in logic programming has followed in the steps of related
research in functional programming. This is true for unfold/fold and par-
tial evaluation. Burstall and Darlington (1977) wrote the seminal paper
on unfold/fold in the functional programming literature. Their work was
adapted for logic programming by Tamaki and Sato (1984).

The term partial evaluation may have been used first in a paper by
Lombardi and Raphael (19641, where a simple partial evaluator for Lisp
was described. A seminal paper introducing partial evaluation to com-
puter science is due to Futamura in 1971, who noted the possibility
of compiling away levels of interpretation. Komorowski described the
first partial evaluator for pure Prolog in his thesis in 1981. He has since
preferred the term partial deduction. Gallagher in 1983 was the first to
advocate using partial evaluation in Prolog for removing interpretation
overhead (Gallagher, 1986). Venken (1984) was the first to list some of
the problems of extending partial evaluation to full Prolog. The paper
that sparked the most interest in partial evaluation in Prolog is due
to Takeuch and Furukawa (1986). They discussed using partial evalua-
tion for removing runtime overhead and showed an order of magnitude
speedup. Sterling and Beer (1989) particularize the work for expert sys-
tems. Their paper introduces the issue of pushng down meta-arguments,
whch is subsumed in this chapter by should-f old declarations. Specific
Prolog partial evaluation systems to read for more details are ProMiX

Chapter 18

(Lakhotia and Sterling, 1990) and Mixtus (Sahlin, 1991). An interesting
application of partial evaluation is given by Smith (1991), where efficient
string-matching programs were developed.

Composition was first discussed in the context of Prolog meta-inter-
preters in Sterling and Beer (1989) and an informal algorithm was given
in Sterling and Lakhotia (1988). A theory is found in Kirschenbaum, Ster-
ling, and Jain (1993).

Logic Grammars

A very important application area of Prolog is parsing. In fact, Prolog
originated from attempts to use logic to express grammar rules and to
formalize the process of parsing. In thls chapter, we present the most
common logic grammar formalism, definite clause grammars. We show
how grammar rules can be considered as a language on top of Prolog,
and we apply grammar rules to parse simple English sentences. In Chap-
ter 24, definite clause grammars are used as the parsing component of a
simple compiler for a Pascal-like language.

19.1 Definite Clause Grammars

Definite clause grammars arise from adding features of Prolog to
context-free grammars. In Section 18.3, we briefly sketched how context-
free grammars could be immediately converted to Prolog programs,
which parsed the language specified by the context-free grammar. By
adding the ability of Prolog to exploit the power of unification and the
ability to call builtin predicates, a very powerful parsing formalism is
indeed achieved, as h7e now shonr.

Consider the context -free grammar for recognizing the language
a*b*c*, presented in Figure 18.1, with equivalent Prolog program Pro-
gram 18.8. The Prolog program can be easily enhanced to count the
number of symbols that appear in any recognized sequence of a's, b's,
and c's. An argument would be added to each predicate constituting
the number of symbols found. Arithmetic would be performed to add
numbers together. The first clause would become

Chapter 19 Logic Grammars

s (As\Xs , N) +

a(As\Bs , NA) , b (Bs\Cs , NB) , c (Cs\Xs , NC) , N is NA+NB+NC.

The extra argument counting the nilmber of a's, b's, and c's can be
added to the grammar rule just as easily, ylelding

Adding arguments to nonterminal symbols of context-free grammars,
and the ability to call (arbitrary) Prolog predicates, increases their util-
ity and expressive power. Grammars in this new class are called definite
clause grammars, or DCGs. Definite clause grammars are a generaliza-
tion of context-free grammars that are executable, augmented by the
language features of Prolog.

Program 18.9, translating context-free grammars into Prolog programs,
can be extended to translate DCGs into Prolog. The extension is posed as
Exercise (i) at the end of this section. Throughout tlvs chapter we write
DCGs in grammar rule notation, being aware that they can be viewed
as Prolog programs. Many Edinburgh Prolog implementations provide
support for grammar rules. The operator used for - is -->. Grammar
rules are expanded automatically into Prolog clauses with two extra ar-
guments added as the last two arguments of the predicate to represent
as a difference-list the sequence of tokens or words recognized by the
predicate. Braces are used to delimit goals to be called by Prolog di-
rectly, which should not have extra arguments added during translation.
Grammar rules are not part of Standard Prolog but will probably be in-
corporated in the future.

Program 19.1 gives a DCG that recognizes the language a*b*c* and
also counts the number of letters in the recognized sequence. The en-
hancement from Figure 18.1 is immediate. To query Program 19.1, con-
sideration must be taken of the two extra arguments that will be added.
For example, a suitable query is s (N , [a, a , b , b , b , cl , [1 > ?.

Counting the symbols could, of course, be accomplished by traversing
the difference-list of words. However, counting is a simple enhancement
to understand, whch effectively displays the essence of definite clause
grammars. Section 19.3 presents a wider variety of enhancements.

Our next example is a strilung one of the increase in expressive power
possible using extra arguments and unification. Consider recognizing the
language aNbNcN, which is not possible with a context-free grammar.

s(N) - a(NA), b(NB), c(NC), {N is NA+NB+NC}

a(N) - [a], a(N1), {N i s N1+1}.
a(0) - [I .
b(N) - [b] , b(Nl) , {N is NI+I J .
b(0) - C 1 .
c(N) - Ccl , c(Nl) , {N i s N1+1}.
c (0) - C I .

Program 19.1 Enhancing the language a* b* c *

a(N) - [a], a(N1), {N i s ~ 1 + 1 } .
a (0) - [I .
b(N) - Cbl , b(Nl), {N is N1+1}.
b(0) - C 1 .
c(N) - Ccl , c(N1), {N i s ~ 1 + 1 } .
c(0) - C I .

Program 19.2 Recognizing the language a" b\cA

However, there is a straightforward modification to the grammar given
as Program 19.1. All that is necessary is to change the first rule and make
the number of a's, b's, and c's the same. The modified program is given
as Program 19.2.

In Program 19.2, unification has added context sensitivity and in-
creased the expressive power of DCGs over context-free grammars. DCGs
should be regarded as Prolog programs. Indeed, parsing with DCGs is a
perfect illustration of Prolog programming using nondeterministic pro-
gramming and difference-lists. The top-down, left-to-right computation
model of Prolog yields a top-down, left-to-right parser.

Definite clause grammars can be used to express general programs.
For example, a version of Program 3.15 for append with its last two
arguments swapped can be written as follows.

append([I) - [I .
append(CX I Xsl) - CXI , append(Xs) .

Using DCGs for tasks other than parsing is an acquired programming
taste.

PROYECTO

Chapter 19

The grammar for the declarative part of a Pascal program.

Logic Grammars

Procedure declarations

declarative-part -
const-declaration, type-declaration,
var-declaration, procedure-declaration.

Constant declarations

const-declaration - [I.
const-declaration -

[const], const-definition, [;I, const-definitions.

const-def initions - [1 .
const-def init ions -

const-definition, [;I, const-definitions.
const-definition - identifier, [=I, constant
identifier - [XI , {atom(X) 1 .
constant - [XI , {constant(X)
Type declarations

type-declaration - [I.
type-declaration -

[type] , type-def inition, [;I , type-def initions.

type-def initions - [1 .
type-definitions - type-definition, [;I, type-definitions
type-def inition - identifier, [=I , type

type - ['INTEGER'].
type - ['REAL'].
type - ['BOOLEAN'] .
type - ['CHAR'].
Variable declarations

var-declaration - [1 .
var-declaration -

[var] , var-def inition, [;] , var-def initions.

var-def initions - [1 .
var-definitions - var-definition, [; I , var-definitions.
var-definition - identifiers, [:I, type.
identifiers - identifier.
identifiers - identifier, [,I , identifiers.
Program 19.3 Parsing the declarative part of a Pascal block

procedure-declaration - [1 .
procedure-declaration - procedure-heading, [; I , block.

procedure-heading -
[procedure], identifier, formal-parameter-part

formal-parameter-part - [I .
formal-parameter-part - [(I, formal-parameter-section, [)I.
formal-parameter-section - formal-parameters.
f ormal-parameter-section -

formal-parameters, [;I, formal-parameter-section.
f ormal-parameters - value-parameters.
formal-parameters - variable-parameters.
value-parameters - var-definition.
variable-parameters - [var], var-definition.
Program 19.3 (Continued)

We conclude this section with a more substantial example. A DCG is
given for parsing the declarative part of a block in a Pascal program. The
code does not in fact cover all of Pascal - it is not complete in its defi-
nition of types or constants, for example. Extensions to the grammar are
posed in the exercises at the end of this section. Parsing the statement
part of a Pascal program is illustrated in Chapter 24.

The grammar for the declarative part of a Pascal block is given as Pro-
gram 19.3. Each grammar rule corresponds closely to the syntax diagram
for the corresponding Pascal statement. For example, the syntax diagram
for constant declarations is as follows:

--- > const ----- > Constant Definition -------> ; ------- >
I I
+---------------<--------------------+

The second grammar rule for const-declaration in Program 19.3
says exactly the same. A constant declaration is the reserved word
const followed by a constant definition, handled by the nonterminal
symbol const-def inition; followed by a semicolon; followed by the
rest of the constant definition, handled by the nonterminal symbol
const-def initions. The first rule for const-declaration effectively
states that the constant declaration is optional. A constant definition is

Chapter 19 Logic G r a m m a r s

an identifier followed by =, followed by a constant. The definition for
const-def i n i t i o n s is recursive, being either empty or another constant
definition; followed by a semicolon; followed by the rest of the constant
definition.

The remainder of Program 19.3 is similarly easy to understand. It
clearly shows the style of writing grammars in Prolog.

Exercises for Section 19.1

(i) Extend Program 18.9 so that it translates definite clause grammars
to Prolog as well as context-free grammars.

(ii) Add to Program 19.3 the ability to correctly handle label declara-
tions and function declarations.

(iii) Enhance Program 19.3 to return the list of variables declared in the
declarative part.

(iv) Write a program to parse the language of your choice in the style of
Program 19.3.

19.2 A Grammar Interpreter

Grammar rules are viewed in the previous section as syntactic sugar for
Prolog clauses. This view is supported by Prolog systems with automatic
grammar rule translation. There is a second way of viewing grammar
rules, namely as a rule language.

This section takes the second view and considers grammar rules as
an embedded language on top of Prolog. We consider applying the in-
terpreter techniques of Chapter 17 to grammar rules.

Program 19.4 is an interpreter for grammar rules. The basic relation
is p a r s e (Symbol ,Tokens) , which is true if a sequence of grammar rules
can be applied to Symbol to reach Tokens. The tokens are represented as
a difference-list.

The granularity of the DCG interpreter is at the clause reduction level,
the same as for the vanilla meta-interpreter, Program 17.5, and the expert
system rule interpreter, Program 17.18. Indeed, the code in Program 19.4
is similar to those interpreters. There are four cases, handled by the

parse(Start, Tokens) -
The sequence of tokens Tokens represented as a difference-list
can be reached by applying the grammar rules defined by - / 2 ,
starting from Start.

parse(A,Tokens) -
nonterminal(A), A - B , parse(B,Tokens).

parse((A,B),Tokens\Xs) -
parse(A,Tokens\Tokensl), parse(B,Tokensl\Xs).

parse(A,Tokens) - terminals(A1, connect(A,Tokens).
 parse({^) ,~s\Xs) - A.
terminals(Xs) - See Program 18.9.

connect (Xs ,Tokens) - See Program 18.8.

Program 19.4 A definite clause grammar (DCG) interpreter

four clauses for p a r s e in Program 19.4. The first rule handles the basic
operation of reducing a nonterminal symbol, and the second rule handles
conjunctions of symbols. The third rule handles terminal symbols, and
the fourth rule covers the ability to handle Prolog predicates by calling
them directly using the meta-variable facility.

Observe that the last argument in parse /2 , the DCG interpreter, is a
difference-list. This difference-list can be handled implicitly using gram-
mar rule notation. In other words, Program 19.4 could itself be written as
a DCG. This task is posed as Exercise 19.2(i).

Recall that the interpreters of Chapter 17 were enhanced. Similarly,
the DCG interpreter, Program 19.4, can be enhanced. Program 19.5 gives
a simple enhancement that counts the number of tokens used in pars-
ing. As mentioned before, thls particular enhancement could be accom-
plished directly, but it illustrates how an interpreter can be enhanced.

Comparing Programs 19.1 and 19.5 raises an important issue. Is it
better to enhance a grammar by modifying the rules, as in Program 19.1,
or to add the extra functionality at the level of the interpreter? The
second approach is more modular, but suffers from a lack of efficiency.

Exercises for Section 19.2

(i) Write Program 19.4 as a DCG.

Chapter 19 Logic G r a m m a r s

parse(Start, Tokens,N) -
The sequence of tokens Tokens, represented as a difference-list,
can be reached by applying the grammar rules defined by -/2,
starting from Start, and N tokens are found.

~arse(A,Tokens,N) -
nonterminal(A), A - B, parse(B,Tokens,N).

parse ((A,B) ,Tokens\Xs ,N) -
parse (A ,Tokens\Tokensl, NA) , ~ a r s e (B ,~okensl\Xs ,NB),
N is NA+NB.

~arse(A,Tokens,N) -
terminals(A), connect(A,Tokens), length(A,N).

parse ({A} , Xs\Xs , 0) - A.
terminals (Xs) - See Program 18.9.

connect (A,Tokens) - See Program 18.8.

length(Xs , N) - See Program 8.1 1.

Program 19.5 A DCG interpreter that counts words

(ii) Use the partial reducer, Program 18.3, to specialize the interpreter
of Program 19.4 to a particular grammar. For example, Figure 18.1
should be transformed to Program 19.1.

(iii) Enhance Program 19.4 to build a parse tree.

19.3 Application to Natural Language Understanding

An important application area of logic programming has been under-
standing natural languages. Indeed, the origins of Prolog lie withn t h s
application. In t h s section, it is shown how Prolog, through definite
clause grammars, can be applied to natural language processing.

A simple context-free grammar for a small subset of English is given
in Program 19.6. The nonterminal symbols are grammatical categories,
parts of speech and phrases, and the terminal symbols are English words
that can be thought of as the vocabulary. The first rule in Program 19.6
says that a sentence is a noun phrase followed by a verb phrase. The last
rule says that surprise is a noun. A sample sentence recognized by the
grammar is: "The decorated pieplate contains a surprise."

G r a m m a r Rules

sentence - noun-phrase, verb-phrase
noun-phrase - determiner, noun-phrase2
noun-phrase - noun-phrase2.
noun-phrase2 - adjective, noun-phrase2
noun-phrase2 - noun.
verb-phrase - verb.
verb-phrase - verb, noun-phrase.
Vocabulary

determiner - [the] . adjective - [decorated]
determiner - [a].
noun - [pieplate]. verb -- [contains]
noun - [surprise].
Program 19.6 A DCG context-free grammar

Using the terminology of stepwise enhancement introduced in Chap-
ter 13, wc can view a grammar as a skeleton. We proceed to show how
useful grammatical features can be added by enhancement. The next
two programs are enhancements of Program 19.6. The enhancements,
although simple, typify how DCGs can be used for natural language ap-
plications. Both programs exploit the power of the logical variable.

The first enhancement is constructing a parse tree for the sentence as
it is being parsed. The program is given as Program 19.7. Arguments rep-
resenting (subparts of) the parse tree must be added to Program 19.6.
The enhancement is similar to adding structured arguments to logic pro-
grams, as discussed in Section 2.2. The program builds the parse tree
top-down, exploiting the power of the logic variable.

The rules in Program 19.7 can be given a declarative reading. For exam-
ple, consider the rule

This states that the parse tree built in recognizing the sentence is a struc-
ture sentence (NP, VP), where NP is the structure built while recognizing
the noun phrase and VP is the structure built while recognizing the verb
phrase.

Chapter 19 Logic Grammars

sentence(sentence (NP ,VP)) - noun-phrase(NP) , verb-phrase(VP)
noun-phrase (np(D ,N)) - determiner(D1, noun-~hrase2(N).
noun-phrase (np (N)) - noun-phrase2 (N) .
no~n-~hrase:!(np2(A,N)) - adjective(A), noun_phrase2(N).
no~n-~hrase2(np2(N)) - noun(N).
verb-phrase(vp(V)) - verb(V).
verb-phrase (vp(V , N)) - verb (V) , noun-phrase (N) .
Vocabulary

determiner(det (the)) - [the] .
determiner(det (a)) - [a] .
noun(noun(piep1ate)) - [pieplate] .
noun(noun(surprise)) - [surprise].
adjective (adj (decorated)) - [decorated] .
verb(verb(c0ntains)) - [contains].
Program 19.7 A DCG computing a parse tree

The next enhancement concerns subject/object number agreement.
Suppose we wanted our grammar also to parse the sentence "The dec-
orated pieplates contain a surprise." A simplistic way of handling plural
forms of nouns and verbs, sufficient for the purposes of this book, is to
treat different forms as separate words. We augment the vocabulary by
adding the facts

noun(noun(piep1ates)) - [pie~latesl.
verb (verb (contain)) -- [contain] .

The new program would parse "The decorated pieplates contain a sur-
prise" but unfortunately would also parse "The decorated pieplates con-
tains a surprise." There is no insistence that noun and verb must both be
singular, or both be plural.

Number agreement can be enforced by adding an argument to the
parts of speech that must be the same. The argument indicates whether
the part of speech is singular or plural. Consider the grammar rule

sentence (sentence (NP, VP)) -
noun-phrase (NP , Num) , verb-phrase (VP, Num) .

The rule insists that both the noun phrase, whch is the subject of the
sentence, and the verb phrase, whch is the object of the sentence, have

noun-phrase (np (D , N) , Num) -
determiner (D, Num) , noun_phrase2(N , N u) .

noun-phrase(np(N),Num) - noun_phrase2(N,Num)
noun-phrase2 (np2 (A, N) , Num) -

adjective(A1, noun_phrase2(~,Num).
noun-phrase2 (np2 (N) , Num) - noun (N , Num)

Vocabulary

determiner (det (the) , Num) - [the] .
determiner (det (a), singular) - [a] .
noun(noun(pieplate),singular) - [pieplatel.
noun (noun (pieplates) ,plural) - [pieplatesl .
noun(noun(surprise),singular) - [surprise].
noun(noun(surprises) ,plural) - [surprises] .
adjective(adj (decorated)) - [decorated] .
verb (verb (contains) , singular) - [contains]
verb(verb(contain) ,plural) - [contain] .
Program 19.8 A DCG with subject/object number agreement

the same number, singular or plural. The agreement is indicated by the
sharing of the variable Num. Expressing subject/object number agreement
is context-dependent information, whch is clearly beyond the scope of
context-free grammars.

Program 19.8 is an extension of Program 19.7 that handles number
agreement correctly. Noun phrases and verb phrases must have the same
number, singular or plural. Similarly, the determiners and nouns in a
noun phrase must agree in number. The vocabulary is extended to indi-
cate whch words are singular and whch plural. Where number is unim-
portant, for example, with adjectives, it can be ignored, and no extra
argument is given. The determiner the can be either singular or plural.
This is handled by leaving the argument indicating number uninstanti-
ated.

Chapter 19 Logic Grammars

The next example of a DCG uses another Prolog feature, the ability
to refer to arbitrary Prolog goals in the body of a rule. Program 19.9 is
a grammar for recognizing numbers written in English up to, but not
including, 1,000. The value of the number recognized is calculated using
the arithmetic facilities of Prolog.

The basic relation is number (N), where N is the numerical value of the
number being recognized. According to the grammar specified by the
program, a number is zero or a number N of at most three digits, the rela-
tion xxx (N). Similarly xx(N) represents a number N of at most two digits,
and the predicates rest-xxx and rest-xx denote the rest of a number of
three or two digits, respectively, after the leading digit has been removed.
The predicates digit, teen, and tens recognize, respectively, single dig-
its, the numbers 10 to 19 inclusive, and the multiples of ten from 20 to
90 inclusive.

A sample rule from the grammar is

xxx(N) --
digit(D), [hundred], rest-xxx(Nl), { N is ~ * 1 0 0 + ~ 1 } .

This says that a three-digit number N must first be a digit with value
D, followed by the word hundred followed by the rest of the number,
which will have value Nl. The value for the whole number N is obtained
by multiplying D by 100 and adding N1.

DCGs inherit another feature from logic programming, the ability to
be used backward. Program 19.9 can be used to generate the written
representation of a given number up to, but not including, 1,000. In
technical terms, the grammar generates as well as accepts. The behavior
in so doing is classic generate-and-test. All the legal numbers of the
grammar are generated one by one and tested to see whether they have
the correct value, until the actual number posed is reached. This feature
is a curiosity rather than an efficient means of writing numbers.

The generative feature of DCGs is not generally useful. Many grammars
have recursive rules. For example, the rule in Program 19.6 defining a
noun-phrase2 as an adjective followed by a noun-phrase2 is recursive.
Using recursively defined grammars for generation results in a nonter-
minating computation. In the grammar of Program 19.7, noun phrases
with arbitrarily many adjectives are produced before the verb phrase is
considered.

number(0) - [zero] .
number(N) - xxx(N).
xxx(N) -

digit (Dl, [hundred] , rest-xxx(NI), {N is D*~OO+NI}
xxx(N) - xx(N).
rest-xxx(0) - [I .
rest-xxx (N) - Candl , xx (N).
xx(N) - digit (N) .
xx(N) - teen(N).
XX(N) - tens(T), rest-xx(N1), {N is T + N ~ }

digit(1) - [one] .
digit (2) - [two] .
digit (3) - [three].
digit (4) - [four] .
digit (5) - [five] .
digit (6) - [six].
digit(7) - [seven] .
digit(8) - [eight] .
digit(9) - [nine] .
tens(20) - [twenty] .
tens(30) - [thirty] .
tens(40) - [forty].
tens(50) - [fifty].
tens(60) - [sixty].
tens(70) - [seventy]
tens(80) - [eighty].
tens(90) - [ninety].

teen(l0) - [ten].
teen(l1) - [eleven] .
teen(l2) - [twelve].
teen(l3) - [thirteen].
teen(l4) - [fourteen] .
teen(l5) - If ifteenl .
teen(l6) - [sixteen] .
teen(l7) - [seventeen] .
teen(l8) - [eighteen] .

teen(l9) - [nineteen]

Program 19.9 A DCG for recognizing numbers

Chapter 19

Exercises for Section 19.3

(i) Write a simple grammar for French that illustrates gender agree-
ment.

(ii) Extend and modify Program 19.9 for parsing numbers so that it cov-
ers all numbers less than 1 million. Don't forget to include thmgs
like "thirty-five hundred" and to not include "thlrty hundred."

1 9.4 Background

Prolog was connected to parsing right from its very beginning. As men-
tioned before, the Prolog language grew out of Colmerauer's interest
in parsing, and his experience with developing Q-systems (Colmerauer,
1973). The implementors of Edinburgh Prolog were also keen on natu-
ral language processing and wrote one of the more detailed accounts of
definite clause grammars (Pereira and Warren, 1980). This paper gives a
good discussion of the advantages of DCGs as a parsing formalism in
comparison with augmented transition networks (ATNs).

The examples of using DCGs for parsing languages in Section 19.1 were
adapted from notes from a tutorial on natural language analysis given
by Lynette Hirschrnan at the Symposium on Logic Programming in San
Francisco in 1987. The DCG interpreter of Section 19.2 is adapted from
Pereira and Shieber (1987).

Even though the control structure of Prolog matches directly that of
recursive-descent, top-down parsers, other parsing algorithms can also
be implemented in it quite easily. For example, Matsumoto et al. (1986)
describes a bottom-up parser in Prolog.

The grammar in Program 19.3 is taken from Appendix 1 of Findlay
and Watt (1985). The grammar in Program 19.6 is taken from Winograd's
(1983) book on computational linguistics.

For further reading on logic grammars, refer to Pereira and Shleber
(1987) and Abramson and Dahl(1989).

Search Techniques

In thls chapter, we show7 programs encapsulating classic A1 search tech-
niques. The first section discusses state-transition frameworks for solv-
ing problems formulated in terms of a state-space graph. The second
discusses the minimax algorithm with alpha-beta pruning for searching
game trees.

20.1 Searching State-Space Graphs

State-space graphs are used to represent problems. Nodes of the graph
are states of the problem. An edge exists between nodes if there is a
transition rule, also called a move, transforming one state into the next.
Solving the problem means finding a path from a given initial state to a
desired solution state by applying a sequence of transition rules.

Program 20.1 is a framework for solving problems by searching their
state-space graphs, using depth-first search as described in Section 14.2.

No commitment has been made to the representation of states. The
moves are specified by a binary predicate move (S t a t e , Move), where
Move is a move applicable to S t a t e . The predicate update (S t a t e ,Move,
S t a t e l) finds the state S t a t e 1 reached by applying the move Move to
state S t a t e . It is often easier to combine the move and update proce-
dures. We keep them separate here to make knowledge more explicit and
to retain flexibility and modularity, possibly at the expense of perfor-
mance.

The validity of possible moves is checked by the predicate l e g a l
(S t a t e) , which checks if the problem state S t a t e satisfies the con-
straints of the problem. The program keeps a history of the states visited

Chapter 20 Search Techniques

solve-dfs (State,History,Moves) -
Moves is a sequence of moves to reach a
desired final state from the current State,
where History contains the states visited previously.

solve-df s(State ,History, [1) -
final-state(State).

solve~dfs(State,History,[Move~Movesl) -
move(State ,Move),
update(State ,Move,Statel) ,
legal(State1) ,
not member(Statel,History),
solve~dfs(Statel,[StatellHistory],Moves).

Testing the framework

Program 20.1 A depth-first state-transition framework for problem solving

to prevent looping. Checlung that looping does not occur is done by see-
ing if the new state appears in the history of states. The sequence of
moves leading from the initial state to the final state is built incremen-
tally in the third argument of solve-df s / 3 .

To solve a problem using the framework, the programmer must decide
how states are to be represented, and axiomatize the move, update, and
legal procedures. A suitable representation has profound effect on the
success of thls framework.

Let us use the framework to solve the wolf, goat, and cabbage problem.
We state the problem informally. A farmer has a wolf, goat, and cabbage
on the left side of a river. The farmer has a boat that can carry at most
one of the three, and he must transport this trio to the right bank. The
problem is that he dare not leave the wolf with the goat (wolves love
to eat goats) or the goat with the cabbage (goats love to eat cabbages).
He takes all his jobs very seriously and does not want to disturb the
ecological balance by losing a passenger.

States are represented by a triple, wgc(B,L,R), where B is the po-
sition of the boat (left or right), L is the list of occupants of the
left bank, and R the list of occupants of the right bank. The ini-
tial and final states are wgc (lef t , [wolf, goat, cabbage] , [1 and
wgc (right, [1 , [wolf, goat, cabbage]) , respectively. In fact, it is not
strictly necessary to note the occupants of both the left and right banks.

The occupants of the left bank can be deduced from the occupants of
the right bank, and vice versa. But having both makes specifying moves
clearer.

It is convenient for checlung for loops to keep the lists of occupants
sorted. Thus wolf will always be listed before goat, both of whom will be
before cabbage if they are on the same bank.

Moves transport an occupant to the opposite bank and can thus be
specified by the particular occupant who is the Cargo. The case when
nothmg is taken is specified by the cargo alone. The nondeterministic
behavior of member allows a concise description of all the possible moves
in three clauses as shown in Program 20.2: moving something from the
left bank, moving somethng from the right bank, or the farmer's rowing
in either direction by hlmself.

For each of these moves, the updating procedure must be specified,
namely, changing the position of the boat (by update_boat/2) and up-
dating the banks (by update-banks). Using the predicate select allows
a compact description of the updating process. The insert procedure
is necessary to keep the occupant list sorted, facilitating the check if a
state has been visited before. It contains all the possible cases of adding
an occupant to a bank.

Finally, the test for legality must be specified. The constraints are sim-
ple. The wolf and goat cannot be on the same bank without the farmer,
nor can the goat and cabbage.

Program 20.2, together with Program 20.1, solves the wolf, goat, and
cabbage problem. The clarity of the program speaks for itself.

We use the state-transition framework for solving another classic
search problem from recreational mathematics-the water jugs prob-
lem. There are two jugs of capacity 8 and 5 liters with no markings, and
the problem is to measure out exactly 4 liters from a vat containing 20
liters (or some other large number). The possible operations are filling
up a jug from the vat, emptying a jug into the vat, and transferring the
contents of one jug to another until either the pouring jug is emptied
completely, or the other jug is filled to capacity. The problem is depicted
in Figure 20.1.

The problem can be generalized to N jugs of capacity CI,. . .,CN. The
problem is to measure a volume V, different from all the C, but less
than the largest. There is a solution if V is a multiple of the greatest
common divisor of the Ci. Our particular example is solvable because 4
is a multiple of the greatest common divisor of 8 and 5.

Chapter 20 Search Techniques

States for the wolf, goat and cabbage problem are a structure
wgc(Boat,Left,Right), where Boat is the bank on which the boat
currently is, Left is the list of occupants on the left bank of
the river, and Right is the list of occupants on the right bank.

initial-state (wgc, wgc (left , [wolf ,goat, cabbage] , [1)) .
f inal-state (wgc (right, [1 , [wolf ,goat, cabbage])) .
move(wgc(left,L,~),~arg~) + member(~argo,L).
move (wgc (right, L ,R) ,Cargo) - member (Cargo, R) .
move(wgc(B,~,~),alone).

insert(X,[YlYsl ,[X,YIYsl) -
precedes(X,Y).

insert (X, [Y I YS] , [Y I ZS]) -
~recedes(Y ,XI, insert (X,Ys ,Zs)

insert(X, [I, [XI).

legal(wgc(left,L,R)) - not illegal(R1.
legal(wgc(right,L,R)) - not illegal(L).
illegal(Bank) - member(wolf,Bank), member(goat,~ank).
illegal (Bank) - member (goat ,Bank) , member (cabbage , ~ a n k)
select(X,Xs,Ys) - See Program 3.19.

Program 20.2 Solving the wolf, goat, and cabbage problem

-
I- e Figure 20.1 The water jugs problem ric: 4 9

d e l i : < "

> . r 2 2. U
The particular problem we solve is for two jugs of arbitrary capacity, % C

L)

but the approach is immediately generalizable to any number of jugs.
The program assumes two facts in the database, capaci ty(1 ,CI), for
I equals 1 and 2. The natural representation of the state is a structure
jugs (Vl ,V2), where V 1 and V2 represent the volumes of liquid currently
in the two jugs. The initial state is jugs (0,O) and the desired final state
either jugs (0, X I or jugs (X, 01, where X is the desired volume. In fact,
the only final state that needs to be specified is that the desired volume
be in the larger jug. The volume can be transferred from the smaller
volume, if it fits, by emptylng the larger jug and pouring the contents
of the smaller jug into the larger one.

Data for solving the jugs problem in conjunction with Program 20.1
are given in Program 20.3. There are six moves: filling each jug, emptying
each jug, and transferring the contents of one jug to another. A sam-
ple fact for filling the first jug is move (jugs (Vl , V2) , f i l l (1) 1. The jugs'
state is given explicitly to allow the data to coexist with other problem-
solving data such as in Program 20.2. The emptying moves are optimized
to prevent emptying an already empty jug. The updating procedure asso-
ciated with the first four moves is simple, whlle the transferring opera-
tion has two cases. If the total volume in the jugs is less than the capacity
of the jug being filled, the pouring jug will be emptied and the other
jug will have the entire volume. Otherwise the other jug will be filled to
capacity and the difference between the total liquid volume and the ca-
pacity of the filled jug will be left in the pouring jug. This is achieved by
the predicate adjus t /4 . Note that the test for legality is trivial because
all reachable states are legal.

Most interesting problems have too large a search space to be searched
exhaustively by a program like 20.1. One possibility for improvement is

Chapter 20 Search Techniques

initial-statecjugs, jugs(0,O)).
final-state(jugs(4,V)).
f inal_state(jugs(V,4).

move(jugs(~l,V2) ,fill(l)).
move(jugs(V1 ,v2) ,f ill(2) 1.
move(jugs(Vl,V2),empty(l)) - V1 > 0.
move(jugs(vl,v2),empty(2)) - V2 > 0.
move(jugs(V1,~2) ,transfer(2,1)).
move(jugs(V1,~2),transfer(1,2)).

update(jugs(Vl,V2) ,fill(l), jugs(Cl,V2)) - capacity(1,Cl).
update(jugs(V1 ,V2) ,f ill(2), jugs(V1 ,C2)) - capacity(2,c2).
update(jugs(Vl ,V2) ,empty(l) ,jugs(O,v2)).
update(jugs(V1 ,V2) ,empty(2), jugs(v1,O)).
update(jugs(V1,V2),transfer(2,1),jugs(~1,~2)) -

capacity(1 ,C1),
Liquid is V1 + V2,
Excess is Liquid - C1,
adjust(Liquid,Excess,Wl,W2).

update(jugs(V1 ,V2) ,transfer(l,2), jugs(W1 ,W2)) -
capacity(2,C2),
Liquid is V1 + V2,
Excess is Liquid - C2,
adjust(Liquid,Excess,W2,Wl).

adjust(Liquid,Excess,Liquid,O) - Excess 5 0.
adjust(Liquid,Excess,V,Excess) -

Excess > 0, V is Liquid - Excess.

legal (jugs (V1 , V 2)) .

capacity(l,8).
capacity(2,5).

Program 20.3 Solving the water jugs problem

to put more knowledge into the moves allowed. Solutions to the jug prob-
lem can be found by filling one of the jugs whenever possible, emptying
the other whenever possible, and otherwise transferring the contents of
the jug being filled to the jug being emptied. Thus instead of six moves
only three need be specified, and the search will be more direct, because
only one move will be applicable to any given state. This may not give an
optimal solution if the wrong jug to be constantly filled is chosen.

Developing this point further, the three moves can be coalesced into
a higher-level move, f ill-and-transfer. This tactic fills one jug and
transfers all its contents to the other jug, emptying the other jug as
necessary. The code for transferring from the bigger to the smaller jug
is

move(jugs(V1 ,V2) ,f ill-and-transf er(1)) .
update(jugs(V1 ,V2) ,f ill-and-transfer (I), jugs (0 , V)) +

capacity(1 ,Cl),
capacity(2,C2),
C1 > C2,
V is (Cl+V2) mod C2.

Using this program, we need only three fill and transfer operations to
solve the problem in Figure 20.1.

Adding such domain knowledge means changing the problem descrip-
tion entirely and constitutes programming, although at a different level.

Another possibility for improvement of the search performance, inves-
tigated by early research in AI, is heuristic guidance. A general frame-
work, based on a more explicit choice of the next state to search in
the state-space graph, is used. The choice depends on numeric scores
assigned to positions. The score, computed by an evuluation function,
is a measure of the goodness of the position. Depth-first search can
be considered a special case of searching using an evaluation function
whose value is the distance of the current state to the initial state, while
breadth-first search uses an evaluation function which is the inverse of
that distance.

We show two search techniques that use an evaluation function explic-
itly: hill climbing and best-first search. In the following, the predicate
value (State ,Value) is an evaluation function. The techniques are de-
scribed abstractly.

Chapter 20 Search Techniques

Hill climbing is a generalization of depth-first search where the suc-
cessor position with the highest score is chosen rather than the leftmost
one chosen by Prolog. The problem-solving framework of Program 20.1 is
easily adapted. The hill climbing move generates all the states that can be
reached from the current state in a single move, and then orders them
in decreasing order with respect to the values computed by the evalu-
ation function. The predicate evaluate-and-order (Moves, S t a t e , MVs)
determines the relation that MVs is an ordered list of move-value tuples
corresponding to the list of moves Moves from a state S t a t e . The overall
program is given as Program 20.4.

To demonstrate the behavior of the program we use the example tree
of Program 14.8 augmented with a value for each move. This is given as
Program 20.5. Program 20.4, combined with Program 20.5and appropri-
ate definitions of update and l e g a l searches the tree in the order a, d,
j. The program is easily tested on the wolf, goat, and cabbage problem
using as the evaluation function the number of occupants on the right
bank.

Program 20.4 contains a repeated computation. The state reached by
Move is calculated in order to reach a value for the move and then re-
calculated by update. This recalculation can be avoided by adding an
extra argument to move and keeping the state along with the move and
the value as the moves are ordered. Another possibility if there will be
many calculations of the same move is using a memo-function. What is
the most efficient method depends on the particular problem. For prob-
lems where the update procedure is simple, the program as presented
will be best.

Hill climbing is a good technique when there is only one hill and the
evaluation function is a good indication of progress. Essentially, it takes
a local look at the state-space graph, making the decision on where next
to search on the basis of the current state alone.

An alternative search method, called best-first search, takes a global
look at the complete state-space. The best state from all those currently
unsearched is chosen.

Program 20.6 for best-first search is a generalization of breadth-first
search given in Section 16.2. A frontier is kept as for breadth-first search,
whch is updated as the search progresses. At each stage, the next best
available move is made. We make the code as similar as possible to
Program 20.4 for hill climbing to allow comparison.

solve- hill-climb (State,History,Moves) -
Moves is the sequence of moves to reach a
desired final state from the current State,
where History is a list of the states visited previously.

solve~hill~climb(State,History,[1) -
f inal-state(State1 .

solve~hill~climb(State,History,[Move~Moves]) -
hill-climb(State ,Move),
update(State,Move,Statel),
legal(Statel),
not member(State1 ,History),
solve~hill~climb(Statel, [Statel (History] ,Moves).

hill-climb(State,Move) -
f indall(M,move(State ,M) ,Moves),
evaluate-and-order(Moves,State,[],MVs),
member ((Move, Value) , MVs) .

evaluate-and-order (Moves,Srate,SoFar,OrderedMVs) -
All the Moves from the current State
are evaluated and ordered as OrderedMVs.
SoFar is an accumulator for partial computations.

evaluate~and~order([MoveIMovesl,State,MVs,OrderedMVs) -
update(State,Move,Statel),
value (Statel, Value) ,
insert ((Move ,Value) ,MVs ,MVsl) ,
evaluate-and-order(Moves,State,MVsl,OrderedMVs).

evaluate-and-order([],State,MVs,MVs).

insert (MV, [1 , [MV] 1.
insert((M,V),[(~l,Vl) IMVs],[(M,V),(Ml,Vl)~MVs]) -

v 2 v1.
insert((~,~),[(Ml,Vl)IMVs] ,[(Ml,Vl)IMVsl]) -

V < V 1 , insert((M,V),MVs,MVsl).

Testing the f r a m e w o r k

test-hill-climb(Problem,Moves) -
initial-state (Problem, State) ,
solve-hill-climb(State, [State] ,Moves).

Program 20.4 Hill climbing framework for problem solving

Chapter 20 Search Techniques

Program 20.5 Test data

At each stage of the search, there is a set of moves to consider rather
than a single one. The plural predicate names, for example, updates
and l ega l s , indicate this. Thus l e g a l s (S ta tes , S t a t e s l) filters a set of
successor states, checlung which ones are allowed by the constraints of
the problem. One disadvantage of breadth-first search (and hence best-
first search) is that the path to take is not as conveniently calculated.
Each state must store explicitly with it the path used to reach it. T h s is
reflected in the code.

Program 20.6 tested on the data of Program 20.5 searches the tree in
the same order as for hlll climbing.

Program 20.6 makes each step of the process explicit. In practice, it
may be more efficient to combine some of the steps. When filtering the
generated states, for example, we can test that a state is new and also le-
gal at the same time. This saves generating intermediate data structures.
Program 20.7 illustrates the idea by combining all the checks into one
procedure, update-f r o n t i e r .

Exercises for Section 20.1

(i) Redo the water jugs program based on the two fill-and-transfer
operations.

(ii) Write a program to solve the missionaries and cannibals problem:

Three missionaries and three cannibals are standing on the left bank o f
a river. There is a small boat to ferry them across with enough room
for only one or two people. They wish to cross the river. I f ever there
are more missionaries than cannibals on a particular bank of the river,
the missionaries will convert the cannibals. Find a series of ferryings
to transport safely all the missionaries and cannibals across the river
without exposing any of the cannibals to conversion.

solve- best (Frontier,History,Moves) -
Moves is a sequence of moves to reach a desired final state from
the initial state, where Frontier contains the current states under
consideration, and History contains the states visited previously.

solve-best([state(State,~ath,~alue) l F r o n t i e r , H i s t o r y , ~ o v e s) +
f inal-state (State) , reverse(Path,Moves) .

solve~best([state(State,Path,~alue)~Frontier],~istory,FinalPath)-
findall(M,move(State,M) ,Moves),
updates(Moves ,Path,State ,States),
legals (States ,Statesl),
news(Statesl,History,States2),
evaluates (States2, Values) ,
inserts(Values,Frontier,Frontierl),
solve-best(Frontierl,[StatelHistory] ,Finalpath).

updates (Moves,Path,State,States) -
States is the list of possible states accessible from the
current State, according to the list of possible Moves,
where Path is a path from the initial node to State.

updates([MIMsl ,Path,S, [(Sl, [MIPathl) lSsl -
update(S,M,Sl), updates(Ms,Path,S,Ss).

updates([1 ,Path,State, [I).
legals (States,Statesl) -

Statesl is the subset of the list of States that are legal.
legals([(S,P) IStatesl , [(S,P) IStatesll) -

legal(S), legals(States,Statesl).
legals([(S,P) I Statesl ,Statesl) -

not legal(S), legals(States,Statesl).
legals([I,[I).
news (States,History,Statesl) -

Statesl is the list of states in States but not in History.

news([(S,P) IStates],History,Statesl) -
member(S,History), news(States,History,Statesl).

news([(S,P) I Statesl ,History, [(S ,P) I States11 -
not member(S,History), news(States,History,Statesl).

news([I ,History, [I).
evaluates (States, Values) -

Values is the list of tuples of States augmented by their value.

evaluates([(S,P) I Statesl, [state(S,P,V) IValuesI) -
value(S,V), evaluates(States,Values).

evaluates([I , [I).

Program 20.6 Best-first framework for problem solving

Chapter 20 Search Techniques

inserts(States,Frontier,Frontierl) -
Frontier1 is the result of inserting States into the current Frontier.

insert (State, [1 , [State]) .
insert(State, [Statel I States] , [State,StatelI States] -

lesseq-value (State,Statel) .
insert (State, [Statel l Statesl , [State l Statesl) -

equals(State,Statel) .
insert (State, [Statel I Statesl , [Statel I States11 -

greater-value(State ,Statel), insert (state ,states ,states11

Program 20.6 (Continued)

solve- best (Frontier,History,Moves) -
Moves is a sequence of moves to reach a desired final state
from the initial state. Frontier contains the current states
under consideration. History contains the states visited previously.

solve-best ([state(State ,Path,Value) 1 ~rontier] i is tory ,Moves) +

f inal-state(State) , reverse(Path, [1 ,~oves).
solve-best ([state(State ,Path,Value) (~rontier] is tor^ ,~inal~ath) -

f indall (M ,move(State ,M) ,Moves) ,
update-f rontier (Moves ,State ,Path,History ,Frontier ,~rontierl),
solve~best(Frontierl,[~tate~~istor~],~inal~ath~.

update-frontier([MIMsl ,~tate,~ath,~istory .F,F1) -
update(~tate ,M,Statel),
legal(Statel),
value (Statel ,Value) ,
not member(~tatel,History),
insert((State1, [MIPathl ,Value) ,F,FO),
update-f rontier (Ms ,State ,Path,History ,FO ,F1) .

update-frontier([1 ,S,P,H,F,F).

insert (State ,Frontier ,Frontierl) - See Program 20.6.

Program 20.7 Concise best-first framework for problem solving

(iii) Write a program to solve the five jealous husbands problem (Du-
deney, 19 1 7):

During a certain flood five married couples found themselves sur-
rounded by water and had to escape from their unpleasant position
in a boat that would only hold three persons at a time. Every husband
was so jealous that he would not allow his wife to be in the boat or on
either bank with another man (or with other men) unless he himself was
present. Find a way o f getting these five men and their wives across to
safety.

(iv) Compose a general problem-solving framework built around
breadth-first search analogous to Program 20.1, based on programs
in Section 16.2.

(v) Express the 8-queens puzzle within the framework. Find an evalua-
tion function.

-- - -

20.2 Searching Game Trees

What happens when we play a game? Starting the game means setting up
the chess pieces, dealing out the cards, or setting out the matches, for
example. Once it is decided who plays first, the players take turns making
a move. After each move the game position is updated accordingly.

We develop the vague specification in the previous paragraph into a
simple framework for playing games. The top-level statement is

The predicate initialize (Game, Position, Player) determines the ini-
tial game position Position for Game, and Player, the player to start.

A game is a sequence of turns, where each turn consists of a player
choosing a move, the move being executed, and the next player being
determined. The neatest way of expressing thls is as a tail recursive
procedure, play, with three arguments: a game position, a player to
move, and the final result. It is convenient to separate the choice of the
move by choose-move/3 from its execution by move/3. The remaining

Chapter 20

play(Game) -
Play game with name G a m e .

play(Position,Player,Re~ult) -
game-over (~osition,Player ,Result) , ! , announce(Result)

play(Position,Player,Re~ult) -
choose-move(~osition,Player,Move),
m o v e (M o v e , P ~ ~ i t i ~ n , P ~ ~ i t i ~ n l) ,
display-game (Position1 ,Player) ,
next-player(P1ayer , Playerl) ,
! , play(Positionl,Playerl,Re~~lt).

Program 20.8 Framework for playing games I
I

I

predicates in the clause for play/3 display the state of the game and
I
I

determine the next player: I
play (position,~layer ,Result) -

choose-move (Position, Player ,Move) ,
move (Move , ~ o s i t i ~ n , P ~ ~ i t i ~ n l) ,
display-game(~o~iti~nl,Player),

next-player (Player ,Playerl) ,
! , play (Position1 ,Player1 ,Result) .

Program 20.8 provides a logical framework for game-playing programs.
Using it for writing a program for a particular game focuses attention on
the important issues for game playing: what data structures should be
used to represent the game position, and how strategies for the game
should be expressed. We demonstrate the process in Chapter 2 1 by writ-
ing programs to play Nim and Kalah.

The problem-solving frameworks of Section 20.1 are readily adapted
to playing games. Given a particular game state, the problem is to find a
path of moves to a winning position.

A game tree is similar to a state-space graph. It is the tree obtained by
identifying states with nodes and edges with players' moves. We do not,
however, identify nodes on the tree, obtained by different sequences of
moves, even if they repeat the same state. In a game tree, each layer is
called a ply.

Search Techniques

evaluate-and-choose (Moves,Position,Record,BestMove -
Chooses the BestMove from the set of Moves from the
current Position. Record records the current best move.

evaluate-and-choose ([Move I Moves] ,position ,Record, ~ e s t ~ o v e) -
move(~ove,Position,~ositionl),
value (Positionl ,Value) ,
update (Move, Value, Record, Recordl) ,
evaluate~and~choose(Moves,Position,Recordl,BestMo~e).

evaluate-and-choose([],~osition,(~ove,Value),Move).

update(Move,Value,(Movel,Valuel),(Movel,Valuel)) -
Value I Value 1.

update(Move,Value,(Movel,Valuel),(Move,Value~) -
Value > Valuel.

Program 20.9 Choosing the best move

Most game trees are far too large to be searched exhaustively. This sec-
tion discusses the techniques that have been developed to cope with the
large search space for two-person games. In particular, we concentrate
on the minimax algorithm augmented by alpha-beta pruning. This strat-
egy is used as the basis of a program we present for playing Kalah in
Chapter 21.

We describe the basic approach of searchmg game trees using evalua-
tion functions. Again, in this section value (Posit ion, Value) denotes
an evaluation function computing the Value of Position, the current
state of the game. Here is a simple algorithm for choosing the next move:

Find all possible game states that can be reached in one move.
Compute the values of the states using the evaluation function.
Choose the move that leads to the position with the highest score.

This algorithm is encoded as Program 20.9. It assumes a predicate
move (Move, Position, Positionl) that applies a Move to the current Po-
sition to reach Positionl. The interface to the game framework of
Program 20.8 is provided by the clause

choose~move(Position,computer,Move) -
f indall (M,move (Position,M) ,Moves),
evaluate~and~choose(Moves ,Position, (nil, -1000) ,~ove) .

The predicate move (Position,Move) is true if Move is a possible move
from the current position.

Chapter 20 Search Techniques

The basic relation is evaluate-and-choose (Moves ,Position, Record,
BestMove) whlch chooses the best move BestMove in the possible Moves
from a given Position. For each of the possible moves, the correspond-
ing position is determined, its value is calculated, and the move with
the highest value is chosen. Record is a record of the current best move
so far. In Program 20.9, it is represented as a tuple (Move ,Value). The
structure of Record has been partially abstracted in the procedure up-
date/4. How much data abstraction to use is a matter of style and a
trade-off among readability, conciseness, and performance.

Looking ahead one move, the approach of Program 20.9, would be
sufficient if the evaluation function were perfect, that is, if the score
reflected which positions led to a win and which to a loss. Games become
interesting when a perfect evaluation function is not known. Choosing a
move on the basis of looking ahead one move is generally not a good
strategy. It is better to look several moves ahead and to infer from what
is found the best move to make.

The minimax algorithm is the standard method for determining the
value of a position based on searchng the game tree several ply ahead.

The algorithm assumes that, when confronted with several choices,
the opponent would make the best choice for her, i.e., the worst choice
for me. My goal then is to make the move that maximizes for me the
value of the position after the opponent has made her best move,
i.e., that minimizes the value for her. Hence the name minimax. This
reasoning proceeds several ply ahead, depending on the resources that
can be allocated to the search. At the last ply the evaluation function is
used.

Assuming a reasonable evaluation function, the algorithm will produce
better results the more ply are searched. It will produce the best move if
the entire tree is searched.

The minimax algorithm is justified by a zero-sum assumption, which
says, informally, that what is good for me must be bad for my opponent,
and vice versa.

Figure 20.2 depicts a simple game tree of depth 2 ply. The player has
two moves in the current position, and the opponent has two replies.
The values of the leaf nodes are the values for the player. The oppo-
nent wants to minimize the score, so will choose the minimum values,
making the positions be worth + 1 and -1 at one level hgher in the tree.
The player wants to maximize the value and will choose the node with
value + 1.

Figure 20.2 A simple game tree

Program 20.10 encodes the minimax algorithm. The basic relation is
minimax (D , Posit ion, MaxMin , Move, Value), which is true if Move is the
move with the highest Value from Position obtained by searchng D ply
in the game tree. MaxMin is a flag that indicates if we are maximizing or
minimizing. It is 1 for maximizing and - 1 for minimizing, the particular
values being chosen for ease of manipulation by simple arithmetic opera-
tions. A generalization of Program 20.9 is used to choose from the set of
moves. Two extra arguments must be added to evaluate-and-choose:
the number of ply D and the flag MaxMin. The last argument is general-
ized to return a record including both a move and a value rather than
just a move. The minimax procedure does the bookkeeping, changing the
number of moves being looked ahead and also the minimax flag. The ini-
tial record is (nil, -1000), where nil represents an arbitrary move and
-1000 is a score intended to be less than any possible score of the evalu-
ation function.

The observation about efficiency that was made about combining the
move generation and update procedures in the context of searchng
state-space graphs has an analogue when searchmg game trees. Whether
it is better to compute the set of positions rather than the set of moves
(with the corresponding change in algorithm) will depend on the particu-
lar application.

The minimax algorithm can be improved by keeping track of the re-
sults of the search so far, using a t e c h q u e known as alpha-beta pruning.
The idea is to keep for each node the estimated minimum value found so
far, the alpha value, along with the estimated maximum value, beta. If,
on evaluating a node, beta is exceeded, no more search on that branch is
necessary. In good cases, more than half the positions in the game tree
need not be evaluated.

Chapter 20 Search Techniques

evaluate~and~choose(Moves,Position,Depth,Flag,Record,BestMove~ -
Choose the BestMove from the set of Moves from the current
Position using the minimax algorithm searching Depth ply ahead.
Flag indicates if we are currently minimizing or maximizing.
Record records the current best move.

evaluate-and-choose([Move l Moves] ,Position,D , ~ a x ~ i n , ~ e c o r d , ~ e s t) +

move(Move,Position,Positionl),
minimax(D,Positionl,MaxMin,MoveX,Value),
update(Move,Value,Record,Recordl),
evaluate~and~choose(Moves,Position,D,~ax~in,~ecordl,~est).

evaluate-and-choose ([1 ,Position,D ,MaxMin ,Record ,~ecord).

minirnax(0,Position,MaxMin,Mo~e,Value) -
value(Position,V) ,
Value is V*MaxMin.

minimax(D,Position,MaxMin,Mo~e,Value) -
D > 0,
f indall(M,move(Position,M) ,Moves),
Dl is D - 1 ,
MinMax is -MaxMin,
evaluate~and~choose(Moves,Position,Dl,MinMax, (nil,-1000),

(Move,Value)).

update(Move,Value,Record,Recordl) - See Program 20.9.

Program 20.10 Choosing the best move ~vi th the minimax algorithm

Program 20.11 is a modified version of Program 20.10 that incor-
porates alpha-beta pruning. The new relation scheme is alpha-beta
(Depth, Position, Alpha, Beta, Move, Value), which extends minimax
by replacing the minimax flag with alpha and beta. The same relation
holds with respect to evaluate-and-choose.

Unlike the one in Program 20.10, the version of evaluate-and-choose
in Program 20.1 1 does not need to search all possibilities. This is
achieved by introducing a predicate cutoff, whch either stops searching
the current branch or continues the search, updating the value of alpha
and the current best move as appropriate.

For example, the last node in the game tree in Figure 20.2 does not
need to be searched. Once a move with value -1 is found, which is
less than the value of + I the player is guaranteed, no other nodes can
contribute to the final score.

The program can be generalized by replacing the base case of alpha-
beta by a test of whether the position is terminal. This is necessary in
chess programs, for example, for handling incomplete piece exchanges.

evaluate~and~choose(Moves,Position,Depth,Alpha,Beta,Record,BestMove) -
Chooses the BestMove from the set of Moves from the current
Position using the minimax algorithm with alpha-beta cutoff searchmg
Depth ply ahead. Alpha and Beta are the parameters of the algorithm.
Record records the current best move.

evaluate~and~choose([MoveIMovesl,Position,D,Alpha,Beta,Movel,

BestMove) -
move (Move, Position,Positionl) ,
alpha-beta(D,Positionl,Alpha,Beta,MoveX,Value),
Value1 is -Value,
cutoff(Move,Valuel,D,Alpha,Beta,Moves,Position,Move1,BestMove).

evaluate-and-choose([1,Position,D,Alpha,Beta,Move,(Move,Alpha)).

alpha~beta(0,Position,Alpha,Beta,Move,Value -
value(Position,Value).

alpha~beta(D,Position,Alpha,Beta,Move,Value -
f indall (M,move(Position ,M) ,Moves) ,
Alpha1 is -Beta,
Beta1 is -Alpha,
Dl is D-1,
evaluate~and~choose(Moves,Position,D1,Alphal,Beta1,nil,

i (Move,Value)).

cutoff(Move,Value,D,Alpha,Beta,Moves,Position,Move1,~Move,Value)) -
Value 1 Beta.

cutoff(Move,Value,D,Alpha,Beta,Moves,Position,Movel,BestMove) -
Alpha < Value, Value < Beta,
evaluate~and~choose(Moves,Position,D,Value,Beta,Move,BestMove).

cutoff(Move,Value,D,Alpha,Beta,Moves,Position,Move1,BestMove) -
Value I Alpha,
evaluate~and~choose(Moves,Position,D,Alpha,Beta,Movel,BestMove).

Program 20.1 1 Choosing a move using minimax with alpha-beta pruning

- - - - -- - - -

20.3 Background

Search techniques for both planning and game playing are discussed in
A1 textbooks. For further details of search strategies or the minimax algo-
rithm and its extension to alpha-beta pruning, see, for example, Nilsson
(1971) or Winston (1977).

Walter Wilson originally showed us the alpha-beta algorithm in Prolog.

IV Applications

Prolog has been used for a wide range of applications: expert systems,
natural language understanding, symbolic algebra, compiler writing,
building embedded languages, and architectural design, to name a few.
In this part, we give a flavor of writing application programs in Prolog.

The first chapter looks at programs for playing three games: master-
mind, Nim, and Kalah. The next chapter presents an expert system for
evaluating requests for credit. The third chapter presents a program for
solving symbolic equations, and the final chapter looks at a compiler for
a Pascal-like language.

The emphasis in presentation in these chapters is on writing clear
programs. Knowledge embedded in the programs is made explicit. Minor
efficiency gains are ignored if they obscure the declarative reading of the
program.

Leonardo Da Vinci, The Proportions of the Human Figure, after Vitruvius. Pen
and ink. About 1492. Venice Academy.

Game-Playing Programs

Learning how to play a game is fun. As well as understanding the rules
of the game, we must constantly learn new strategies and tactics until
the game is mastered. Writing a program to play games is also fun, and
a good vehicle for showing how to use Prolog for w~iting nontrivial pro-
grams.

2 1.1 Mastermind

Our first program guesses the secret code in the game of mastermind. It
is a good example of what can be programmed in Prolog easily with just
a little thought.

The version of mastermind we describe is what we played as kids. It
is a variant on the commercial version and needs less hardware (only
pencil and paper). Player A chooses a sequence of distinct decimal digits
as a secret code-usually four digits for beginners and five for advanced
players. Player B makes guesses and queries player A for the number of
bulls (number of digits that appear in identical positions in the guess and
in the code) and cows (number of digits that appear in both the guess and
the code, but in different positions).

There is a very simple algorithm for playing the game: Impose some
order on the set of legal guesses; then iterate, making the next guess that
is consistent with all the information you have so far until you find the
secret code.

Chapter 21 Game-Playing Programs

Rather than defining the notion of consistency formally, we appeal to
the reader's intuition: A guess is consistent with a set of answers to
queries if the answers to the queries would have remained the same if
the guess were the secret code.

The algorithm performs quite well compared with experienced players:
an average of four to six guesses for a code with four digits with an
observed maximum of eight guesses. However, it is not an easy strategy
for humans to apply, because of the amount of bookkeeping needed. On
the other hand, the control structure of Prolog-nondeterministic choice,
simulated by backtraclung-is ideal for implementing the algorithm.

We describe the program top-down. The entire program is given as
Program 21.1. The top-level procedure for playing the game is

rnastermind(C0de) -
cleanup, guess (Code) , check(Code), announce

The heart of the top level is a generate-and-test loop. The guessing pro-
cedure guess(Code), whch acts as a generator, uses the procedure se-
lects(Xs,Ys) (Program 7.7) to select nondeterministically a list Xs of
elements from a list Ys. According to the rules of the game, Xs is con-
strained to contain four distinct elements, while Ys is the list of the ten
decimal digits:

guess (Code) -
Code = [XI, X2, X3, X41 ,
selects(Code, [1,2,3,4,5,6,7,8,9,0])

The procedure check(Guess) tests the proposed code Guess. It first
verifies that Guess is consistent with all (i.e., not inconsistent with any) of
the answers to queries already made; then it asks the user for the number
of bulls and cows in Guess. The ask(Guess) procedure also controls
the generate-and-test loop, succeeding only when the number of bulls is
four, indicating the correct code is found:

check(Guess) -
not inconsistent (Guess), ask(Guess).

Ask stores previous answers to queries in the relation query (X , B , C) ,
where X is the guess, B is the number of bulls in it, and C the number
of cows. A guess is inconsistent with a previous query if the number of
bulls and cows do not match:

mastermind(Code) -
cleanup, guess (Code), check(Code) , announce.

guess(Code) -
Code = CXl,X2,X3,X41, selects(Code,[1,2,3,4,5,6,7,8,9,01).

Verify the proposed guess

check(Guess) -
not inconsistent (Guess) , ask(Guess)

inconsistent(Guess) -
query(0ldGuess,Bulls,Cows),
not bulls~and~cows~match(OldGuess,Guess,Bulls,Cows).

bulls~and~cows~match(OldGuess,Guess,Bulls,Cows) -
exact-matches (OldGuess, Guess ,N1) ,
Bulls =:= N1, % Correct number of bulls
common~members(OldGuess,Guess,N2),
Cows =:= N2-Bulls. % Correct number of cows

same-place (X, CX I Xsl , [X I Ysl) .
same-place (A, [XI Xsl , [Y I Ysl) - same-place (A, Xs ,Ys) .
Asking a guess

repeat,

writeln(['How many bulls and cows in ',Guess,'?']),
read((Bulls ,Cows)) ,
sensible(Bulls,Cows), ! ,
assert(query(Guess,Bulls,Cows)),
Bulls =:= 4.

sensible(Bulls,Cows) -
integer(Bulls), integer(Cows), Bulls+Cows 5 4.

Bookkeeping

cleanup - abolish(query,3).
announce -

size-of(X,query(X,A,B),N),
writeln(['Found the answer after ',N,' queries']).

size-of (X,G,N) - f indall(X,G,Xs) , length(Xs,N) .
length(Xs ,N) - See Program 8.1 1.

selects(X,Xs) - See Program 7.7.

abolish(F,N) - See Exercise 12.5(i).

Program 2 1.1 Playlng mastermind

Chapter 21
415 Game-Playing Programs

inconsistent(Guess) -
query(Old,Bulls,Cows),

not bulls~and~cows~match(Old,Guess,Bulls,Cow~~.

The bulls match between a previous guess OldGuess and a conjectured
guess Guess if the number of digits in the same position in the two
guesses equals the number of Bulls in OldGuess. It is computed by the
predicate exact-matches (OldGuess ,Guess ,Bulls). The cows match if
the number of common digits without respect to order corresponds to
the sum of Bulls and Cows; it is computed by the procedure bulls-
and-cows-match. It is easy to count the number of matchmg digits and
common digits in two queries, using an all-solutions predicate size-
of /3.

The ask(Guess) procedure is a memo-function that records the answer
to the query. It performs some limited consistency checks on the input
with the procedure sensible/2 and succeeds only if four bulls are indi-
cated. The expected syntax for the user's reply is a tuple (Bulls, Cows).

The remaining (top-level) predicates are for bookkeeping. The first,
cleanup, removes unwanted information from previous games. The
predicate announce tells how many guesses were needed, whch is de-
termined using size-of /3.

A more efficient implementation of the exact-matches and common-
members procedures can be obtained by writing iterative versions:

exact-matches ([X I XsI , [X I Ysl , K, N) -
~1 is K+I, exact-matches (XS ,Ys ,K1 ,N)

exact-matches ([X 1 Xsl , [Y I Ysl ,K,N) -
x # Y, exact-matches(~s,Ys,K,N).

exact-matches ([: 1 , 1 ,N,N) .

common-members ([X I Xs] , Ys , K, N) -
rnember(x,Ys), K1 is K+l, common-members(Xs,Ys,Kl,N).

common-members ([X I Xsl , Ys , K , N) -
common-members (XS , Ys , K , N) .

common-members ([1 , Ys, N , N) .

Using the more efficient versions of exact-matches and common-
members saves about 10%-30% of the execution time.

21.2 Nirn

We turn our attention now from mastermind to Nim, also a game for two
players. There are several piles of matches, and the players take turns
removing some of the matches (up to all) in a pile. The winner is the
player who takes the last match. Figure 21.1 gives a common starting
position, with piles of 1, 3, 5 and 7 matches.

To implement the Nim-playing program, we use the game-playing
framework of Program 20.8.

The first decision is the representation of the game position and
the moves. A natural choice for positions is a list of integers where
elements of the list correspond to piles of matches. A move is a tu-
ple (N,M) for talung M matches from pile N. Writing the procedure
move (Move ,Position,Positionl), where Position is updated to Posi-
tionl by Move, is straightforward. The recursive rule counts down match
piles until the desired pile is reached. The remaining piles of matches
representing the new game position are computed routinely:

There are two possibilities for updating the specified pile of matches,
the base case of the procedure. If all the matches are taken, the pile is
removed from the list. Otherwise the new number of matches in the pile
is computed and checked to be legal:

move((l,N>, [NINsI ,Ns).

m o v e ((1 , ~) , ~ N l ~ s l , C ~ 1 l ~ s l) - N > M, N1 is N-M.

The mechanics of turns for two-person games is specified by two facts.

Figure 21.1 A starting position for Nim

Chapter 21 Game-Playing Programs

The initial piles of matches and who moves first must be decided by
the two players. Assuming the computer moves second, the game of
Figure 21.1 is specified as

initialize (nim, [I, 3,5,7] ,opponent) .

The game is over when the last match is taken. Ths corresponds to the
game position being the empty list. The person having to move next is
the loser, and the output messages of announce are formulated accord-
ingly. The details are in Program 21.2.

It remains to specify how to choose the moves. The opponent's moves
are accepted from the keyboard; how much flexibility is allowed in input
is the responsibility of the programmer:

choose-move (Posit ion, opponent, Move) -
writeln(['Please make move']),

read (Move) ,
legal (Move, Position) .

Choosing a move for the computer requires a strategy. A simple strat-
egy to implement is talung all of the first pile of matches. It is recom-
mended only for use against extremely poor players:

choose-move ([N I NsI , computer (1 ,N)) .

A winning strategy is known for Nim. It involves dividing game states,
or positions, into two classes, safe and unsafe. To determine if a position
is safe or unsafe, the binary representation of the number of matches
in each pile is computed. The nim-sum of these binary numbers is then
calculated as follows. Each column is summed independently modulo 2.
If the total in each column is zero, the position is safe. Otherwise the
position is unsafe.

Figure 21.2 illustrates the process for the four piles of matches in
Figure 21.1. The binary representations of 1, 3, 5 , and 7 are 1, 11, 101,
and 11 1 respectively. Calculating the nim-sum: there are four 1's in the
units column, two 1's in the 2's column and two 1's in the 4's column;
an even number of 1's in each. The nim-sum is zero, malung the position
[1,3,5,7] safe. On the other hand the position [2,6] is unsafe. The binary
representations are 10 and 110. Summing them gives one 1 in the 4's
column and two 1's in the 2's column. The single 1 in the 4's column
makes the position unsafe.

play (Game) - See Program 20.8.

Filling in the game-playing framework

display-game(Position,X) - write(Position), nl.

game-over([l,Player,Player).

announce(computer) - write('You won! Congratulations.'), nl.
announce(opponent) - write('1 won.'), nl.

Choosing moves

choose~move(Position,opponent,Move) -
writeln(['Please make move']), read(Move), legal(Move,Position).

legal((K,N),Position) - nth-member(K,Position,M), N I M.
nth-member (1, [X I XS] , X) .
nth-member(N,[XIXs],Y) - N > 1, N1 is N-1, nth-member(Nl,Xs,Y).

evaluate(Position,Safety,Sum) -
nim-sum(Position, [1 ,Sum), saf ety(Sum,Saf ety)

safety(Sum, saf e) - zero(Sum), ! .
safety(Sum,unsafe) - not zero(Sum), ! .

decide-move(safe,Position,Sum,(1,1)).
% The computer's "arbitrary move"

decide~move(unsafe,Position,Sum,Move) -
safe~move(Position,Sum,Move).

move(Move,Position,Positionl) -
Position1 is the result of executing the move
Move from the current Position.

move((K,M),[NINsl,[NINsll) -
K > 1, K1 is K-1, move((KI,M),Ns,Nsl).

move((1 ,N) , [NI Nsl ,Ns) .
move((l,M),[N1Nsl ,[NlINsl) -

N > M, N1 is N-M.

Program 21.2 A program for playing a winning game of Nim

Chapter 21
Game-Playing Programs

nim-sum (Position,SoFar,Sum) -
Sum is the nim-sum of the current Position,
and SoFar is an accumulated value.

nim-sum([N I Nsl ,Bs ,Sum) -
binary(N,Ds) , nim-add(Ds ,Bs ,Bsl) , nim-sum(Ns ,Bsl ,Sum).

nim-sum([I , Sum,Sum) .
nim-add(Bs, [1 ,Bs).
nim-add([1 ,Bs ,Bs) .
nim-add([~IBsl, [CICs], [DIDsl) -

D is (B+C) mod 2, nim-add(Bs,Cs,Ds).

binary (1, [ll) .
binary (N, [D I Dsl) -

N > 1, D is N mod 2, N1 is N/2, binary(N1,Ds).

zero([I).
zero([oI Zsl) - zero(Zs1.
safe-move(Position,NimSum,Move) -

Move is a move from the current Position with
the value NimSum that leaves a safe position.

safe-move([~ileI~iles],NimSum,K,(K,M)) -
binary (Pile ,Bs) , can-zero (Bs ,NimSum,Ds ,0) , decimal (Ds ,MI

saf e-move ([Pile I piles] , NimSum,K ,Move) -
K1 is K+1, safe-move(Piles,NimSum,K1,~ove).

can-zero([I ,NirnSum, [1,o) -
zero(NimSum).

can-zero ([B I Bsl , [O I NimSuml , [C 1 Dsl ,C) -
can-zero(Bs,NimSum,Ds,C).

can-zero ([B I Bsl , [I I Nim~uml , [D IDS] ,C) -
D is 1-B*C, C1 is 1-B, can-zero(Bs,NimSum,Ds,~i).

Program 21.2 (Continued)

Figure 2 1.2 Computing nim-sums

The winning strategy is to always leave the position safe. Any unsafe
position can be converted to a safe position (though not all moves do),
while any move from a safe position creates an unsafe one. The best
strategy is to make an arbitrary move when confronted with a safe posi-
tion, hoping the opponent will blunder, and to convert unsafe positions
to safe ones.

The current position is evaluated by the predicate e v a l u a t e / 3 , whlch
determines the safety of the current position. An algorithm is needed
to compute the nim-sum of a position. The nim-sum is checked by the
predicate s a f e t y (Sum, Saf e t y) , which labels the position safe or unsafe
depending on the value of Sum.

The move made by the computer computed by decide_move/4 de-
pends on the safety of the position. If the position is safe, the computer
makes the "arbitrary" move of one match from the first pile. If the posi-
tion is unsafe, an algorithm is needed to compute a move that converts
an unsafe position into a safe one. This is done by sa f e_move/3.

In a prior version of the program e v a l u a t e did not return Sum. In the
writing of s a f e-move it transpired that the nim-sum was helpful, and it
was sensible to pass the already computed value rather than recomput-
ing it.

The nim-sum is computed by nim-sum(Ns, SoFar , Sum). The relation
computed is that Sum is the nim-sum of the numbers N s added to what
has been accumulated in SoFar. To perform the additions, the numbers
must first be converted to binary, done by b inary /2 :

nim-sum ([N I Nsl ,Bs ,Sum) -
b i n a r y (N, Ds) , nim-add(Ds , B s , B s l) , nim-sum (Ns , B s l , Sum)

Chapter 21 Game-Playing Programs

The binary form of a number is represented here as a list of digits. To
overcome the difficulty of adding lists of unequal length, the least signif-
icant digits are earliest in the list. Thus 2 (in binary 10) is represented
as [0,1], whle 6 is represented as [0,1,1]. The two numbers can then be
added from least significant digit to most significant digit, as is usual for
addition. This is done by nim_add/3 and is slightly simpler than regu-
lar addition, since no carry needs to be propagated. The code for both
binary and nim-add appears in Program 2 1.2.

The nim-sum Sum is used by the predicate saf e-move (Ns , Sum ,Move) to
find a winning move Move from the position described by Ns. The piles of
matches are checked in turn by saf e_move/4 to see if there is a number
of matches that can be taken from the pile to leave a safe position. The
interesting clause is

safe-move ([Pile l Piles1 ,NimSum,K, (K,M)) +

binary (Pile ,Bs) , can-zero (Bs ,NimSum,Ds 20) .

The heart of the program is can-zero (Bs , NimSum, Ds ,Carry). This re-
lation is true if replacing the binary number Bs by the binary number
Ds would make NimSum zero. The number Ds is computed digit by digit.
Each digit is determined by the corresponding digit of Bs, NimSum, and a
carry digit Carry initially set to 0. The number is converted to its decimal
equivalent by decimal/2 in order to get the correct move.

Program 21.2 is a complete program for playlng Nim interactively in-
corporating the winning strategy. As well as being a program for playlng
the game, it is also an axiomatization of what constitutes a winning strat-

egy.

21.3 Kalah

We now present a program for playing the game of Kalah that uses alpha-
beta pruning. Kalah fits well into the paradigm of game trees for two
reasons. First, the game has a simple, reasonably reliable evaluation func-
tion, and second, its game tree is tractable, whch is not true for games
such as chess and go. It has been claimed that some Kalah programs are
unbeatable by human players. Certainly, the one presented here beats us.

Kalah is played on a board with two rows of six holes facing each other.
Each player owns a row of six holes, plus a kalah to the right of the holes.

Figure 21.3 Board positions for Kalah

In the initial state there are six stones in each hole and the two kalahs are
empty. This is pictured in the top half of Figure 21.3.

A player begins his move by piclung up all the stones in one of his
holes. Proceeding counterclockwise around the board, he puts one of
the picked-up stones in each hole and in hls own kalah, skipping the
opponent's kalah, until no stones remain to be distributed. There are
three possible outcomes. If the last stone lands on the kalah, the player
has another move. If the last stone lands on an empty hole owned by
the player, and the opponent's hole directly across the board contains at
least one stone, the player takes all the stones in the hole plus his last
landed stone and puts them all in his kalah. Otherwise the player's turn
ends, and his opponent moves.

The bottom kalah board in Figure 2 1.3 represents the following move
from the top board by the owner of the top holes. He took the six stones
in the rightmost hole and distributed them, the last one ending in the
kalah, allowing another move. The stones in the fourth hole from the
right were then distributed.

If all the holes of a player become empty (even if it is not his turn to
play), the stones remaining in the holes of the opponent are put in the
opponent's kalah and the game ends. The winner of the game is the first
player to get more than half the stones in his kalah.

Chapter 21 Game-Playing Programs

The difficulty for programming the game in Prolog is finding an effi-
cient data structure to represent the board, to facilitate the calculation
of moves. We use a four-argument structure board (Holes, Kalah, Opp-
Holes, OppKalah), where Holes is a list of the numbers of stones in your
six holes, Kalah is the number of stones in your kalah, and OppHoles
and OppKalah are, respectively, the lists of the numbers of stones in the
opponent's holes and the number of stones in his kalah. Lists were cho-
sen rather than six-place structures to facilitate the writing of recursive
programs for distributing the stones in the holes.

A move consists of choosing a hole and distributing the stones therein.
A move is specified as a list of integers with values between 1 and 6
inclusive, where the numbers refer to the holes. Hole 1 is farthest from
the player's kalah, while hole 6 is closest. A list is necessary rather than
a single integer because a move may continue. The move depicted in
Figure 21.3 is [1,4] .

The code gives all moves on backtracking. The predicate stones-in-
hole (M, Board, N) returns the number of stones N in hole M of the Board
if N is greater than 0, failing if there are no stones in the hole. The
predicate extend-move (M , Board, N , Ms) returns the continuation of the
move Ms. The second clause for move handles the special case when all
the player's holes become empty during a move.

Testing whether the move continues is nontrivial, since it may involve
all the procedures for making a move. If the last stone is not placed in the
kalah, which can be determined by simple arithmetic, the move will end,
and there is no need to distribute all the stones. Otherwise the stones are
distributed, and the move continues recursively.

The basic predicate for making a move is distribute-stones (Stones,
N ,Board,Boardl), which computes the relation that Board1 is obtained
from Board by distributing the number of stones in Stones starting
from hole number N. There are two stages to the distribution, putting
the stones in the player's holes, distribute-my-holes, and putting the
stones in the opponent's holes, distribute-your-holes.

The simpler case is distributing the stones in the opponent's holes.
The holes are updated by distribute, and the distribution of stones
continues recursively if there is an excess of stones. A check is made
to see if the player's board has become empty during the course of the
move, and if so, the opponent's stones are added to his kalah.

Distributing the player's stones must take into account two possibili-
ties, distributing from any particular hole, and continuing the distribu-

tion for a large number of stones. The pick-up-and-distribute pred-
icate is the generalization of distribute to handle these cases. The
predicate check-capture checks if a capture has occurred and updates
the holes accordingly; updat e-kalah updates the number of stones in
the player's kalah. Some other necessary utilities such as n-substitute
are also included in the program.

The evaluation function is the difference between the number of stones
in the two kalahs:

value(board(H,K,Y,L),Value) - Value is K-L
The central predicates have been described. A running program is now

obtained by filling in the details for I/O, for initializing and terminating
the game, etc. Simple suggestions can be found in the complete program
for the game, given as Program 21.3.

In order to optimize the performance of the program, cuts can be
added. Another tip is to rewrite the main loop of the program as a failure-
driven loop rather than a tail recursive program. This is sometimes nec-
essary in implementations that do not incorporate tail recursion opti-
mization and a good garbage collector.

2 1.4 Background

The mastermind program, slightly modified, originally appeared in
SIGART (Shapiro, 1983d) in response to a program for playing master-
mind in Pascal. The SIGART article provoked several reactions, both
of theoretical improvements to algorithms for playing mastermind and
practical improvements to the program. Most interesting was an analy-
sis and discussion by Powers (1984) of how a Prolog program could be
rewritten to good benefit using the mastermind code as a case study.
Eventually, speedup by a factor of 50 was achieved.

A proof of the correctness of the algorithm for playing Nim can be
found in any textbook discussing games on graphs, for example, Berge
(1962).

Kalah was an early A1 target for game-playing programs (Slagle and
Dixon, 1969).

Chapter 21 Game-Playing Programs

Play framework

play (Game) - See Program 20.8.

Choosing a move by minimax with alpha-beta cutoff

choose~move(Position,computer,~ove) -
lookahead(Depth) ,
alpha-beta(~e~th,Position,-40,40,Move,~alue),
nl, write(Move), nl.

choose~move(Position,opponent,Mo~e) -
nl, writeln(['please make move'] 1, read(Move), legal(Move)

alpha-beta(Depth,Position,Alpha,Beta,Move,Value -
See Program 20.1 1.

move (Board, [M 1 Ms]) -
member(M, [1,2,3,4,5,61),
stones-in-hole(M,Board,N),
extend-move(N,M,Board,Ms).

move(board([0,0,0,0,0,0~,K,Ys,L),[I) .
stones-in-hole(M,board(Hs ,K,Ys ,L) ,Stones) -

nth-member(M,Hs,Stones), Stones > 0.

extend-move(Stones,M,Board,[1) -
Stones =\= (7-M) mod 13, ! .

extend-move(Stones,M,Board,Ms) -
Stones =:= (7-M) mod 13, ! ,
distribute~stones(Stones,M,Board,Boardl),
move(Board1,Ms).

Executing a move

move([NINs],Board,FinalBoard) -
stones-in-hole(N ,Board,Stones) ,
distribute-stones(Stones,N,Board,Boardl),
move(Ns,Boardl,FinalBoard).

move ([I ,Boardl ,Board21 -
swap(Eoardl,Board2).

distribute-stones(Stones,Hole,Board,Boardl) -
Board1 is the result of distributing the number of stones
Stones from Hole from the current Board.
It consists of two stages: distributing the stones in the player's
holes, distribute-my-holes, and distributing the stones
in the opponent's holes, distribute-yourholes.

Program 21.3 A complete program for playing Kalah

distribute~stones(Stones,Hole,Board,FinalBoard) -
distribute~my~holes(Stones,Hole,Board,Board1,St0ne~l~,
distribute~your~holes(Stonesl,Board1,FinalBoard).

distribute-my-holes(Stones ,N ,board(Hs ,K,Ys ,L) ,
board(Hs1 ,Kl,Ys,L) ,Stonesl) -

Stones > 7-N, ! ,
pick-up-and-distribute(N,Stones ,Hs ,Hsl),
K1 is K+1, Stones1 is Stones+N-7.

distribute-my-holes(Stones ,N ,board(Hs ,K,Ys ,L) ,Board,O) -
Stones 5 7-N,
pick-up-and-distribute(N ,Stones ,Hs ,Hsl),
check~capture(~,~tones,Hsl,Hs2,Ys,~sl,Pieces),
update-kalah(Pieces ,N,Stones,K,Kl),
check-if-finished(board(Hs2,K1,~sl,L),Board).

check-capture(N,Stones,Hs,Hsl,Ys,Ysl,Pieces) -
FinishingHole is N+Stones,
nth-member(FinishingHole,Hs,l),
OppositeHole is 7-FinishingHole,
nth-member (OppositeHole , YS ,Y) ,
Y > O , ! ,
n-substitute(OppositeHole,Ys,O,Ysl),
n-substitute(FinishingHole,Hs,O,Hsl),
Pieces is Y+1.

check~capture(N,Stones,Hs,Hs,Ys,Ys,O) - !.

check-if-finished(board(Hs,K,Y~,L),board(Hs,K,Hs,L1)) -
zero(Hs) , ! , sumlist (YS ,YsSum) , L1 is L+YsSum.

check-if -f inished(board(Hs ,K,Ys,L) ,board(Ys ,K1 ,Ys ,L)) -
zero(Ys), ! , sumlist(Hs,HsSum) , K1 is K+HsSum.

check-if-finished(Board,~oard) - ! .

update-kalah(O,Stones,N,K,K) - Stones < 7-N, ! .
update-kalah(O,Stones,N,K,Kl) - Stones =:= 7-N, ! , K1 is K+1.
update-kalah(Pieces,Stones,N,K,Kl) - Pieces > 0, ! , K1 is K+Pieces.

distribute-your-holes(O,Board,Board) - ! .
distribute-your-holes(Stones,board(Hs,K,Ys,L) ,board(~s ,K,Ysl ,L)) -

1 5 Stones, Stones 5 6,
non-zero(Hs) , ! ,
distribute(Stones,Ys,Ysl).

Program 2 1.3 (Continued)

Chapter 21 Game-Playing Programs

distribute~your~holes(Stones,board(Hs,K,Ys,L~,Board~ -
Stones > 6, ! ,
distribute(6,Ys,Ysl),
Stones1 is Stones-6,
distribute~stones(Stonesl,O,board(~s,~,Ys1,L~,Board~.

distribute-your-holes(Stones ,board(Hs,K,Ys,L) ,board(~s,K,Hs,~l)) -
zero(Hs) , ! , sumlist(Ys,YsSum), L1 is Stones+YsSum+L.

Lower-level stone distribution

pick-up-and-distribute(O,N,Hs ,Hsl) -
! , distribute(N,Hs,Hsl).

pick-up-and-distribute(l , N , [HI Hsl , [O IHsll) -
! , distribute(N,Hs,Hsl).

pick-up-and-distribute (K, N , [H 1 Hsl , [HI Hsll) -
K > 1, ! , K1 is K-1, pick-up-and-distribute(~l,N,Hs,Hsl)

Evaluation function

value(board(H,K,Y,L),Value) - Value is K-L
Testing for the end o f the game

game-over(board(O,N,O,N),Player,draw) -
pieces(K), N =:= 6*K, ! .

game-over(board(~,K,Y ,L) ,Player ,Player) -
pieces(N), K > 6*N, ! .

game-over (board (H ,K, Y , L) ,Player, Opponent) -
pieces(N), L > 6*N, next-player(Player,Opponent).

announce(opponent) - writeln(1'You won! Congratulations.'~).
announce(computer) - writeln(['I won.']).
announce(draw1 - writeln(['The game is a draw']).

Miscellaneous game utilities
nth-member (N , [HI Hsl , K) -

N > 1, ! , N1 is N - 1 , nth-member(Nl,Hs,K).
nth-member (1, [HI Hsl , H) .

show(board(H,K,Y,L)) -
reverse (H,HR), write-stones (HR) ,
write-kalahs(K,L), write-stones(Y).

write-stones(H) -
nl, tab(5) , display-holes (HI

write-kalahs(K,L) -
write(K), tab(34), write(L), nl.

zero([0,0,0,0,0,01).
non-zero(Hs) - Hs f [0,0,0,0,0,01

Initializing

Program 2 1.3 (Continued)

n-substitute(l,[XlXsl,Y,[YIXsl) - ! .
n-substitute(N, [XIXsl ,Y, [XI Xsll) -

N > 1, ! , N1 is N-1, n-substitute(Nl,Xs,Y,Xsl).

Program 21.3 (Continued)

A Credit Evaluation Expert System

When the first edition of t h s book was published, there was a surge of
activity in the application of artificial intelligence to industry. Of partic-
ular interest were expert systems-programs designed to perform tasks
previously allocated to hghly paid human experts. One important fea-
ture of expert systems is the explicit representation of knowledge.

Thls entire book is relevant for programming expert systems. The ex-
ample programs typify code that might be written. For instance, the
equation-solving program of Chapter 23 can be, and has been, viewed as
an expert system. The knowledge of expert systems is often expressed as
rules. Prolog whose basic statements are rules is thus a natural language
for implementing expert systems.

- -

22.1 Developing the System

Ths chapter presents an account of developing a prototype expert sys-
tem. The example comes from the world of banlung: evaluating requests
for credit from small business ventures. We give a fictionalized account
of the development of a simple expert system for evaluating client re-
quests for credit from a bank. The account is from the point of view of
Prolog programmers, or knowledge engineers, commissioned by the bank
to write the system. It begins after the most difficult stage of building an
expert system, extracting the expert knowledge, has been under way for
some time. In accordance with received wisdom, the programmers have
been consulting with a single bank expert, Chas E. Manhattan. Chas has

Chapter 22 A Credit Evaluation Expert System

told us that three factors are of the utmost importance in considering a
request for credit from a client (a small business venture).

The most important factor is the collateral that can be offered by the
client in case the venture folds. The various types of collateral are di-
vided into categories. Currency deposits, whether local or foreign, are
first-class collateral. Stocks are examples of second-class collateral, and
the collateral provided by mortgages and the like is illiquid.

Also very important is the client's financial record. Experience in the
bank has shown that the two most important factors are the client's
net worth per assets and the current gross profits on sales. The client's
short-term debt per annual sales should be considered in evaluating the
record, and slightly less significant is last year's sales growth. For knowl-
edge engineers with some understanding of banlung, no further expla-
nation of such concepts is necessary. In general, a knowledge engineer
must understand the domain sufficiently to be able to communicate with
the domain expert.

The remaining factor to be considered is the expected yield to the
bank. This is a problem that the bank has been worlung on for a while.
Programs exist to give the yield of a particular client profile. The knowl-
edge engineer can thus assume that the information mill be available in
the desired form.

Chas uses qualitative terms in speaking about these three factors: "The
client had an excellent financial rating, or a good form of collateral. His
venture would provide a reasonable yield," and so on. Even concepts that
could be determined quantitatively are discussed in qualitative terms.
The financial world is too complicated to be expressed only with the
numbers and ratios constantly being calculated. In order to make judg-
ments, experts in the financial domain tend to t hnk in qualitative terms
with whch they are more comfortable. To echo expert reasoning and to
be able to interact with Chas further, qualitative reasoning must be mod-
eled.

On tallung to Chas, it became clear that a significant amount of the
expert knowledge he described could be naturally expressed as a mixture
of procedures and rules. On being pressed a little in the second and third
interviews, Chas gave rules for determining ratings for collateral and
financial records. These involved considerable calculations, and in fact,
Chas admitted that to save lvmself work in the long term, he did a quick
initial screening to see if the client was at all suitable.

This information is sufficient to build a prototype. We show how these
comments and observations are translated into a system. The top-level
basic relation is credit (Client, Answer), where Answer is the reply
given to the request by Client for credit. The code has three modules-
collateral, f inancial-rating, and bank-yield-corresponding to the
three factors the expert said were important. The initial screening to
determine that the client is worth considering in the first place is per-
formed by the predicate ok-prof ile(C1ient). The answer Answer is
then determined with the predicate evaluate (Profile ,Answer), which
evaluates the Profile built by the three modules.

Being proud knowledge engineers, we stress the features of the top-
level formulation in credit/2. The modularity is apparent. Each of the
modules can be developed independently without affecting the rest of
the system. Further, there is no commitment to any particular data struc-
ture, i.e., data abstraction is used. For this example, a structure pro-
file (C, F, Y) represents the profile of collateral rating C, the financial
rating F, and the yield Y of a client. Ho\z,e\.er, nothing central depends
on this decision, and it would be easy to change it. Let us consider some
of the modular pieces.

Let us look at the essential features of the collateral evaluation module.
The relation collateral_rating/2 determines a rating for a particu-
lar client's collateral. The first step is to determine an appropriate pro-
file. This is done with the predicate collateral-prof ile, which classi-
fies the client's collateral as first-class, second-class, or illiquid
and gives the percentage each covers of the amount of credit the
client requested. The relation uses facts in the database concerning
both the bank and the client. In practice, there may be separate data-
bases for the bank and the client. Sample facts shown in Program
22.1 indicate, for example, that local currency deposits are first-class
collateral.

The profile is evaluated to give a rating by collateral-evaluation. It
uses rules of thumb to give a qualitative rating of the collateral: excellent,
good, etc. The first collateral-evaluation rule, for example, reads:
"The rating is excellent if the coverage of the requested credit amount
by first-class collateral is greater than or equal to 100 percent."

Two features of the code bear comment. First, the terminology used
in the program is the terminology of Chas. This makes the program (al-
most) self-documenting to the experts and means they can modify it with

Chapter 22
A Credit Evaluation Expert System

Credit Evaluation

credit (Client,Answer) -
Answer is the reply to a request by Client for credit.

credit(Client,Answer) -
ok-profile(Client),
collateral~rating(C1ient,CollateralRating~,
financial-rating(Client,FinancialRating),
bank-yield(Client,Yield),
evaluate (profile (~ollateral~atin~, ~inancialRating , Yield) ,Answer)

The collateral rating module

collateral-rating (Client,Rating) -
Rating is a qualitative description assessing the collateral
offered by Client to cover the request for credit.

collateral-rating(C1ient ,Rating) -
collateral~profile(Client,FirstClass,~econd~lass,Illiquid),
collateral~evaluation(FirstClass,SecondClass,Illiquid,Rating).

collateral~profile(Client,FirstClass,SecondClass,~lliquid~ -
requested-credit(Client,Credit),
collateral~percent(first~class,~lient,~redit,~irstCla~~~,
collateral~percent(second~class,Client,~redit,~econdClass~,
collateral~percent(illiquid,Client,~redit,Illiq~id~.

collateral~percent(Type,Client,Total,Value~ -
findall(X,(collatera1(Collateral,Type),

amount (Collatera1,Client ,XI) ,Xs),
sumlist (Xs, Sum) ,
Value is Sum*lOO/Total.

Evaluation rules

collateral~evaluation(FirstClass,SecondClass,~lliquid,ex~ellent~ -
FirstClass 2 100.

collateral~evaluation(FirstClass,SecondClass,~lliquid,e~cellent) -
FirstClass > 70, FirstClass + SecondClass 2 100.

collateral~evaluation(FirstClass,SecondClass,Illiq~id,g~~d~ -
FirstClass + SecondClass > 60,
FirstClass + SecondClass < 70,
FirstClass + SecondClass + Illiquid 2 100.

Bank data - classification of collateral

collateral(local~currency~deposits,first~class~.
collateral(foreign~currency~deposits,first~~la~~~.
collateral(negotiate~instruments,second~cla~s).
collateral(mortgage,illiquid).

Financial rating

financial-rating (Client,Rating) -
Rating is a qualitative description assessing the financial
record offered by Client to support the request for credit.

financial-rating(Client,Rating) -
financial~factors(Factors),
score(Factors,Client,O,Score),
calibrate(Score,Rating).

Financial evaluation rules

calibrate(Score,bad) - Score < -500.
calibrate(Score,medium) - -500 < Score, Score < 150.
calibrate(Score,good) - 150 I Score, Score < 1000.
calibrate(Score,excellent) - Score 2 1000.

Bank data - weighting factors

financial-factors([(net-worth_per_assets,5),
(last-year-sales-growth, 1) ,
(gross~profits~on~sales,5),

(short-term-debt-per_annual_sales,2) 1) .
score([(Factor,Weight)lFactorsl,Client,Acc,Score) -

value(Factor,Client,Value),
Accl is Acc + WeighttValue,
score(Factors,Client,Accl,Score).

score([l,Client,Score,Score).

Final evaluation

evaluate(Profile, Outcome) -
Outcome is the reply to the client's Profile

compare('=',Scale,Rating,Rating).
compare (' > ' ,Scale, Rat ingl , Rating21 -

precedes(Scale,Ratingl,Rating2).
compare('>',Scale,Ratingl,Rating2) -

precedes(Scale,Ratingl,Rating2) ; Rating1 = Rating2

Program 22.1 (Continued)
Program 22.1 A credit evaluation system

Chapter 22 A Credit Evaluation Expert System

precedes([Rl I Rs] ,R1 .R2) .
precedes ([R I Rs] ,R1 ,R2) - R f R2, precedes (Rs ,R1 ,R2)

select-value (collateral ,prof ile(C ,F ,Y) ,C) .
select-value(finances,profile(~,~,~),~).
select-value(yield,profile(C,F,Y),Y).

Utilities

sumlist (XS, sum) - See Program 8.6b.

Rank data and rules

rule([condition(collateral,'~',excellent~,
condition(finances,'2',good),
condition(yield,'2',reasonable)] ,give-credit).

rule([condition(collateral, '=' ,good) ,condition(f inances, I = ' ,good),
condition(yield,'L',reasonable)],consult~superi~~~.

rule([condition(collateral,'~',moderate),
condition(f inances, ' 5' ,medium)] ,
refuse-credit).

Program 22.1 (Continued)

little help from the knowledge engineer. Allowing people to think in do-
main concepts also facilitates debugging and assists in using a domain-
independent explanation facility as discussed in Section 17.4. Second, the
apparent naivete of the evaluation rules is deceptive. A lot of knowledge
and experience are hidden behnd these simple numbers. Choosing poor
values for these numbers may mean suffering severe losses.

The financial evaluation module evaluates the financial stability of the
client. It uses items taken mainly from the balance and profit/loss sheets.
The financial rating is also qualitative. A weighted sum of financial fac-
tors is calculated by score and used by calibrate to determine the
qualitative class.

It should be noted that the modules giving the collateral rating and the
financial rating both reflect the point of view and style of a particular

expert, Chas Manhattan, rather than a universal truth. Withn the bank
there is no consensus about the subject. Some people tend to be conser-
vative and some are prepared to take considered risks.

Programming the code for determining the collateral and financial rat-
ings proceeded easily. The knowledge provided by the expert was more
or less directly translated into the program. The module for the overall
evaluation of the client, however, was more challenging.

The major difficulty was formulating the relevant expert knowledge.
Our expert was less forthcoming with general rules for overall evaluation
than for rating the financial record, for example. He happily discussed
the profiles of particular clients, and the outcome of their credit requests
and loans, but was reluctant to generalize. He preferred to react to sug-
gestions rather than volunteer rules.

Ths forced a close reevaluation of the exact problem we were solving.
There were three possible answers the system could give: approve the
request for credit, refuse the request, or ask for advice. There were three
factors to be considered. Each factor had a qualitative value that was one
of a small set of possibilities. For example, the financial rating could
be bad, medium, good, or excellent. Further, the possible values were
ranked on an ordinal scale.

Our system clearly faced an instance of a general problem: Find an
outcome from some ordinal scale based on the qualitative results of
several ordinal scales. Rules to solve the problem were thus to give a
conclusion based on the outcome of the factors. We pressed Chas with
t h s formulation, and he rewarded us with several rules. Here is a typical
one: "If the client's collateral rating is excellent (or better), her financial
rating good (or better), and her yield at least reasonable, then grant the
credit request."

An immediate translation of the rule is

But this misses many cases covered by the rule, for example, when the
client's profile is (excellent, good, excellent 1. All the cases for a given
rule can be listed. It seemed more sensible, however, to build a more
general tool to evaluate rules expressed in terms of qualitative values
from ordinal scales.

Chapter 22 A Credit Evaluation Expert System

There is potentially a problem with using ordinal scales because
of the large number of individual cases that may need to be speci-
fied. If each of the N modules have M possible outcomes, there are
NM cases to be considered. In general, it is infeasible to have a sep-
arate rule for each possibility. Not only is space a problem for so
many rules but the search involved in finding the correct rule may
be prohibitive. So instead we defined a small ad hoc set of rules. We
hoped the rules defined, which covered many possibilities at once,
would be sufficient to cover the clients the bank usually dealt with.
We chose the structure rule(Conditions,Conclusion) for our rules,
where Conditions is a list of conditions under whch the rule applies
and Conclusion is the rule's conclusion. A condition has the form con-
dition(Factor , Relation, Rating), insisting that the rating from the
factor named by Factor bears the relation named by Relation to the
rating given by Rating.

The relation is represented by the standard relational operators: <, =,
>, etc. The previously mentioned rule is represented as

rule ([condition(collateral, ' 2 ' ,excellent) ,
condition(f inances, ' 2 ' ,good),
condition(yield, ' 2 ' ,reasonable)] ,give-credit)

Another rule given by Chas reads: "If both the collateral rating and fi-
nancial rating are good, and the yield is at least reasonable, then consult
your superior." This is translated to

rule ([condition(collateral, '=' ,good) ,
condition (f inances , '=' ,good) ,
condition(yield, ' 2 ' ,reasonable)] , consult-s~~erior) .

Factors can be mentioned twice to indicate they lie in a certain range or
might not be mentioned at all. For example, the rule

rule ([condition(collateral, ' 5 ' ,moderate) ,
condition (f inances , ' 5 ' ,medium) 1 ,
ref use-credit) .

states that a client should be refused credit if the collateral rating is no
better than moderate and the financial rating is at best medium. The
yield is not relevant and so is not mentioned.

Client Data

amount (mortgage, client 1,12000) .
amount(documents,client1,14000)

valuehet-worth-per-assets,clientl,40).

value(last-year-sales-growth,clientl,20).
value(gross-profits-on-sales,clientl,45).
value (short- term-debt-per-anual-sales, client l,9).

Program 22.2 Test data for the credit evaluation system

The interpreter for the rules is written nondeterministically. The pro-
cedure is: "Find a rule and verify that its conditions apply," as defined
by evaluate. The predicate verify (Conditions ,Profile) checks that
the relation between the corresponding symbols in the rule and the ones
that are associated with the Profile of the client is as specified by Con-
ditions. For each Type that can appear, a scale is necessary to give
the order of values the scale can take. Examples of scale facts in the
bank database are scale (collateral, [excellent ,good,moderatel)
and scale (f inances , [excellent, good ,medium, bad1). The predicate
select-value returns the appropriate symbol of the factor under the or-
dinality test that is performed by compare. It is an access predicate, and
consequently the only predicate dependent on the choice of data struc-
ture for the profile.

At t h s stage, the prototype program is tested. Some data from real
clients are necessary, and the answer the system gives on these individ-
uals is tested against what the corresponding bank official would say.
The data for clientl is given in Program 22.2. The reply to the query
credit (client1 ,X) is X = give-credit.

Our prototype expert system is a composite of styles and methods -
not just a backward chaining system. Heuristic rules of thumb are used

Chapter 22

to determine the collateral rating; an algorithm, albeit a simple one, is
used to determine the financial rating; and there is a rule language, with
an interpreter, for expressing outcomes in terms of values from discrete
ordinal scales. The rule interpreter proceeds forward from conditions
to conclusion rather than backward as in Prolog. Expert systems must
become such composites in order to exploit the different forms of knowl-
edge already extant.

The development of the prototype was not the only activity of the
knowledge engineers. Various other features of the expert system were
developed in parallel. An explanation facility was built as an extension of
Program 17.22. A simulator for rules based on ordinal scales was built
to settle the argument among the knowledge engineers as to whether a
reasonable collection of rules would be sufficient to cover the range of
outcomes in the general case.

Finally, a consistency checker for the rules was built. The following
meta-rule is an obvious consistency principle: "If all of client A's factors
are better than or equal to client B's, then the outcome of client A must
be better than or equal to that of client B."

2 2.2 Background

More details on the credit evaluation system can be found in Ben-David
and Sterling (1986).

An Equation Solver

A very natural area for Prolog applications is symbolic manipulation. For
example, a Prolog program for symbolic differentiation, a typical symbol
manipulation task, is just the rules of differentiation in different syntax,
as shown in Program 3.30.

In this chapter, we present a program for solving symbolic equations. It
is a simplification of PRESS (PRolog Equation Solving System), developed
in the mathematical reasoning group of the Department of Artificial In-
telligence at the University of Edinburgh. PRESS performs at the level of
a mathematics student in her final year of high school.

The first section gives an overview of equation solving with some exam-
ple solutions. The remaining four sections cover the four major equation-
solving methods implemented in the equation solver.

23.1 An Overview of Equation Solving

The task of equation solving can be described syntactically. Given an
equation Lhs = Rhs in an unknown X, transform the equation into an
equivalent equation X = Rhsl, where Rhsl does not contain X. Thls final
equation is the solution. Two equations are equivalent if one is trans-
formed into the other by a finite number of applications of the axioms
and rules of algebra.

Successful mathematics students do not solve equations by blindly
applying axioms of algebra. Instead they learn, develop, and use various
methods and strategies. Our equation solver, modeling t h s behavior, is
accordingly a collection of methods to be applied to an equation to be

Chapter 23 An Equation Solver

(i) cos(x) . (1 - 2 . sin(x)) = 0

(ii) x 2 - 3 - x + 2 = 0

(iii) 22'x - 5 - 2X+1 + 16 = 0

Figure 23.1 Test equations

solved. Each method transforms the equation by applying identities of
algebra expressed as rewrite rules. The methods can and do take widely
different forms. They can be a collection of rules for solving the class of
equations to whlch the method is applicable, or algorithms implementing
a decision procedure.

Abstractly, a method has two parts: a condition testing whether the
method is applicable, and the application of the method itself.

The type of equations our program can handle are indicated by the
three examples in Figure 2 3.1. They consist of algebraic functions of the
unknown, that is +, -, *, /, and exponentiation to an integer power, and
also trigonometric and exponential functions. The unknown is x in all
three equations.

We briefly show how each equation is solved.
The first step in solving equation (i) in Figure 23.1 is factorization. The

problem to be solved is reduced to solving cos(x) = 0 and 1 - 2 . sin(x) =

0. A solution to either of these equations is a solution to the original
equation.

Both the equations cos(x) = 0 and 1 - 2 . sin(x) = 0 are solved by mak-
ing x the subject of the equation. T h s is possible because x occurs once
in each equation.

The solution to cos(x) = 0 is arccos(0). The solution of 1 - 2 . sin(x) =

0 takes the following steps:

In general, equations with a single occurrence of the unknown can be
solved by an algorithrmc method called isolation. The method repeatedly
applies an appropriate inverse function to both sides of the equation

until the single occurrence of the unknown is isolated on the left-hand
side of the equation. Isolation solves 1 - 2 . sin(x) = 0 by producing the
preceding sequence of equations.

Equation (ii) in Figure 23.1, x2 - 3 . x + 2 = 0, is a quadratic equation in
x. We all learn in high school a formula for solving quadratic equations.
The discriminant, b2 - 4 . a . c , is calculated, in this case (-3)2 - 4 . 1 . 2,
which equals 1, and two solutions are given: x = (- (- 3) + JT) / 2, which
equals 2, and x = (-(-3) - dl) 12, whch equals 1.

The key to solving equation (iii) in Figure 23.1 is to realize that the
equation is really a quadratic equation in ZX. The equation 2?.* - 5 .
ZX+' + 16 = 0 can be rewritten as (2X)2 - 5 . 2 . 2X + 16 = 0. This can be
solved for 2X, giving two solutions of the form Z X =Rhs, where Rhs is
free of x. Each of these equations are solved for x to give solutions to
equation (iii).

PRESS was tested on equations taken from British A-level examinations
in mathematics. It seems that examiners liked posing questions such
as equation (iii), which involved the student's manipulating logarithmic,
exponential, or other transcendental functions into forms where they
could be solved as polynomials. A method called homogenization evolved
to solve equations of these types.

The aim of homogenization is to transform the equation into a poly-
nomial in some term containing the unknown. (We simplify the more
general homogenization of PRESS for didactic purposes.) The method
consists of four steps, whch we illustrate for equation (iii). The equa-
tion is first parsed and all maximal nonpolynomial terms containing the
unknown are collected with duplicates removed. This set is called the of-
fenders set. In the example, it is {Z2*, ZX+'}. The second step is finding a
term, known as the reduced term. The result of homogenization is a poly-
nomial equation in the reduced term. The reduced term in our example is
ZX. The third step of homogenization is finding rewrite rules that express
each of the elements of the offenders set as a polynomial in the reduced
term. Finding such a set guarantees that homogenization will succeed. In
our example the rewrite rules are 22X = (2 X) 2 and ZX+' = 2 . ZX. Finally,
the rewrite rules are applied to produce the polynomial equation.

We complete this section with a brief overview of the equation solver.
The basic predicate is solve-equation (Equation, X , Solution). The re-
lation is true if Solution is a solution to Equation in the unknown X. The
complete code appears as Program 23.1.

PROYECTO

Chapter 23 An Equation Solver

solve-equation (Equation, Unknown,Solution) -
Solution is a solution to the equation Equation
in the unknown Unknown.

solve~equation(A*B=0,X,Solution) -
! ,
f actorize(A*B,X,Factors\ [I) ,
remove-duplicates (Factors, Factorsl) ,
solve~factors(Factorsl,X,Solution).

solve~equation(Equation,X,Solution) -
single-occurrence (X ,Equation) ,

solve~equation(Lhs=Rhs,X,Solution) -
polynomial (Lhs ,X) ,
polynomial(Rhs,X),

! 9

polynomial-normal-form(Lhs-Rhs,X,PolyForm),
solve~polynomial~equation(PolyForm,X,~oluti~n~.

The factorization method
factorize (Expression,Subterm,Factors) -

Factors is a difference-list consisting of the factors of
the multiplicative term Expression that contain the Subterm.

solve- factors (Factors, Unknown,Solution) -
Solution is a solution of the equation Factor = 0 in the
Unknown for some Factor in the list of Factors.

solve-f actors([Factor l Factors] ,X, solution) -
solve~equation(Factor=O,X,~oluti~n).

solve-f actors([Factor I Factors] ,~,~olution) -
solve~factors(Factors,X,Solution).

The isolation method
maneuver-sides(1,Lhs = Rhs,Lhs = Rhs) - ! .

maneuver-sides(2,Lhs = Rhs,Rhs = Lhs) +- ! .

Axioms for isolation

isolax(1,-Lhs = Rhs,Lhs = -Rhs). % Unary minus
isolax(l,Terml+Term2 = Rhs,Terml = Rhs-Term2). % Addition
isolax(2,Terml+Term2 = Rhs,Term2 = Rhs-Terml). % Addition

isolax(1,Terml-Term2 = Rhs,Terml = Rhs+Term2). % Subtraction
isolax(2,Terml-Term2 = Rhs,Term2 = Terml-Rhs). % Subtraction
isolax(l,Terml*Term2 = Rhs,Terml = Rhs/Term2) - % Multiplication

Term2 f 0 .
isolax(2,Terml*Term2 = Rhs,Term2 = Rhs/Terml) - % Multiplication

Term1 # 0 .

isolax(l,Terml~Term2 = Rhs,Terml = RhsT(-Term2)).
% Exponentiation

isolax(2,TermllTerm2 = Rhs,Term2 = log(base(Terml),Rhs)).
% Exponentiation

% Sine
% Sine
% Cosine
% Cosine

The polynomial method

polynomial(Term,X) - See Program 11.4.

polynomial- normal-form (Expression, Term,PolyNormalForm) -
PolyNormalk'orm is the polynomial normal form of
Expression, which is a polynomial in Term.

Program 23.1 A program for solving equations Program 23.1 (Continued)

Chapter 23 An Equation Solver

polynomial-f orm(Term1-Term2, X, PolyForm) -
polynomial-form(Term1,X,PolyForml),
polynomial-form(~erm2,X,PolyForm2),
subtract~polynomials(PolyForm1 ,PolyForm2 ,~olyForm)

polynomial-f orm(~erml*Term2, X , ~ o l ~ ~ o r m) -
polynomial~form(~erml,~,~oly~orml),
polynomial~form(~erm2,X,~oly~orm2),
multiply-polynomials (PolyForml , PolyForm2, ~ o l ~ ~ o r m)

polynomial-form(~erm~~,X,~ol~~orm) - ! ,
polynomial-form(Term,X,PolyForml),
binomial(PolyForml,N,PolyForm).

polynomial-f orm(Term,X, [(Term,O)l) -
free-of(X,Term), ! .

remove-zero-terms ([(0, N) I Polyl ,Polyl) -
! , remove-zero-terms(Po1y ,Polyl) .

remove-zero-terms([(~,~) IPoly] ,[(c,N) I~olyll) -
C f 0, ! , remove-zero-terms(~o1~ ,~olyl).

remove-zero-terms ([I , C I) .
Polynomial manipulation routines

add-polynomials (Polyl ,PolyZ,Poly) -
Poly is the sum of Polyl and Poly2, where Polyl,
PolyZ, and Poly are all in polynomial form.

add-polynomials([1 ,Poly,Poly) - ! .
add-polynomials(P~ly,[],Poly) - ! .
add-polynomials([(Ai ,Ni) I Polyl] , [(Aj ,Nj) 1~01~21 , [(~i ,Nil l~olyl) -

Ni > Nj , ! , add-polynomials(Poly1, [(Aj , ~ j) 1~01~21 ,~oly).
add-polynomials([(Ai ,Ni) I Polyl] , [(Aj ,Nj) ~ 0 1 ~ 2 1 , [(A,N~) 1~01~1) -

Ni = : = Nj , ! , A is Ai+Aj , add-polynomials (Polyl ,pol@ ,~oly) .
add-polynomials([(Ai ,Ni) l Polyll , [(Aj ,Nj) lPoly21 , [(Aj ,Nj) lpolyl) +

Ni < Nj , ! , add-polynomials([(Ai ,Ni) 1 Polyll , P O ~ ~ ~ , P O ~ Y) .

subtract-polynomials (Polyl ,Poly2,Poly) -
Poly is the difference of Polyl and PolyZ, where Polyl,
Poly2, and Poly are all in poljnomial form.

subtract-polynomials (Polyl ,Poly2 ,Poly) -
multiply-single(Poly2, (-1 ,o) ,~oly3),
add-polynomials(Polyi ,Poly3,~oly), ! .

multiply-single(Polyl,Monomial,Poly) -
Poly is the product of Polyl and Monomial, where Polyl
and Poly are in polynomial form, and Monomial has the
form (C , N) denoting the monomial C*X"'.

multiply-single(C(C1 ,N1) IPolyl] , (C,N) , [(~2,~2) I~olyl) -
C2 is Cl*C, N2 is Nl+N, multiply-single(Polyl, (c,N) ,~oly)

multiply-single([I ,Factor, [1) .

multiply-polynomials (Polyl ,PolyZ,Poly) -
Poly is the product of Polyl and Poly2, where Polyl,
Poly2, and Poly are all in polynomial form.

Polynomial equation solver

solve-polynomial-equation (Equation, Unknown,Solution) -
Solution is a solution to the polynomial Equation in the unknown
Unknown.

The homogenization method
homogenize(Equation,XEquation1 ,XI) -

The Equation in X is transformed to the polynomial
Equation1 in X 1 where X 1 contains X.

Program 23.1 (Continued)
Program 23.1 (Continued)

Chapter 23 A n Equation Solver

offenders (Equation, Unknown,Offenders) -
Offenders is the set of offenders of the Equation in the Unknown.

offenders (Equation, X, Of f enders) -
parse(~quation,X,Off endersl\ []) ,
remove-duplicates(Offendersl,Offenders),
multiple(Offenders).

reduced-term(x,Off enders,Type,Xl) -
classify(Offenders,~,Type),
candidate(Type,Offenders,X,Xl).

Heuristics for exponential equations

classify(Offenders,X,exponential) -
exponential-offenders(Offenders,X).

exponential~offenders([A~BlOffsI,X) -
free-of (X,A), subterm(X,B) , exponential-off enders(0ff s ,XI.

exponent ial-of f enders ([1 , X) .
candidate(exponential,Offenders,X,ATX) -

base(Offenders,A), polynomial~exponents(~ffenders,X).

base([AtBlOffs] ,A) - base(Offs,A).
base([I ,A).
polynomial-exponents([ATBlOffsl,X) -

polynomial(B,X), polynomial~exponents(Offs,X).

polynomial-exponents([],XI.

Parsing the equation and making substitutions

parse(Expression, Term,Offenders) -
Expression is traversed to produce the set of Offenders in Term,
that is, the nonalgebraic subterms of Expression containing Term.

parse(A+B,X,Ll\L2) -
! , ~arse(A,X,Ll\L3), parse(B,X,L3\L2).

~arse(~*~,X,Ll\L2) -
! , parse(A,X,Ll\L3), parse(B,~,~3\~2).

~arse(~-~,X,Ll\L2) -
! , ~arse(A,X,Ll\L3), parse(B,X,L3\L2).

parse(A=B,X,Ll\L2) -
! , ~arse(A,X,Ll\L3), parse(B,X,LB\L2).

parse(AlB,X,L) -
integer(B1, ! , parse(A,X,L).

parse(A,X,L\L) -
f ree-of (X ,A) , ! .

parse(A,X, [A ILI \L) -
subterm(X,A), ! .

Program 23.1 (Continued)

substitute (Expression,Substitutions,Expression1) -
The list of Substitutions is applied to Expression to produce
Expressionl.

Finding homogenization rewrite rules

rewrite([Off 1 Off s] ,Type ,Xl, [Off=Terml Rewrites]) +

homogenize-axiom(Type,Off,Xl,Term),
rewrite(Offs,Type,Xl,Rewrites).

rewrite([1 ,Type,X, C 1).
Homogenization axioms

homogenize~axiom(exponential,AT(N*X),A~X,~A~X)TN),
homogenize-axiom(exponential,AT(-X),A~X,l/(ATX)).
homogenize~axiom(exponential,Af(X+B),AfX,AtB*AfX).

Utilities

subterm(Sub , Term) - See Program 9.2.

position(Term,Term, [1) - ! .
position(Sub,Term,Path) -

compound(Term) , functor(Term,F,N) , position(N,Sub,Term,Path) , ! .

position(N,Sub,Term, [N I Path]) -
arg(N,Term,Arg) , position(Sub,Arg,Path) .

position(N,Sub,Term,Path) -
N > 1, N1 is N-1, position(Nl,Sub,Term,Path).

occurrence(Term,Term,1) - ! .
occurrence(Sub,Term,N) -

compound(Term) , ! , functor (Term,F,M) , occurrence (M, Sub ,Term,O ,N) .
occurrence (Sub,Term,O) - Term f Sub.

Program 23.1 (Continued)

Chapter 23 An Equation Solver

occurrence(M,Sub,Term,Nl,N2) -
M > 0, ! , arg(M,Term,Arg) , occurrence(~ub,~r~,~), N3 is N+N1,
M1 is M-1, occurrence(M1,Sub,Term,N3,N2).

occurrence(O,Sub,Term,N,N).

remove-duplicates(Xs ,Ys) - no-doubles (Xs ,Ys).
no-doubles(xs ,YS) - See Program 7.9.

multiple(~X1,X2~Xs~).

Testing and data

test-press(X,Y) - equation(X,E,U), s ~ l v e - e ~ u a t i o n (~ , ~ , ~) .

equation(l,cos(x)*(l-2*sin(x))=O,x).

equation(2,xt2-3*~+2=0,~).

equation(3,2T(2*~)-5*2t(x+1)+16=0,~).

Program 23.1 (Continued)

Program 23.1 has four clauses for solve-equation, one for each of
the four methods needed to solve the equations in Figure 23.1. More
generally, there is a clause for each equation-solving method. The full
PRESS system has several more methods.

Our equation solver ignores several features that might be expected.
There is no simplification of expressions, no rational arithmetic, no
record of the last equation solved, no help facility, and so forth. PRESS
does contain many of these facilities as discussed briefly in Section 23.6.

2 3.2 Factorization

Factorization is the first method attempted by the equation solver. Note
that the test whether factorization is applicable is trivial, being unifica-
tion with the equation A * B = 0. If the test succeeds, the simpler equa-
tions are recursively solved. The top-level clause implementing factoriza-
tion is

The top-level clause in Program 23.1 has a cut as the first goal in the
body. Thls is a green cut: none of the other methods depend on the
success or failure of factorization. In general, we omit green cuts from
clauses we describe in the text.

23.3 Isolation

A useful concept to locate and manipulate the single occurrence of the
unknown is its position. The position of a subterm in a term is a list of
argument numbers specifying where it appears. Consider the equation
cos(x) = 0. The term cos(x) containing x is the first argument of the
equation, and x is the first (and only) argument of cos(x). The position
of x in cos(x) = 0 is therefore [1,1]. Thls is indicated in the diagram in
Figure 23.2. The figure also shows the position of x in 1 - 2 . sin(x) = 0
which is [1,2,2,1].

The clause defining the method of isolation is

solve-equation(Equation,X,Solution) -
single-occurrence (X, Equation) ,
position(X,Equation,[SidelPosition]),
maneuver-sides (Side, Equation, Equationl) ,
isolate(Position,Equationl,Solution).

/ \
COS 0

/ \
2 sin

I
X

Figure 23.2 Position of subterms in terms

Chapter 23 An Equation Solver

The condition characterizing when isolation is applicable is that there
be a single occurrence of the unknown X in the equation, checked by
single-occurrence. The method calculates the position of X with the
predicate position. The isolation of X then proceeds in two stages. First,
maneuver-sides ensures that X appears on the left-hand side of the
equation, and second, isolate makes it the subject of the formula.

It is useful to define single-occurrence in terms of the more general
predicate occurrence (Subterm, Term, N) , which counts the number of
times N that Subterm occurs in the term Term. Both occurrence and
position are typical structure inspection predicates. Both are posed as
exercises at the end of Section 9.2. Code for them appears in the utilities
section of Program 23.1.

The predicate maneuver-sides (N , Equat ion, Equat ion11 consists of
two facts:

rnaneuver-sides (I, Lhs = Rhs , Lhs = Rhs) .
maneuver-sides (2, Lhs = Rhs ,Rhs = Lhs) .

Its effect is to ensure that the unknown appears on the left-hand side of
Equationl. The first argument N, the head of the position list, indicates
the side of the equation in which the unknown appears. A 1 means the
left-hand side, and the equation is left intact. A 2 means the right-hand
side, and so the sides of the equation are swapped.

The transformation of the equation is done by isolate/3. It repeatedly
applies rewrite rules until the position list is exhausted:

isolate([N [Position] , ~ ~ u a t i o n , ~solated~~uation) -
isolax(N,Equation,Equationl) ,
isolate(Position,Equationl,~solated~quati~n~.

isolate([I ,Equation,Equation) .

The rewrite rules, or isolation axioms, are specified by the predicate
isolax (N ,Equation, Equat ionl) . Let us consider an example used in
solving 1 - 2 . sin(x) = 0. An equivalence transformation on equations
is adding the same quantity to both sides of an equation. We show its
translation into an isolax axiom for manipulating equations of the form
u - v = w. Note that rules need only simplify the left-hand side of equa-
tions, since the unknown is guaranteed to be on that side.

Two rules are necessary to cover the two cases whether the first or
second argument of u - v contains the unknown. The term u - v = w

can be rewritten to either u = w + v or Y = u - w. The first argument of
isolax specifies whch argument of the sum contains the unknown. The
Prolog equivalent of the two rewrite rules is then

isolax(l,Terml-Term2 = Rhs,Terml = Rhs+Term2).
isolax(2,Terml-Term2 = Rhs,Term2 = Terml-Rhs).

Other isolation axioms are more complicated. Consider simplifying a
product on the left-hand side of an equation. One of the expected rules
would be

If Term2 equals zero, however, the rewriting is invalid. A test is therefore
added that prevents the axioms for multiplication being applied if the
term by whch it divides is 0. For example,

Isolation axioms for trigonometric functions illustrate another possi-
bility that must be catered for - multiple solutions. An equation such as
sin(x) = 112 that is reached in our example has two solutions between 0
and 2 . n. The alternative solutions are handled by having separate iso-
lax axioms:

In fact, the equation has a more general solution. Integers of the form
2 . n . n can be added to either solution for arbitrary values of n. The
decision whether a particular or general solution is desired depends on
context and on semantic information independent of the equation solver.

Further examples of isolation axioms are given in the complete equa-
tion solver, Program 23.1.

The code described so far is sufficient to solve the first equation in Fig-
ure 23.1, cos(x) . (1 - 2 . sin(x)) = 0. There are four answers arccos(O),
- arccos(O), arcsin((1 - 0) 121, n - arcsin((1 - 0) 12). Each can be simpli-
fied, for example, arcsin((1 - 0)/2) to nI6, but will not be unless the
expression is explicitly evaluated.

The usefulness of an equation solver depends on how well it can per-
form such simplification, even though simplification is not strictly part

Chapter 23 A n Equation Solver

of the equation-solving task. Writing an expression simplifier is nontriv-
ial, however. It is undecidable whether two expressions are equivalent in
general. Some simple identities of algebra can be easily incorporated, for
example, rewriting 0 + u to u. Choosing between other preferred forms,
e.g., (1 + x) b n d 1 + 3 . x + 3 . x2 + x3, depends on context.

2 3.4 Polynomial

Polynomial equations are solved by a polynomial equation solver, apply-
ing various polynomial methods. Both sides of the equation are checked
as to whether they are polynomials in the unknown. If the checks are
successful, the equation is converted to a polynomial normal form by
polynomial-normal-f orm, and the polynomial equation solver solve-
polynomial-equation is invoked:

solve~equation(Lhs=Rhs,X,Solution) -
polynomial (Lhs , X) ,
polynomial (Rhs , X) ,
polynomial~normal~form(Lhs-Rhs,X,~ol~Form),
solve~polynomial~equation(PolyForm,X,Sol~ti~~~.

The polynomial normal form is a list of tuples of the form (A,,Ni),
where A, is the coefficient of PI, which is necessarily nonzero. The tuples
are sorted into strictly decreasing order of N,; for each degree there is at
most one tuple. For example, the list [(I , 2) , (- 3 , l) , (2 , O)] is the normal
form for x2 - 3 . x + 2. The leading term of the polynomial is the head of
the list. The classic algorithms for handling polynomials are applicable to
equations in normal form. Reduction to polynomial normal form occurs
in two stages:

The predicate polynomial-f orm(X ,Polynomial ,PolyForm) decom-
poses the polynomial. PolyForm is a sorted list of coefficient-degree
tuples, where tuples with zero coefficients may occur.

It is convenient for many of the polynomial methods to assume that
all the terms in the polynomial form have nonzero coefficients. There-

fore the.fina1 step of polynomial-normal-f orm is removing those terms
whose coefficients are zero. Ths is acheved by a simple recursive proce-
dure remove-zero-terms.

The code for polynomial-f orm directly echoes the code for polyno-
mial. For each clause used in the parsing process, there is a correspond-
ing clause giving the resultant polynomial. For example, the polynomial
form of a term xn is [(I , n)] , whch is expressed in the clause

The recursive clauses for polynomial-f orm manipulate the polynomi-
als in order to preserve the polynomial form. Consider the clause

polynomial~form(Poly1+Poly2,X,PolyF~rm) -
polynomial-f orm(Poly1, X ,PolyForml) ,
polynomial-f orm(Poly2 ,X, PolyForm2),
add~polynomials(PolyForml,PolyForm2,PolyForm).

The procedure add-polynomials contains an algorithm for adding poly-
nomials in normal form. The code is a straightforward list of the possi-
bilities that can arise:

add-polynomials ([] , Poly , Poly) .
add-polynomials(Poly, [1 ,Poly) .
add-polynomials([(Ai ,Ni) IPolylI , [(Aj ,Nj) 1 Poly21 , [(Ai,Ni) IPoly]) -

Ni > Nj , add-polynomials(Polyl, [(Aj ,Nj) lPoly21 ,Poly).
add-polynomials([(Ai ,Ni) (Polyll , [(Aj ,Nj) I Poly21 , [(A,Ni) IPoly] -

Ni =:= Nj, A is Ai+Aj, add-polynomials(Poly1,Poly2,Poly).
add-polynomials([(Ai,Ni) lPolyl], [(Aj,Nj) lPoly2], [(~j,Nj)~PolyI) -

Ni < Nj, add-polynomials([(Ai,Ni) ~Polyl],Poly2,Poly).

Similarly, the procedures subtract-polynomials, multiply-polyno-
mials, and binomial are algorithms for subtracting, multiplying, and
binomially expanding polynomials in normal form to produce results in
normal form. The subsidiary predicate multiply-single(Poly1 ,Mono-
mial, Poly2) multiplies a polynomial by a monomial (C,N) to produce a
new polynomial.

Once the polynomial is in normal form, the polynomial equation solver
is invoked. The structure of the polynomial solver follows the structure
of the overall equation solver. The solver is a collection of methods that

Chapter 23 An Equation Solver

are tried in order to see whch is applicable and can be used to solve the
equation. The predicate solve-polynomial-equation is the analogous
relation to solve-equation.

The second equation in Figure 23.1 is quadratic and can be solved with
the standard formula. The equation solver mirrors the human method.
The polynomial is identified as being suitable for the quadratic method
by checking (with quadratic) if the leading term in the polynomial is of
second degree. Since zero terms have been removed in putting the poly-
nomial into its normal form, pad puts them back if necessary. The next
two steps are familiar: calculating the discriminant, and returning the
roots according to the value of the discriminant. Again multiple solutions
are indicated by having multiple possibilities:

solve~polynomial~equation(Poly,X,Solution~ -
quadratic (Poly) ,
pad(Poly, [(A,2), (B, I), (C,0)1),
discriminant(A,B,C,Discriminant),
root(X,A,B,C,Discriminant,Solution).

discriminant (A, B, C,D) - D is (B*B - 4*A*C) .

Other clauses for solve-polynomial-equation constitute separate
methods for solving different polynomial equations. Linear equations
are solved with a simple formula. In PRESS, cubic equations are handled
by guessing a root and then factoring, reducing the equation to a qua-
dratic. Other tricks recognize obvious factors, or that quartic equations
missing a cubic and a linear term are really disguised quadratics.

23.5 Homogenization

The top-level clause for homogenization reflects the transformation of
the original equation into a new equation in a new unknown, which is
recursively solved; its solution is obtained for the original unknown:

The code for homogenize/4 implements the four stages of homoge-
nization, described in Section 23.1. The offenders set is calculated by
off enders/3, whch checks that there are multiple offenders. If there is
only a single offender, homogenization will not be useful:

homogenize(Equation,X,Equationl,Xl) -
offenders (Equation, X, Of f enders) ,
reduced-term(X,Offenders,Type,Xl),
rewrite(0ffenders,Type,X1,Substitutions),
substitute(Equation,Substitutions,Equationl).

The predicate reduced_term/4 finds a reduced term, that is, a candi-
date for the new unknown. In order to structure the search for the re-
duced term, the equation is classified into a type. This type is used in the
next stage to find rewrite rules expressing each element of the offenders
set as an appropriate function of the reduced term. The type of the exam-
ple equation is exponential. PRESS encodes a lot of heuristic knowledge
about finding a suitable reduced term. The heuristics depend on the type
of the terms appearing in the offenders set. To aid the structuring (and
retrieval) of knowledge, finding a reduced term proceeds in two stages -
classifying the type of the offenders set, and finding a reduced term of
that type:

reduced-term(X, Of f enders, Type ,XI) +

classif y(0f f enders ,X,Type) ,
candidate(Type,Offenders,X,Xl).

We look at the set of rules appropriate to our particular equation.
The offenders set is of exponential type because all the elements in the
offenders set have the form AB, where A does not contain the unknown
but B does. Standard recursive procedures check that thls is true.

The heuristic used to select the reduced term in this example is that if
all the bases are the same, A, and each exponent is a polynomial in the
unknown, X, then a suitable reduced term is AX:

Chapter 23 An Equation Solver

candidate(exponential,Offenders,X,AtX) -
base (Offenders ,A) , polynomial-exponents (offenders , X)

The straightforward code for base and polynomial-exponents is in the
complete program. The heuristics in PRESS are better developed than the
ones shown here. For example, the greatest common divisor of all the
leading terms of the polynomials is calculated and used to choose the
reduced term.

The next step is checking whether each member of the offenders set
can be rewritten in terms of the reduced term candidate. Ths involves
finding an appropriate rule. The collection of clauses for homogenize-
axiom constitute the possibly applicable rewrite rules. In other words,
relevant rules must be specified in advance. The applicable rules in t h s
case are

Substituting the term in the equation echoes the parsing process used
by offenders as each part of the equation is checked to see whether it is
the appropriate term to rewrite.

Exercises for Chapter 23

(i) Add isolation axioms to Program 23.1 to handle quotients on the
left-hand side of the equation. Solve the equation x / 2 = 5 .

(ii) Add to the polynomial equation solver the ability to solve disguised
linear and disguised quadratic equations. Solve the equations 2 .
x 3 - 8 = x 3 , a n d x 4 - 5 . x G 6 = 0 0 .

(iii) The equation cos(2 . x) - sin(x) = 0 can be solved as a quadratic
equation in sin(x) by applying the rewrite rule cos(2 . x) = 1 - 2 .
sin2(x). Add clauses to Program 23.1 to solve t h s equation. You
will need to add rules for identifying terms of type trigonometric,
heuristics for finding trigonometric reduced terms, and appropriate
homogenization axioms.

(v) Modify Program 23.1 so that it solves simple simultaneous equa-
tions.

23.6 Background

Symbolic manipulation was an early application area for Prolog. Early
examples are programs for symbolic integration (Bergman and Kanoui,
1973) and for proving theorems in geometry (Welham, 1976).

The PRESS program, from whch Program 23.1 is adapted, owes a debt
to many people. The original version was written by Bob Welham. Many
of the researchers in the mathematical reasoning group worlung with
Alan Bundy at the University of Edinburgh subsequently t~nkered with
the code. Published descriptions of the program appear in Bundy and
Welham (1981), Sterling et al. (1982), and Silver (1986). The last reference
has a detailed discussion of homogenization.

PRESS includes various modules, not discussed in t h s chapter, that
are interesting in their own right: for example, a package for inter-
val arithmetic (Bundy, 1984), an infinite precision rational arithmetic
package developed by Richard O'Keefe, and an expression simplifier
based on difference-structures as described in Section 15.2, developed by
Lawrence Byrd. The successful integration of all these modules is strong
evidence for the practicality of Prolog for large programming projects.

The development of PRESS showed up classic points of software engi-
neering. For example, at one stage the program was being tuned prior
to publishng some statistics. Profiling was done on the program, whch
showed that the predicate most commonly called was f ree-of. Rewriting
it as suggested in Exercise 23(iv) resulted in a speedup of 35 percent in
the performance of PRESS.

Program 23.1 is a considerably cleaned-up version of PRESS. Tidying
the code enabled further research. Program 23.1 was easily translated to
other logic programming languages, Concurrent Prolog and FCP (Sterling
and Codish, 1986). Malung the conditions when methods were used more
explicit enabled the writing of a program to learn new equation-solving
methods from examples (Silver, 1986).

(iv) Rewrite the predicate f ree-of (Term,X) so that it fails as soon as it
finds an occurrence of X in Term.

A Compiler

Our final application is a compiler. The program is presented top-down.
The first section outlines the scope of the compiler and gives its defini-
tion. The next three sections describe the three major components: the
parser, the code generator, and the assembler.

-- - - - - -- -- -

24.1 Overview of the Compiler

The source language for the compiler is PL, a simplified version of Pascal
designed solely for the purposes of this chapter. It contains an assign-
ment statement, an if-then-else statement, a while statement, and simple
1/0 statements. The language is best illustrated with an example. Fig-
ure 24.1 contains a program for computing factorials written in PL. A
formal definition of the syntax of the language is implicit in the parser
in Program 24.1.

The target language is a machine language typical for a one-accumu-
lator computer. Its instructions are given in Figure 24.2. Each instruction
has one (explicit) operand, which can be one of four things: an integer
constant, the address of a storage location, the address of a program
instruction, or a value to be ignored. Most of the instructions also have a
second implicit operand, which is either the accumulator or its contents.
In addition, there is a pseudoinstruction block that reserves a number of
storage locations as specified by its integer operand.

The scope of the compiler is clear from its behavior on our example.
Figure 24.3 is the translation of the PL program in Figure 24.1 into ma-

Chapter 24 A Compiler

program f a c t o r i a l ;
begin

read va lue ;
count := 1 ;
r e s u l t := 1;
while count < va lue do

begin
count := count+l ;
r e s u l t := resu l t*count

end ;
w r i t e r e s u l t

end

Figure 24.1 A PL program for computing factorials

Ari thmetic

L i t e r a l s Memory

addc add

subc sub

mulc mu1

d i v c d i v

loadc load

s t o r e

Control I/O, e t c .

jumpeq read

jumpne w r i t e

jumplt h a l t

j umpgt
jumple

j umpge

jump

Figure 24.2 Target language instructions

chne language. The compiler produces the columns labeled Instruction
and Operand.

The task of compiling can be broken down into the five stages given
in Figure 24.4. The first stage transforms a source text into a list of
tokens. The list of tokens is parsed in the second stage, syntax analysis,
to give a source structure. The thlrd and fourth stages transform the
source structure into relocatable code and assemble the relocatable code
into absolute object code, respectively. The final stage outputs the object
program.

Our compiler implements the middle three stages. Both the first stage
of lexical analysis and the final output stage are relatively uninteresting
and are not considered here. The top level of the code handles syntax
analysis, code generation, and assembly.

Symbol Address I n s t r u c t i o n Operand Symbol

1
2
3
4
5

LABEL1 6
7
8
9

10
11
12
13
14
15

LABEL2 16
17
18

COUNT 19
RESULT 20
VALUE 21

READ
LOADC
STORE
LOADC
STORE
LOAD
SUB
JUMPGE
LOAD
ADDC
STORE
LOAD
MUL
STORE
JUMP
LOAD
WRITE
HALT
BLOCK

21 VALUE
1

19 COUNT
20
20 RESULT
19 COUNT
21 VALUE
16 LABEL2
19 COUNT
1

19 COUNT
20 RESULT
19 COUNT
20 RESULT

6 LABEL 1
20 RESULT

0
0
3

Figure 24.3 Assembly code version of a factorial program

Object Object

Structure

Lexical Syntax Code Assembly -
~ n a l ~ s i s , Analysis * ene era ti on)

Object
Program

Output c
Figure 24.4 The stages of compilation

The basic predicate compile(Tokens,ObjectCode) relates a list of to-
kens Tokens to the Objectcode of the program the tokens represent.
The compiler compiles correctly any legal PL program but does not han-
dle errors; that is outside the scope of t h s chapter. The list of tokens
is assumed to be input from some previous stage of lexical analysis.
The parser performing the syntax analysis, implemented by the predi-
cate parse, produces from the Tokens an internal parse tree Structure.

PROYECTO

Chapter 24 A Compiler

compile (Tokens,ObjectCode) -
Objectcode is the result of compilation of
a list of Tokens representing a PL program.

compile(~okens,ObjectCode) -
parse(Tokens,Structure),
encode(Structure,Dictionary,Code),
assemble(Code,Dictionary,0bjectCode).

The parser

parse(Tokens,Structure) -
Structure represents the successfully parsed list of Tokens.

parse(Source,Structure) -
pl~program(Structure,Source\[I).

pl-program(S) - [program] , identif ier(X) , [' ; ' I , statement (S) .

statement ((S; Ss)) -
[begin], statement(S), rest-statements(Ss).

statement(assign(X,V)) -
identifier(X), [':='I, expression(V).

statement(if(T,Sl,S2)) -
[if] , test (TI , [then] , statement (S1) , [else] , statement (~2) .

statement (while(T,S)) -
[while] , test (T) , [do] , statement (S) .

statement (read(X) -
[read] , identifier (X) .

statement(write(X)) -
[write], expression(X) .

rest-statements((S;Ss)) - [';'I, statement(S1, rest-statements(Ss)
rest-statements(void) - [end] .
expression(X) - pl-constant (X) .
expression(expr(Op,X,Y)) -

pl-constant(X), arithmetic-op(Op), expression(Y).

arithmetic-op('+') - ['+'I.
arithmetic-op('-') - ['-'I.
arithmetic-op('*') - ['*'I.
arithmetic-op('/') - ['/'I.
pl-constant(name(l0 - identifier()().
pl-constant(number(X)) - pl-integer()().
identif ier(X) - [XI , atom(^)}.
pl-integer()() - [XI , {integer(x)}.
test(compare(Op,X,Y)) -

expression(X) , comparison-op(Op), expression(Y) .

The codegenerator
encode(Structure,Dictionary,RelocatableCode) -

RelocatableCode is generated from the parsed Structure
building a Dictionary associating variables with addresses.

encode((X;Xs),D,(Y;Ys)) -
encode(X,D,Y), encode(Xs,D,Ys).

encode(void,D,no-op).
encode(assign(Name,E),D,(Code; instr(store,Address))) -

lookup(Name,D,Address), encode-expression(E,D,Code).
encode(if(Test,Then,Else),D,

(TestCode; Thencode; instr(jump,L2) ;
label(L1); Elsecode; label(L2))) -

encode-test(Test,Ll,D,TestCode),
encode(Then,D,ThenCode),
encode(Else,D,ElseCode).

encode(while(Test,Do),D,
(label(L1); TestCode; DoCode; instr(jump,Ll); label(L2))) -

encode-test(Test,L2,D,TestCode), encode(Do,D,DoCode).
encode(read(X),D,instr(read,Address)) -

lookup(X,D,Address).
encode(write(E),D,(Code; instr(write,O))) -

encode-expression(E,D,Code).

encode-expression (Expression,Dictionary, Code) -
Code corresponds to an arithmetic Expression.

encode~expression(expr(Op,E1,E2),D,Code) -
not single~instruction(0p,E2,D,Instruction),
single-operation(Op,EI,D,E2Code,Code),
encode-expression(E2,D,E2Code).

Program 24.1 (Continued)

Program 24.1 A compiler from PL to machine language

Chapter 24
A Compiler

single-instruction(0p ,number (C) ,D, instr (0p~ode ,C)) -
literal-operation(Op,OpCode).

single-instruction(Op,name (XI ,D, instr(0pCode ,A)) -
memory-operation(Op,OpCode), lookup(X,D,A).

single~operation(0p,E,D,Code,(Code;Instruction~~ -
commutative(Op), single~instruction(Op,E,D,~nstruction).

single-operation(Op,E,D,Code,
(Code; instr(store,Address) ;Load; instr(0pCode Address)) +

not commutative(Op),
lookup('$temp',D,Address),
encode-expression(E,D,Load),
op-code(E,Op,OpCode).

op-code (number (C) , Op ,OpCode) - literal-operation(Op, OpCode) .
op-code (name (X) , Op, OpCode) - memory-operation(Op, OpCode) .
literal-operation(' + ' , addc) . memory-operation('+' ,add).
literal-operation('-',subc). memory-operation('-',sub).
literal~operation('*',mulc). memory-operation('*',mul).
literal-operation('/' ,divc) . memory-operation('/' ,div) .

commutative('+'). commutative (' * ' .
encode-test(compare(Op,El,E2),Label,D,

(Code;instr(OpCode,Label))) -
comparison~opcode(0p,OpCode),
encode-expression(expr ('-' ,El ,E2) ,D ,Code).

comparison-opcode('=' , jumpne) . comparison-opcode(f ' , jumpeq) .
comparison~opcode('>',jumple). comparison~opcode('2',jumplt).
comparison-opcode (' < ' , jumpge) . comparison-opcode(' I ' , jumpgt) .
lookup(Name,Dictionary,Address) - See Program 15.9.

The assembler
assemble(Code,Dictionary, TidyCode) -

TidyCode is the result of assembling Code removing
no-ops and labels, and filling in the Dictionary.

assemble(Code,Dictionary,TidyCode) -
tidy-and-count (Code, 1 ,N,TidyCode\(instr(halt ,O) ;block(L))),
N1 is N+1,
allocate(Dictionary,Nl,N2),
L is N2-N1, ! .

tidy-and-count ((Codel ;Code2) ,M,N,TCodel\TCode2) -
tidy~and~count(Codel,M,M1,TCodel\Rest),
tidy-and-count(Code2,M1,N,Rest\TCode2).

tidy-and-count(instr(X,Y),N,Nl,(instr(~,~);~ode)\Code) -
N1 is N+1.

tidy-and-count (label (N) ,N ,N,Code\Code) .
tidy-and-count(no-op,N,N,Code\Code).

Program 24.1 (Continued)

allocate(void,N,N).
allocate(dict (Name,Nl ,Bef ore, After) ,NO,N) -

allocate (Bef ore ,NO ,Nil,
N2 is N1+1,
allocate(After ,N2,N) .

Program 24.1 (Continued)

program(f actorial,
[program,factorial,';'
,begin

,read,value,';'
,count,':=',l,';'
,result,':=',l,';'
,while,count,'~',value,do

,begin
,count,':=',count,'+',l,';'
,result,':=',result,'*',count

end,'; '
,write,result

, end]) .

Program 24.2 Test data

The structure is used by the code generator encode to produce relocat-
able code Code. A dictionary associating variable locations to memory
addresses and keeping track of labels is needed to generate the code.
This is the second argument of encode. Finally, the relocatable code is
assembled into object code by assemble with the aid of the constructed
Dictionary.

The testing data and instructions for the program are given as Pro-
gram 24.2. The program factorial is the PL program of Figure 24.1 trans-
lated into a list of tokens. The two small programs consist of a single
statement each, and test features of the language not covered by the
factorial example. The program test1 tests compilation of a nontrivial
arithmetic expression, and test2 checks the if-then-else statement.

466 Chapter 24 A Compiler

24.2 The Parser
statement ((S;Ss)) -

[begin] , statement (S) , rest-statements (Ss) .

The parser proper is written as a definite clause grammar, as described
in Chapter 19. The predicate parse as given in Program 24.1 is just an
interface to the DCG, whose top-level predicate is pl-program. The DCG
has a single argument, the structure corresponding to the statements, as
described later. A variant of Program 18.9 is assumed to translate the
DCG into Prolog clauses. The convention of that program is that the last
argument of the predicates defined by the DCG is a difference-list:

parse (Source, Structure) -
pl-program(Structure, Source\ [1 .

The first statement of any PL program must be a program statement. A
program statement consists of the word program followed by the name
of the program. We call words that must appear for rules of the grammar
to apply standard identifiers, the word program being an example. The
name of the program is an identifier in the language. What constitutes
identifiers, and more generally constants, is discussed in the context of
arithmetic expressions. The program name is followed by a semicolon,
another standard identifier, and then the program proper begins. The
body of a PL program consists of statements or, more precisely, a sin-
gle statement that may itself consist of several statements. All thls is
summed up in the top-level grammar rule:

pl-program(S) -
[program] , identifier (XI, [' ; 'I , statement (S) .

The structure returned as the output of the parsing is the statement
constituting the body of the program. For the purpose of code genera-
tion, the top-level program statement has no significance and is ignored
in the structure built.

The first statement we describe is a compound statement. Its syntax
is the standard identifier begin followed by the first statement, S, say,
in the compound statement, and then the remaining statements Ss. The
structure returned for a compound statement is (S; Ss), where ; is used
as a two-place infix functor. Note that S, Ss, or both may be compound
statements or contain them. The semicolon is chosen as functor to echo
its use in PL for denoting sequencing of statements:

Statements in PL are delimited by semicolons. The rest of the state-
ments are accordingly defined as a semicolon followed by a nonempty
statement, and recursively the remaining statements:

rest-statements((S;Ss)) -
[' ; '1 , statement (S) , rest-statements(Ss) .

The end of a sequence of statements is indicated by the standard iden-
tifier end. The atom void is used to mark the end of a statement in the
internal structure. The base case of rest-statements is therefore

rest-statements (void) - [end] .
The above definition of statements precludes the possibility of empty

statements. Programs and compound statements in PL cannot be empty.
The next statement to discuss is the assignment statement. It has a

simple syntactic definition - a left-hand side, followed by the standard
identifier is, followed by the right-hand side. The left-hand side is re-
stricted to being a PL identifier, and the right-hand side is any arithmetic
expression whose definition is to be given:

statement (assign(X,E)) -
identif ier(X), [' :='I , expression(E) .

The structure returned by the successful recognition of an assignment
statement has the form assign(X, E) . The (Prolog) variable E represents
the structure of the arithmetic expression, and X is the name of the
(PL) variable to be assigned the value of the expression. It is implicitly
assumed that X will be a PL identifier.

For simplicity of both code and explanation, we restrict ourselves to
a subclass of arithmetic expressions. Two rules define the subclass. An
expression is either a constant or a constant followed by an arithmetic
operator and recursively an arithmetic expression. Examples of expres-
sions in the subclass are x, 3, 2 . t and x + y - 212, the expression in the
first test case in Program 24.2:

expression()o - pl-constant (X) .
expression(expr (Op,X,Y)) -

pl-constant (X) , arithmetic-op(Op), expression(Y) .

Chapter 24

T h s subclass of expressions does not respect the standard precedence
of arithmetic operators. The expression x . 2 + y is parsed as x . (2 + y) .
On the other hand, the expression x + y - 212 is interpreted unambigu-
ously as x + (y - (212)) .

For this example, we restrict ourselves to two types of constants in PL:
identifiers and integers. The specification of pl-constant duly consists
of two rules. Whch of the two is found is reflected in the structure
returned. For identifiers X, the structure name (X) is returned, whereas
number (X) is returned for the integer X:

pl-constant (name (X)) - identifier (X) .
pl-constant (number (XI) - pl-integer (X)

For simplicity we assume that PL integers and PL identifiers are Prolog
integers and atoms, respectively. This allows the use of Prolog system
predicates to identify the PL identifiers and integers. Recall that the curly
braces notation of DCGs is used to specify Prolog goals:

identifier (x) - [XI , {atom(X) 1 .
pl-integer (XI - [XI , {integer(X) 1 .

In fact, all grammar rules that use PL identifiers and constants could
be modified to call the Prolog predicates directly if greater efficiency is
needed.

A list of arithmetic operators is necessary to complete the definition
of arithmetic expressions. The form of the statement for addition, repre-
sented by +, follows. The grammar rules for subtraction, multiplication,
and division are analogous, and appear in the full parser in Program 24.1:

The next statement to be discussed is the conditional statement, or
if-then-else. The syntax for conditionals is the standard identifier if fol-
lowed by a test (to be defined). After the test, the standard identifier then
is necessary, followed by a statement constituting the then part, the stan-
dard identifier else and a statement constituting the else part, in that
order. The structure built by the parser is if (T,Sl,S2), where T is the
test, S1 is the then part, and S2 is the else part:

statement(if (T,SI,S2)) -
[if] , test (T) , [then] , statement (S1) ,
[else] , statement (S2).

A Compiler

Tests are defined to be an expression followed by a comparison oper-
ator and another expression. The structure returned has the form com-
pare (Op , X , Y) , where Op is the comparison operator, and X and Y are the
left-hand and right-hand expressions in the test, respectively:

test (compare(Op,X,Y)) -
expression(X) , comparison-op(Op), expression(Y)

The definition of comparison operators using the predicate compari-
son-op is analogous to the use of arithmetic-op to define arithmetic
operators. Program 24.1 contains definitions for =, f , >, <, 2, and I.

While statements consist of a test and the action to take if the test is
true. The structure returned is while (T, S), where T is the test and S is
the action. The syntax is defined by the following rule:

statement (while(T, S)) -
[while] , test (TI, [do] , statement (S) .

1/0 is handled in PL with a simple read statement and a simple write
statement. The input statement consists of the standard identifier read
followed by a PL identifier; it returns the structure reado(), where X is
the identifier. Write statements are similar:

statement (reado()) - [read] , identifier (X) .
statement(write(X)) - [write], expression(X)

Collecting the various pieces of the DCG just described gives a parser
for the language. Note that ignoring the arguments in the DCG gives a
formal BNF grammar for PL.

Let us consider the behavior of the parser on the test data in Pro-
gram 24.2. The parsed structures produced for the two single statement
programs have the form (structure);void, where (structure) repre-
sents the parsed statement. The write statement is translated to

write (expr (+ ,name (x) , expr (- ,name(y) ,expr(/yname(~)
number(2) > > ,

and the if-then-else statement is translated to

if (compare (> ,name (a) ,name (b)) , assign(max , name (a)) 3

assign(max ,name (b) 1) .

The factorial program is parsed into a sequence of five statements fol-
lowed by void. The output after parsing for all three test programs is

Chapter 24 A Compiler

Program test1 :

Program test2 :

Program test3 :

Figure 24.5 Output from parsing

given in Figure 24.5. This is the input for the second stage of compila-
tion, code generation.

24.3 The Code Generator

'The basic relation of the code generator is encode (Structure, Dict io-
nary, Code), which generates Code from the Structure produced by the
parser. This section echoes the previous one. The generated code is de-
scribed for each of the structures produced by the parser representing
the various PL statements.
Dictionary relates PL variables to memory locations, and labels to

instruction addresses. The dictionary is used by the assembler to resolve
locations of labels and identifiers. Throughout t h s section D refers to
this dictionary. An incomplete ordered binary tree is used to implement
i t , as described in Section 15.3. The predicate lookup (Name, D, Value)
(Program 15.9) is used for accessing the incomplete binary tree.

The structure corresponding to a compound statement is a sequence
of its constituent structures. This is translated into a sequence of blocks
of code, recursively defined by encode. The functor ; is used to denote
sequencing. The empty statement denoted by void is translated into a
null operation, denoted no-op. When the relocatable code is traversed
during assembly this "pseudoinstruction" is removed.

The structure produced by the parser for the general PL assignment
statement has the form assign(Name ,Expression), where Expression
is the expression to be evaluated and assigned to the PL variable Name.
The corresponding compiled form calculates the expression followed
by a store instruction whose argument is the address corresponding
to Name. The representation of individual instructions in the compiled
code is the structure instr (X,Y), where X is the instruction and Y is the
operand. The appropriate translation of the assign structure is there-
fore (Code ; instr (store, Address)), where Code is the compiled form
of the expression, whch, after execution, leaves the value of the ex-
pression in the accumulator. It is generated by the predicate encode-
expression(Expression, D, Expressioncode). Encoding the assignment
statement is performed by the clause

This clause is a good example of Prolog code that is easily understood
declaratively but hides complicated procedural bookkeeping. Logically,
relations have been specified between Name and Address, and between
Expression and Code. From the programmer's point of view it is irrele-
vant when the final structure is constructed, and in fact the order of the
two goals in the body of this clause can be swapped without changing
the behavior of the overall program. Furthermore, the lookup goal, in re-
lating Name with Address, could be making a new entry or retrieving a
previous one, where the final instantiation of the address happens in the
assembly stage. None of this bookkeeping needs explicit mention by the
programmer. It goes on correctly in the background.

There are several cases to be considered for compiling the expression.
Constants are loaded directly; the appropriate machine instruction is
loadc C, where C is the constant. Similarly identifiers are compiled into
the instruction load A, where A is the address of the identifier. The two
corresponding clauses of encode-expression are

encode-expression(number (C) , D, instr (loadc , C)) .
encode-expression(name(x) ,D, instr (load,Address) -

lookup(X ,D ,Address) .

Chapter 24 A Compiler

The general expression is the structure expr (Op ,El ,E2), where Op is
the operator, El is a PL constant, and E2 is an expression. The form
of the compiled code depends on E2. If it is a PL constant, then the
final code consists of two statements: an appropriate load instruction
determined recursively by encode-expression and the single instruction
corresponding to Op. Again, it does not matter in whch order the two
instructions are determined. The clause of encode-expression is

The nature of the single instruction depends on the operator and
whether the PL constant is a number or an identifier. Numbers refer
to literal operations, and identifiers refer to memory operations:

single~instruction(0p,number(C),D,instr(Opcode,C~~ -
literal-operation(Op,Opcode).

single~instruction(Op,name(X),D,instr(Op~~d~,A~~ -
memory-operation(Op, Opcode) , lookup (X ,D ,A) .

A separate table of facts is needed for each sort of operation. The
respective form of the facts is illustrated for +:

A separate calculation is necessary when the second expression is not
a constant and cannot be encoded in a single instruction. The form of the
compiled code is determined from the compiled code for calculating E2,
and the single operation is determined by Op and El:

encode~expression(expr(Op,E1,E2),D,Code) -
not single-instruction(Op,E2,D,1nstruction),
single-operation(Op,El ,D, E2Code, Code) ,
encode-expression(E2, D, E2Code) .

In general, the result of calculating E2 must be stored in some tempo-
rary location, called $temp in the following code. The sequence of instruc-
tions is then the code for E2, a store instruction, a load instruction for
El, and the appropriate memory operation addressing the stored con-
tents. The predicates shown previously are used to construct the final
form of the code:

single-operation(Op,E,D,Code,

(Code ;
instr(store,Address) ;
Load ;
instr(0pCode ,Address))

1 -
not commutative (0p) ,
lookup('$temp' ,D,Address) ,
encode-expression (E, D, Load) ,
op-code(E,Op,OpCode).

An optimization is possible if the operation is commutative, e.g., ad-
dition or multiplication, whch circumvents the need for a temporary
variable. In t h s case, the memory or literal operation can be performed
on El, assuming that the result of computing E2 is in the accumulator:

The next statement is the conditional if-then-else parsed into the struc-
ture if (Test, Then, Else). To compile the structure, we have to intro-
duce labels to which instructions can jump. For the conditional we need
two labels marking the beginning and end of the else part respectively.
The labels have the form label (N), where N is the address of the instruc-
tion. The value of N is filled in during the assembling stage, when the
label statement itself is removed. The schematic of the code is given by
the thrd argument of the following encode clause:

encode(if (Test ,Then,Else) ,D,

(Testcode ;
ThenCode ;
instr(jump,L2) ;
label (Ll) ;
ElseCode ;
label (L2))

> - encode~test(Test,Ll,D,TestCode),

encode (Then, D , ThenCode) ,
encode (~ l s e ,D, ElseCode) .

Chapter 24 A Compiler

In order to compare two arithmetic expressions, we subtract the sec-
ond from the first and make the jump operation appropriate to the par-
ticular comparison operator. For example, if the test is whether two ex-
pressions are equal, we circumvent the code if the result of subtracting
the two is not equal to zero. Thus comparison~opcode ('=' , jumpne) is a
fact. Note that the label that is the second argument of encode-test is
the address of the code following the test.

encode-test (compare (Op,E1 ,E2) ,Label ,D,
(Code; instr(OpCode,Label))) -

comparison~opcode (0p , OpCode) ,
encode~expression(expr('-',EI,E2),D,Code~.

The next statement to consider is the while statement. The statement is
parsed into the structure while (Test ,Statements). A label is necessary
before the test, then the test code is given as for the if-then-else state-
ment, then the body of code corresponding to Statements and a jump
to reperform the test. A label is necessary after the jump instruction for
when the test fails.

encode (while (Test, Do) ,D,
(label (L1) ;
TestCode ;
DoCode ;
instr(jump,Ll) ;
label (L2))

) -
encode-test (Test, L2 ,D, ~estCode) ,
encode (Do, D , DoCode) .

The 1/0 statements are straightforward. The parsed structure for in-
put, read(X), is compiled into a single read instruction, and the table is
used to get the correct address:

encode (read(X) ,D, instr (read, ~ddress)) -
lookup(X,D,Address).

The output statement is translated into encoding an expression and then
a write instruction:

encode(write (E) ,D, (Code; instr (write ,0))) +

encode-expression(E,D,Code).

Program test1 :

((((instr(load,~);instr(divc,2));instr(~tore,~emp~;
instr(load,Y) ; instr(sub,Temp)) ; instr(add,X)) ;
instr(write,O));no-op

Program test2 :
(((instr(load,A) ; instr(sub,B)) ; instr(jumple,L1)) ;
(instr(load ,A) ; instr (store ,Max)) ; instr(jmp,L2) ; label(L1) ;
(instr(load,B) ; instr(store,Max)) ; label(L2)) ;nO-OP

Program factorial :

instr(read,Value);(in~tr(l~adc,l);instr(~t~re,C~~nt));
(instr(loadc,l);instr(~t0re,~es~lt));(label(~1);
((instr(load,Count) ; instr(sub,Value)) ; instr(jmpge ,L2)) ;
(((instr(load,Count) ;instr(addc, 1)) ; instr(store,~ount)) ;
((instr(load,~esult);instr(mul,~~unt));instr(store,~esult));
no-op) ; instr(jump,Ll) ;label(~2)) ; (instr(load,~esult) ;
instr(write,O));no-op

Figure 24.6 The generated code

Figure 24.6 contains the relocatable code after code generation and be-
fore assembly for each of the three examples of Program 24.2. Mnemonic
variable names have been used for easy reading.

24.4 The Assembler

The final stage performed by the compiler is assembling the relocatable
code into absolute object code. The predicate assemble (Code ,Dictio-
nary, Obj ectCode) takes the Code and Dictionary generated in the pre-
vious stage and produces the object code. There are two stages in the as-
sembly. During the first stage, the instructions in the code are counted, at
the same time computing the addresses of any labels created during code
generation and removing unnecessary null operations. This tidied code
is further augmented by a halt instruction, denoted by instr (halt, 0) ,
and a block of L memory locations for the L PL variables and tempo-
rary locations in the code. The space for memory locations is denoted
by block(L). In the second stage, addresses are created for the PL and
temporary variables used in the program:

PROYECTO

Chapter 24 A Compiler

assemble(Code,Di~ti~nary,TidyCode) -
tidy-and-count (Code, 1 ,~,~idy~ode\(instr(halt ,o) ;block(L) 1) 3

N1 is N+1,
allocate(Dictionary ,N1 ,N2) ,
L is N2-N1, ! .

The predicate t idy-and-count (Code, M , N , TidyCode) tidies the Code
into TidyCode, where the correct addresses of labels have been filled
in and the null operations have been removed. Procedurally, executing
tidy-and-count constitutes a second pass over the code. M is the ad-
dress of the beginning of the code, and N is 1 more than the address of
the end of the original code. Thus the number of actual instructions in
Code is N+1-M. TidyCode is represented as a difference-structure based
on ; .

The recursive clause of tidy-and-count demonstrates both standard
difference-structure technique and updating of numeric values:

tidy~and~count((Code1;Code2),M,N,~~odel\~~ode2~ +

tidy-and-count (Code1 ,M,MI ,TCodel\Rest) ,
tidy-and-count(Code2,Ml,N,Rest\TCode2).

Three types of primitives occur in the code: instructions, labels, and
no-ops. Instructions are handled routinely. The address counter is incre-
mented by 1, and the instruction is inserted into a difference-structure:

tidy-and_count(instr(X,Y) ,N,NI, (instr (x,Y) ;Code)\Code) +

N1 is N+1.

Both labels and no-ops are removed without updating the current ad-
dress or adding an instruction to the tidied code:

Declaratively, the clauses are identical. Procedurally, the unification of
the label number with the current address causes a major effect in the
program. Every reference to the label address is filled in. This program is
another illustration of the power of the logical variable.

The predicate allocate (Dict ionary , M , N) has primarily a procedu-
ral interpretation. During the code generation as the dictionary is con-
structed, storage locations are associated with each of the PL variables

Program test1 :

Program test2 :

instr(load, 10) ; instrcsub, 11) ; instr(jumple ,7) ;instr(load,l~) ;
instr(store,12) ;instr(jump,9) ;instr(load,ll) ;instr(store,l2);
instr (halt, 0) ; block(3)

Program factorial :

instr(read,21) ; instr(loadc, 1) ; instr (store, 19) ; instr(loadc, 1) ;
instr(store ,20) ; instr(load, 19) ; instr(sub,21) ; instr(jumpge, 16) ;
instr(load,l9);instr(addc,l);instr(store,19);instr(load,20);
instr(mul,19);instr(store,20);instr(jump,6);instr(load,20);
instr(write ,0) ; instr(ha1t ,0) ;block(3)

Figure 24.7 The compiled object code

in the program, plus any temporary variables needed for computing ex-
pressions. The effect of allocate is to assign actual memory locations
for the variables and to fill in the references to them in the program.

The variables are found by traversing the Dictionary. M is the address
of the memory location for the first variable, and N is 1 more than the
address of the last. The order of variables is alphabetic corresponding to
their order in the dictionary. The code also completes the dictionary as a
data structure.

allocate (void, N, N) .
allocate(dict (Name,Nl ,Before,After) ,NO,N -

allocate(Bef ore ,NO ,Nil,
N2 is Nl+l,
allocate(After,N2,N).

Because the dictionary is an incomplete data structure, the predicate
allocate can succeed many times. The variables at the end of the tree
match both the fact and the recursive clause. For the compiler, the easi-
est way to stop multiple solutions is to add a cut to the clause for assem-
ble/3, which commits to the first (and minimal) assignment of memory
locations for variables.

The compiled versions of the test programs given in Program 24.2
appear in Figure 24.7.

Chapter 24

Exercises for Chapter 24

(i) Extend the compiler so that it handles repeat loops. The syntax is
repeat (statement) until (test) . Extensions to both the parser and
the compiler need to be made. Test the program on the following:

program repeat ;
begin

i := 1;
repeat
i begin
ii w r i t e (i) ;
11 1 : = i + l
i end
u n t i l i = I1

end.

(ii) Extend the definition of arithmetic expressions to allow arbitrary
ones. In the encoder, you will have to cater for the possibility of
needing several temporary variables.

24.5 Background

The compiler described is based on a delightful paper by Warren (1980).

Operators

An operator is defined by its name, specifier, and priority. The name is
usually an atom. The priority is an integer between 1 and 1200 inclusive.
The specifier is a mnemonic that defines two things, class and asso-
ciativity. There are three classes of operators: prefix, infix, and postfix.
Associativity, which determines how to associate terms containing mul-
tiple operators, can be one of three possibilities: left-associative, right-
associative, and non-associative.

There are seven possible operator types, whlch are given in Table A.1.
A left-associative prefix operator is not possible, nor is a right-associative
postfix operator. An operator specifier yfy does not make sense as it
would lead to ambiguity. Consequently Standard Prolog does not allow
such a specifier.

To explain the associativity, consider a term a :: b :: c. If the infix
operator :: was left-associative, the term would be read as (a :: b) :: c. If
the operator :: was right-associative, the term would be read as a :: (b :: c).
If the operator :: was non-associative, the term would be illegal.

If uncertain about priorities when using operators, terms can always be
bracketed. If you prefer not to bracket terms, you must take into account
the associativity of the operatorb) involved and the priorities of terms.
For example, the following three rules apply.

1. An operand with the same priority as a non-associative operator
must be bracketed to avoid a syntax error by the Prolog reader.

2 . An operator with the same (or smaller) priority as a right-associative
operator that follows that operator need not be bracketed.

3. An operator with smaller priority than a left-associative operator
that precedes that operator need not be bracketed.

Appendix A Operators

Table A.l
Types of Operators in Standard Prolog

Specifier Class Associativity

fx prefix non-associative
fy prefix right-associative
xfx infix non-associative
xfy infix right-associative
~ f x infix left-associative
x f postfuc non-associative
Y f postfuc left-associative

Table A.2
Predefined Operators in Standard Prolog

Priority Specifier Operator(s)

xfx
fx

xf)
xfy
xfx
xfx
xfx
xfx
yfx
yfx
xfy

fl'

Standard Prolog specifies some predefined operators. The priorities
and specifiers of the operators which have been used in the text are given
in Table A.2.

New operators are added with the directive

The system of operator declarations in Prolog is straightforward and
can be used effectively for applications. The reader should be aware,
however, that there are some subtle semantic anomalies in how opera-
tors are defined and handled. The anomalies, best discovered by trial and
error, should not cause problems and can be "programmed around."

where X is the priority, Y is the operator specifier, and Z is the operator
name. These were used in Chapter 17 when defining a new rule language.

References

Abelson, H. and Sussman, G. J., Structure and Interpretation of Computer
Programs, MIT Press, Cambridge, Massachusetts, 1985.

Abramson, H. and Dahl, V., Logic Grammars, Springer-Verlag, New York,
1989.

Abramson, H. and Rogers, M. (eds.), Meta-Programming in Logic Progmm-
ming, MIT Press, Cambridge, Massachusetts, 1989.

At-Kaci, H., The WAM: A (Real) Tutorial, MIT Press, Cambridge, Massachu-
setts, 1991.

Apt, K. R., Logic Programming, in Handbook o f Theoretical Computer Science,
J . van Leeuwen (ed.), pp. 493-574, North-Holland, Amsterdam, 1990.

Apt, K. R. and van Emden, M. H., Contributions to the Theory of Logic Pro-
gramming, J. ACM 29, pp. 841-862, 1982.

Bansal, A. and Sterling, L. S., Classifying Generate-and-Test Logic Programs,
International J. of Parallel Processing 8(4), pp. 401-446, 1989.

Barklund, J., What is a Variable in Prolog? in (Abramson and Rogers, 1989),
pp. 383-398.

Ben-David, A. and Sterling, L., A Prototype Expert System for Credit Evalua-
tion, in Artificial Intelligence in Economics and Management, L. F. Pau (ed.),
pp. 12 1-1 28, North-Holland, Amsterdam, 1986.

Berge, C., The Theory o f Graphs and its Applications, Methuen & Co., London,
1962.

Bergman, M. and Kanoui, H., Application of Mechanical Theorem Proving
to Symbolic Calculus, in Proc. Third International Symposium on Advanced
Computing Methods in Theoretical Physics, CNRS, Marseilles, 1973.

References

Bloch, C., Source-to-Source Transformations of Logic Programs, Tech. Report
CS-84-22, Department of Applied Mathematics, Weizmann Institute of Sci-
ence, Rehovot, Israel, 1984.

Bowen, D. L., Byrd, L., Pereira, L. M., Pereira, F. C. N., and Warren, D. H. D.,
Prolog on the DECSystem-10, User's Manual, University of Edinburgh, 1981.

Bowen, K. and Kowalski, R., Amalgamating Language and Meta-Language, in
(Clark and Tarnlund, 1982), pp. 153-172.

Boyer, R. S. and Moore, J. S., A Computational Logic, Academic Press, ACM
Monograph Series, 1979.

Breuer, G. and Carter, H. W., VLSI Routing, in Hardware and Software Con-
cepts in LZSI, G. Rabbat (ed.), pp. 368-405, Van Nostrand Reinhold, 1983.

Bruffaerts, A. and Henin, E., Negation as Failure: Proofs, Inference Rules and
Meta-interpreters, in (Abramson and Rogers, 1989), pp. 169-190.

Bruynooghe, M., The Memory Management of Prolog Implementations, in
(Clark and Tarnlund, 1982), pp. 83-98.

Bruynooghe, M. and Pereira, L. M., Deductive Revision by Intelligent Back-
tracking, in (Campbell, 1984), pp. 194-215.

Bundy, A., A Computer Model o f Mathematical Reasoning, Academic Press,
New York, 1983.

Bundy, A., A Generalized Interval Package and Its Use for Semantic Checking,
ACM Transactions on Mathematical Software 10, pp. 392-407, 1984.

Bundy, A. and Welham, R., Using Meta-level Inference for Selective Appli-
cation of Multiple Rewrite Rules in Algebraic Manipulation, Artificial Intelli-
gence 16, pp. 189-212, 1981.

Burstall, R. M. and Darlington, J., A Transformation System for Developing
Recursive Programs, J. ACM 24, pp. 46-67, 1977.

Byrd, L., Understanding the Control Flow of Prolog Programs, in (Tarnlund,
1980).

Campbell, J. A. (ed.), Implementations of Prolog, Ellis Horwood Publication,
Wiley, New York, 1984.

Chen, W., Kiefer, M., and Warren, D. S., HiLog: A First-Order Semantics for
Higher-Order Logic Programming Constructs, in Proc. 1989 North American
Conference on Logic Programming, E. Lusk, and R. Overbeek, (eds.), pp. 1090-
11 14, MIT Press, Cambridge, Massachusetts, 1989.

References

Chikayama, T., Unique Features of ESP, in Proc. lnternational Conference on
Fifth Generation Computer Systems, pp. 292-298, ICOT - Institute for New
Generation Computer Technology, Tokyo, Japan, 1984.

Ciepielewski, A., Scheduling in OR-parallel Prolog Systems, Frameworks, Sur-
vey, and Open Problems, Techrucal Report 91-02, University of Iowa, 1991.

Clark, K. L., Negation as Failure, in (Gallaire and Minker, 1978), pp. 293-322.

Clark, K. L. and Gregory, S., A Relational Language for Parallel Programming,
in Proc. ACM Symposium on Functional Languages and Computer Architec-
ture, pp. 171-178, 1981.

Clark, K. L. and Gregory, S., PARLOG: Parallel Programming in Logic, Re-
search Report 84/4, Department of computing, Imperial College of Science
and Technology, England, 1984.

Clark, K. L. and McCabe, F. G., The Control Facilities of IC-Prolog, in Expert
Systems in the Microelectronic Age, D. Michle (ed.), pp. 153-167, University of
Edinburgh Press, 1979.

Clark, K. L. and McCabe, F. G., PROLOG: A Language for lmplementing Expert
Systems, in Machine Intelligence 10, J . Hayes, D. Michie and Y. H. Pao (eds.),
pp. 45 5-470, Ellis Horwood Publication, Wiley, New York, 1982.

Clark, K. L, McCabe, F. G., and Gregory, S., IC-Prolog Language Features, in
(Clark and Tarnlund, 1982).

Clark, K. L. and Tarnlund, S.-A., A First Order Theory of Data and Programs,
Information Processing 77, pp. 939-944, North-Holland, Amsterdam, 1977.

Clark, K. L. and Tarnlund, S.-A. (eds.), Logic Programming, Academic Press,
London, 1982.

Clocksin, W. F. and Mellish, C. S., Programming in Prolog, 2nd Edition,
Springer-Verlag, New York, 1984.

Coelho, H. and Cotta, J., Prolog by Example, Springer-Verlag, New York, 1988.

Coelho, H., Cotta, J. C., and Pereira, L. M., How to Solve It in Prolog, 2nd
Edition, Laboratorio Nacional de Engenharia Civil, Lisbon, Portugal, 1980.

Cohen, J., Describing Prolog by Its Interpretation and Compilation, Comm.
ACM 28, pp. 1311-1324, 1985.

Cohen, J., A View of the Origins and Development of Prolog, Comm. ACM
31(1), pp. 26-36, 1988.

References References

Colmerauer, A., Les systemes-Q ou un Formalisme pour Analyser et Syn-
thesizer des Phrases sur Ordinateur, Publication Interne No. 43, Dept.
d'Informatique, Universite de Montreal, Canada, 1973.

Colmerauer, A., Prolog-11, Manuel de reference et modele theorique, Groupe
d'Intelligence Artificielle, Universite d'Aix-Marseille 11, France, 1982a.

Colmerauer, A,, Prolog And Infinite Trees, in (Clark and Tarnlund, 1982)b, pp.
231-251.

Colmerauer, A,, An Introduction to Prolog-111, Comm. ACM 33(70), pp. 70-90,
1990.

Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P., Un Systeme de Com-
munication Homme-machine en Francais, Research Report, Groupe Intelli-
gence Artificielle, Universite Aix-Marseille 11, France, 1973.

Colmerauer, A. and Roussel, P., The Birth of Prolog, in ACM SIGPLAN Notices,
28(3), pp. 37-52, 1993.

Deo, N., Graph Theory with Applications to Engineering and Computer Sci-
ence, Prentice Hall, Englewood Cliffs, N. J., 1974.

Dershowitz, N, and Lee, Y. J., Deductive Debugging, in Proc. Third IEEE Sym-
posium on Logic Programming, San Francisco, pp. 298-306, 1987.

Deville, Y., Logic Programming-Systematic Program Development, Addi-
son-Wesley, Reading, Massachusetts, 1990.

Deville, Y., Sterling, L. S. and Deransart, P., Prolog for Software Engineering,
Tutorial presented at Eighth International Conference on Logic Programming,
Paris, France, 1991.

Dincbas, M. and Le Pape, J. P., Metacontrol of Logic Programs in METALOG,
in Proc. International Conference on Fifth Generation Computer Systems, pp.
361-370, ICOT - Institute for New Generation Computer Technology, Tokyo,
Japan, 1984.

Disz, T., Lusk, E., and Overbeek, R., Experiments with OR-Parallel Logic Pro-
grams, in Proc. Fourth International Conference on Logic Programming, J . L.
Lassez (ed.), pp. 576-600, MIT Press, Cambridge, Massachusetts, 1987.

Drabent, W., Nadjm-Tehrani, S., and Maluszynski, J., Algorithmic Debugging
with Assertions, in (Abramson and Rogers, 1989), pp. 501-521.

Dudeney, H. E., Amusements in Mathematics, Thomas Nelson and Sons, Lon-
don, 1917.

Dwork, C., Kanellakis, P. C., and Mitchell, J. C., On the Sequential Nature of
Unification, J. Logic Programming 1 , pp. 3 5-50, 1984.

Eggert, P. R. and Chow, K. P., Logic Programming Graphcs with Infinite
Terms, Tech. Report University of California, Santa Barbara 83-02, 1983.

Elcock, E. W., The Pragmatics of Prolog: Some Comments, in Proc. Logic Pro-
gramming Workshop '83, pp. 94-106, Algarve, Portugal, 1983.

Even, S., Graph Algorithms, Computer Science Press, 1979.

Findlay, W. and Watt, D. A., PASCAL: An Introduction to Methodical Program-
ming, 2nd edition, Pitman, 1985.

Futamura, Y., Partial Evaluation of Computation Process-An Approach to a
Compiler-Compiler, Systems, Computers, Controls 2, pp. 45-50, 1971.

Gallagher, J., Transforming Logic Programs by Specializing Interpreters, in
Proc. Seventh European Conference on Artificial Intelligence, pp. 109-122,
Brighton, England, 1986.

Gallagher, J. and Bruynooghe, M., Some Low-Level Source Transformations
for Logic Programs, in Proc. Second Workshop on Meta-Programming in Logic,
pp. 229-244, Leuven, Belgium, 1990.

Gallaire, H. and Lasserre, C., A Control Metalanguage for Logic Programming,
in (Clark and Tarnlund, 1982), pp. 173-185.

Gallaire, H. and Minker, J., Logic and Databases, Plenum Publishing Co., New
York, 1978.

Gallaire, H., Minker, J., and Nicolas, J. M., Logic and Databases: A Deductive
Approach, Computing Suweys 16, pp. 153-185, 1984.

Gregory, S., Parallel Logic Programming in PARLOG, Addison-Wesley, Read-
ing, Massachusetts, 1987.

Hammond, P., Micro-Prolog for Expert Systems, Chapter 11 in Micro-Prolog:
Programming in Logic, K. Clark and F. McCabe (eds.), Prentice Hall, Engle-
wood Cliffs, N. J., 1984.

Heintze, N., Michaylov, S., Stuckey, P. and Yap, R., On Meta-Programming in
CLP(R), in Proc. 1989 North American Conference on Logic Programming, E.
Lusk, and R. Overbeek, (eds.), pp. 52-66, MIT Press, Cambridge, Massachu-
setts, 1989.

Hill, P. and Lloyd, J. W., Analysis of Meta-Programs, in (Abramson and Rogers,
19891, pp. 23-51.

References References

Hill, P. and Lloyd, J. W., The Godel Programming Language, MIT Press, Cam-
bridge, Massachusetts, 1993.

Hill, R., LUSH-Resolution and Its Completeness, DCL Memo 78, Department
of Artificial Intelligence, University of Edinburgh, Scotland, 1974.

Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory, Languages,
Computation, Addison-Wesley, Readmg, Massachusetts, 1979.

Horowitz, E. and Sahni, S., Fundamentals of Computer Algorithms, Computer
Science Press, 1978.

Jaffar, J., Lassez, J. L., and Lloyd, J. W., Completeness of the Negation as
Failure Rule, in Proc. of the International Joint Conference on Artificial Intelli-
gence, pp. 500-506, Karlsruhe, Germany, 1983.

Jaffar, J. and Lassez, J. L., From Unification to Constraints, in Proc. of Logic
Programming '87, K. Furukawa, H. Tanaka, and T. Fujisaki, (eds.), pp. 1-18,
Springer-Verlag LNCS 3 15, 1987.

Janson, S. and Haridi, S., Programming Paradigms of the Andorra Kernel
Language, in Proc. 1991 International Symposium on Logic Programming, V.
Saraswat, and K. Ueda, (eds.), pp. 167-183, MIT Press, Cambridge, Massachu-
setts, 1991.

Journal of Logic Programming, Special Issue on Abstract Interpretation, 15,
1993.

Kahn, K. M., A Primitive for the Control of Logic Programs, in Proc. Inter-
national IEEE Symposium on Logic Programming, Atlantic City, pp. 242-251,
1984.

Kirschenbaum, M., Sterling, L., and Jain, A., Relating Logic Programs via Pro-
gram Maps, Annals of Mathematics and Artificial Intelligence 8(3-4), 1993.

Knuth, D., The Art Of Computer Programming, Volume 1, Fundamental Algo-
rithms, Addison-Wesley, Reading, Massachusetts, 1968.

Knuth, D., The Art Of Computer Programming, Volume 3, Sorting and Search-
ing, Addison-Wesley, Reading, Massachusetts, 1973.

Komorowski, H. J., A Specification of an Abstract Prolog Machine and Its
Application to Partial Evaluation, Ph. D. Thesis, available as Report No. 69,
Software Systems Research Center, Linkoping University, 1981.

Kowalski, R., Predicate Logic as a Programming Language, in Proc. IFIP
Congress, J. Rosenfeld (ed.), pp. 569-574, North-Holland, Amsterdam, 1974.

Kowalski, R., Logic For Problem Solving, North-Holland, Amsterdam, 1979a.

Kowalski, R., Algorithm = Logic + Control, Comm. ACM 22, pp. 424-436,
1979b.

Kowalslu, R., The Early Years of Logic Programming, Comm. ACM 31(1), pp.
38-43, 1988.

Kunen, K., Logic for Logic Programmers, Tutorial Notes T1, North American
Conference on Logic Programming, Cleveland, October, 1989.

Lakhotia, A., Incorporating 'Programming Techniques' into Prolog programs,
in Proc. 1989 North American Conference on Logic Programming, E. Lusk,
and R. Overbeek, (eds.), pp. 426-440, MIT Press, Cambridge, Massachusetts,
1989.

Lakhotia, A. and Sterling, L. S., ProMiX: A Prolog Partial Evaluation System, in
(Sterling, 1990), pp. 137-1 79.

Lassez, J. L., From LP to LP: Programming with Constraints, Unpublished
Technical Report, 1991.

Lassez, J. L., Maher, M., and Marriott, K., Unification Revisited, in Foundations
of Deductive Databases and Logic Programming, J. Minker, (ed.), pp. 587-625,
Morgan Kaufmann, 1988.

Li, D., A Prolog Database System, Research Studies Press, Ltd., Wiley, England,
1984.

Lim, P. and Stuckey, P., Meta-Programming as Constraint Programming, in
Proc. NACLP-90, S. Debray and M. Hermenegildo (eds.), pp. 406-420, MIT
Press, Cambridge, Massachusetts, 1990.

Lindholm, T. and O'Keefe, R., Efficient Implementation of a Defensible Se-
mantics for Dynamic Prolog Code, in Proc. Fourth International Conference
on Logic Programming, J . L. Lassez (ed.), pp. 21-39, MIT Press, Cambridge,
Massachusetts, 1987.

Lloyd, J. W., Foundations O f Logic Programming, 2nd Edition, Springer-Verlag,
New York, 1987.

Lombardi, L. A. and Raphael, B., Lisp as the Language for an Incremental
Computer, in The Programming Language LISP: Operation and Application,
E. C . Berkeley and D. G. Bobrow (eds.), pp. 204-219, MIT Press, Cambridge,
Massachusetts, 1964.

Maier, D., The Theory o f Relational Databases, Computer Science Press, 1983.

Maier, D. and Warren, D. S., Computing with Logic-Logic Programming with
Prolog, Benjamin-Cummings, 1988.

References References

Marriott, K. and S~lndergaard, H., Difference-List Transformation for Prolog,
New Generation Computing 11(2), pp. 125-1 57, 1993.

Martelli, A. and Montanari, U., An Efficient Unification Algorithm, ACM Trans-
actions on Programming Languages and Systems 4(2), pp. 258-282, 1982.

Matsumoto, Y., Tanaka, H., and Kiyono, M., BUP: A Bottom-Up Parsing System
for Natural Languages, in (van Caneghem and Warren, 19861, pp. 262-275.

Mellish, C. S., Some Global Optimizations for a Prolog Compiler, J. Logic
Programming 2, pp. 43-66, 1985.

Michie, D., "Memo" Functions and Machine Learning, Nature, 218, pp. 19-22,
1968.

Miller, D. and Nadathur, G., Higher-Order Logic Programming, in Proc. Third
International Conference on Logic Programming, E. Y. Shapiro, (ed.), pp. 448-
462, Springer-Verlag LNCS 225, 1986.

Minsky, M., Semantic Information Processing, MIT Press, Cambridge, Massa-
chusetts, 1968.

Moss, C., Cut and Paste-Defining the Impure Primitives of Prolog, in Proc.
Third International Conference on Logic Programming, E. Y. Shapiro, (ed.), pp.
686-694, Springer-Verlag LNCS 225, 1986.

Naish, L., All Solutions Predicate in PROLOG, in Proc. IEEE Symposium on
Logic Programming, Boston, pp. 73-77, IEEE Computer Society Press, 1985a.

Naish, L., Automating Control for Logic Programs, J. Logic Programming 2,
pp. 167-184, 1985b.

Naish, L., Negation and Control in Prolog, Springer-Verlag LNCS 238, 1986.

Nakashima, H., Tomura S. and Ucda, K., What Is a Variable in Prolog? in Proc.
of the International Conference on Fifth Generation Computer Systems, pp.
327-332, ICOT - Institute for New Generation Computer Technology, Tokyo,
Japan, 1984.

Nilsson, N. J., Problem Solving Methods in Artificial Intelligence, McGraw-Hill,
New York, 1971.

Nilsson, N. J., Principles o f Artificial Intelligence, Tioga Publishing Co., Palo
Alto, California, 1980.

O'Keefe, R. A,, Programming Meta-Logical Operations in Prolog, DAI Working
Paper No. 142, University of Edinburgh, Scotland, 1983.

O'Keefe, R. A,, On the Treatment of Cuts in Prolog Source-Level Tools, in
Proc. 1985 IEEE Symposium on Logic Programming, Boston, pp. 68-72, IEEE
Computer Society Press, 1985.

O'Keefe, R. A., The Craft o f Prolog, MIT Press, Cambridge, Massachusetts,
1990.

Paterson, M. S. and Wegman, M. N., Linear Unification, J. Computer and Sys-
tems Sciences 16, pp. 158-167, 1978.

Pereira, L. M., Logic Control with Logic, in Proc. First International Logic Pro-
gramming Conference, pp. 9-18, Marseilles, France, 1982.

Pereira, F. C. N. and Shieber, S., Prolog and Natural Language Analysis, CSLI
Lecture Notes No. 10, CSLI, Stanford 1Tniversity, Stanford, 1987.

Pereira, F. C. N. and Warren, D. H. D., Definite Clause Grammars for Language
Analysis-A Survey of the Formalism and a Comparison with Augmented
Transition Networks, Artificial Intelligence 13, pp. 23 1-278, 1980.

Peter, R., Recursive Functions, Academic Press, New York, 1967

Plaisted, D.)I., The Occur-Check Problem in Prolog, New Generation Comput-
ing 2, pp. 309-322, 1984.

Pliimer, L., Termination Proofs for Logic Programs, Springer-Verlag, New
York, 1990.

Power, A. J. and Sterling, L. S., A Notion of Map between Logic Programs, in
Proc. Seventh International Conference on Logic Programming, D. H. D. War-
ren and P. Szeredi (eds.), pp. 390-404, MIT Press, Cambridge, Massachusetts,
1990.

Powers, D., Playing Mastermind More Logically, SIGART Newsletter 89, pp.
28-32, 1984.

Quintus Prolog Reference Manual, Quintus Computer Systems Ltd., 1985.

Reiter, R., On Closed World Databases, in (Gallaire and Minker, 1978), pp. 55-
76. Also in Readings in Artificial Intelligence, Webber and Nilsson (eds.), Tioga
Publishing Co., Palo Alto, California, 1981.

Robinson, J. A, , A Machine-Oriented Logic Based on the Resolution Principle,
J. ACM 12, pp. 23-41, January 1965.

Robinson, J. A. and Sibert, E. E., LOGLISP: Motivation, Design and Implemen-
tation, in (Clark and Tarnlund, 19821, pp. 299-313.

Ross, P., Advanced Prolog, Technzques and Examples, Addison-Wesley, Read-
ing, Massachusetts, 1989.

Y'lm?LSlDkG DE: LA R E P n E E A
PAC1" "!'I,, : :?'SrNrBm

References References

Sahlin, D., An Automatic Partial Evaluator for Full Prolog, Ph. D. Thesis, avail-
able as SICS Dissertation Series 4, Swedish Institute of Computer Science,
1991.

Schank, R. C. and Abelson, R. P., Scripts, Plans, Goals, and Understanding,
Lawrence Erlbaum, Hillsdale, N. J., 1977.

Schank, R. C. and Riesbeck, C., Inside Computer Understanding: Five Pro-
grams Plus Miniatures, Lawrence Erlbaum, Hillsdale, N. J., 1981.

Scowen, R., Prolog: Working Draft 5.0, N72, 1991.

Sedgewick, R., Algorithms, Addison-Wesley, Reading, Massachusetts, 1983.

Sergot, M., A Query the User Facility for Logic Programming, in Integrated
Interactive Computer Systems, North-Holland, Amsterdam, 1983.

Shapiro, E., Algorithmic Program Debugging, MIT Press, Cambridge, Massa-
chusetts, 1983a.

Shapiro, E., .4 Subset of Concurrent Prolog and Its Interpreter, Tech. Report
TR-003, ICOT-Institute for New Generation Computer Technology, Tokyo,
Japan, 1983b.

Shapiro, E., Logic Programs with Uncertainties: A Tool for Implementing Rule-
Based Systems, Proc. Eighth International Joint Conference on Artificial Intel-
ligence, pp. 5 29-532, Karlsruhe, Germany, 1983c.

Shapiro, E., Playing Mastermind Logically, SlGART Newsletter 85, pp. 28-29,
1983d.

Shapiro, E., Alternation and the Computational Complexity of Logic Pro-
grams, J. Logic Programming 1, pp. 19-33, 1984.

Shapiro, E., Systems Programming in Concurrent Prolog, in (van Caneghem
and Warren, 1986), pp. 50-74.

Shapiro, E. and Takeuchi, A,, Object Oriented Programming in Concurrent
Prolog, New Generation Computing 1, pp. 25-48, 1983.

Shortliffe, E. H., Computer Based Medical Consultation, MYCIN, North-
Holland, New York, 1976.

Silver, B., Meta-level Inference, Elsevier Science, Amsterdam, Netherlands,
1986.

Silverman, W., Hirsch, M., Houri, A. and Shapiro, E., The Logix System User
Manual, Weizmann Institute of Science, Rehovot, Israel, 1986.

Slagle, J. and Dixon, J., Experiments with Some Programs That Search Game
Trees, J. ACM 16, pp. 189-207, 1969.

Smith, D., Partial Evaluation of Pattern Matchng in Constraint Logic Program-
ming Languages, Proc. Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, SIGPLAN Notices 26, pp. 62-71, September 1991.

S~lndergaard, H., Semantics-Based Analysis and Transformation of Logic Pro-
grams, Ph. D. Thesis, also Tech. Report 89/2 1, University of Melbourne, 1989.

Steele, G. L., Jr. and Sussman, G. J., The Art of the Interpreter, or the Modu-
larity Complex, Tech. Memorandum AIM-453, MIT AI-Lab, May 1978.

Sterling, L. S., Expert System = Knowledge + Meta-Interpreter, Tech. Report
(384-17, Weizmann Institute of Science, Rehovot, Israel, 1984.

Sterling, L. S. (ed.), The Practice o f Prolog, MIT Press, Cambridge, Massachu-
setts, 1990.

Sterling, L. S. and Beer, R. D., Meta-Interpreters for Expert System Construc-
tion, J. Logic Programming 6(l-2), pp. 163-178, 1989.

Sterling, L. S. and Bundy, A., Meta-Level Inference and Program Verification, in
Proc. of the Sixth Conference on Automated Deduction, pp. 144-150, Springer-
Verlag LNCS 138, 1982.

Sterling, L. S., Bundy, A., Byrd, L., O'Keefe, R., and Silver, B., Solving symbolic
equations with PRESS, in Computer Algebra, pp. 109-116, Springer-Verlag
LNCS 144, 1982.

Sterling, L. S. and Codish, M., PRESSing for Parallelism: A Prolog Pro-
gram Made Concurrent, J. Logic Programming 3, pp. 75-92, 1986.

Sterling, L. S. and Kirschenbaum, M., Applying Techniques to Skeletons, in
Constructing Logic Programs, J . M. J . Jacquet (ed.), pp.127-140. Wiley, New
York, 1993.

Sterling, L. S. and Lalee, M., An Explanation Shell for Expert Systems, Compu-
tational Intelligence 2, pp. 136-14 1, 1986.

Sterling, L. S. and Lakhotia, A., Composing Prolog Meta-Interpreters, in Proc.
Fifth International Conference on Logic Programming, K. Bowen, and R.
Kowalski, (eds.), pp. 386-403, MIT Press, Cambridge, Massachusetts, 1988.

Sterling, L. S. and Yalqinalp, L. U., Explaining Prolog Computations llsing a
Layered Meta-Interpreter, in Proc. IJCAI-89, pp. 66-71, Morgan Kaufmann,
1989.

References References

Takeuchi, A. and Furukawa, K., Partial Evaluation of Prolog Programs and Its
Application to Meta Programming, Information Processing 86, H. J. Kugler
(ed.), pp. 415-420, Elsevier, New York, 1986.

Tamaki, H. and Sato, T., Unfold/Fold Transformations of Logic Programs,
Proc. Second International Conference on Logic Programming, pp. 127-138,
Uppsala, Sweden, 1984.

Tarnlund, S.-A. (ed.), Proc. of the Logic Programming Workshop, Debrecen,
Hungary, 1980.

Tick, E., Parallel Logic Programming, MIT Press, Cambridge, Massachusetts,
1991.

Ueda, K., Guarded Horn Clauses, ICOT Tech. Report 103, ICOT, Tokyo, Japan,
1985.

Ullman, J. D., Principles o f Database Systems, 2nd Edition, Computer Science
Press, 1982.

Ullman, J. D., Principles o f Database and Knowledge-Base Symbols, Volume 1,
Computer Science Press, 1989.

van Caneghem, M. (ed.), Prolog-II User's Manual, 1982.

van Caneghem, M. and Warren, D. H. D. (eds.), Logic Programming and its
Applications, Ablex Publishing Co., 1986.

van Emden, M., Warren's Doctrine on the Slash, Logic Programming Newslet-
ter, December, 1982.

van Emden, M. and Kowalski, R., The Semantics of Predicate Logic as a Pro-
gramming Language, Comm. ACM 23, pp. 733-742, 1976.

Venken, R., A Prolog Meta-Interpreter for Partial Evaluation and its Appli-
cation to Source-to-Source Transformation and Query Optimization, in Proc.
European Conference on Artificial Intelligence, pp. 91-100, Pisa, 1984.

Warren, D. H. D., Generating Conditional Plans and Programs, Proc. AISB
Summer Conference, pp. 344-354, Edinburgh, Scotland, 1976.

Warren, D. H. D., Implementing Prolog-Compiling Logic Programs 1 and 2,
DAI Research Reports 39 and 40, University of Edinburgh, Scotland, 1977.

Warren, D. H. D., Logic Programming and Compiler Writing, Soffware-Practice
and Experience 10(2), pp. 97-125, 1980.

Warren, D. H. D., Perpetual Processes-An Unexploited Prolog Technique, in
Proc. Prolog Programming Environments Workshop, Sweden, 1982b.

Warren, D. H. D., An Abstract Prolog Instruction Set, Tech. Note 309, SRI
International, Menlo Park, California, 1983.

Warren, D. H. D., Optimizing Tail Recursion in Prolog, in (van Caneghem and
Warren, 1986), pp. 77-90.

Warren, D. H. D., Pereira, F., and Pereira L. M., User's Guide to DECsystem-10
Prolog, Occasional Paper 15, Department of Artificial Intelligence, University
of Edinburgh, Scotland, 1979.

Weizenbaum, J., ELIZA-A Computer Program for the Study of Natural Lan-
guage Communication between Man and Machine, CACM 9, pp. 36-45, 1966.

Weizenbaum, J., Computer Power and Human Reason, W. H. Freeman & Co.,
1976.

Welham, R., Geometry Problem Solving, Research Report 14, Department of
Artificial Intelligence, University of Edinburgh, Scotland, 1976.

M'inograd, T., Language as a Cognitive Process, Volume I . Syntax, Addison-
Wesley, Reading, Massachusetts, 1983.

Winston, P. H., Artificial Intelligence, Addison-Wesley, Reading, Massachu-
setts, 1977.

Yalqinalp, L. u., Meta-Programming for Knowledge-Based Systems in Prolog,
Ph. D. Thesis, available as Tech. Report TR 91-141, Center for Automation
and Intelligent Systems Research, Case Western Reserve University, Cleve-
land, 1991.

Yalqinalp, L. U. and Sterling, L. S., An Integrated Interpreter for Explaining
Prolog's Successes and Failures, in (Abramson and Rogers, 1989), pp. 191-
203.

Yalqinalp, L. U. and Sterling, L. S., lincertainty Reasoning in Prolog with Lay-
ered Meta-Interpreters, in Proc. Seventh Conference on Artificial Intelligence
Applications, pp. 398-402, IEEE Computer Society Press, February 1991.

Warren, D. H. D., Higher-Order Extensions to Prolog: Are They Needed?, Ma-
chine Intelligence 10, pp. 441-454, Hayes, Michie and Pao (eds.), Ellis Hor-
wood Publications, Wiley, New York, 1982a.

Index

Abstract interpretation, 147
Abstract interpreter, 22-24, 91-96,

119-123
Accumulator, 146-147, 155-1 57,

166, 240, 254, 266, 287-288,
309

bottom-up construction of lists,
145-146

definition, 1 5 5
generalization to difference-list,

287-288
Abramson, Harvey, 388
Ackermam's function, 53-5 5 , 85
Ait-Kaci, Hassan, 12 7, 2 13
All-solutions predicates, 302-304
Alpha-beta pruning, 405-407
Alphabetic variant, 88, 200
Alternating Turing machne, 11 5
ANALOGY, 270,272,281
Ancestor cut, 354
Anonymous variable, 2 34
APES expert system shell, 355
append, 60-62, 93-94, 104-105, 109,

122, 131, 133, 140, 196-197,
288, 311

Appending. See Concatenation
Apt, Krzystof, 99, 1056
arg, 167-168, 173, 174
Argument, 13, 27, 171
Arithmetic

logic programs for, 45-55

Prolog programs for, 150-161
Arithmetic evaluation, 150-1 5 1
Arithmetic expression, 15 1, 467
Arity, 13, 27, 32
Askable goals for expert systems,

344-346
Assembler, 475-477
asser t , 220-221,231-232, 304
Assignment, 125, 170
Atom, 11, 27, 164
atom, 163-164
atomic, 164
Automata, 3 19-323

Backtraclung, 120-122, 125, 190,
192, 218, 231, 249-250, 280,
324

deep, 124
intelligent, 280
shallow, 124

bagof, 303, 317
Bansal, Arvind, 280
Barklund, Jonas, 187
Beer, Randall, 3 73
Benchmark, 209
Ben-David, Arie, 438
Berge, Claude, 423
Bergman, Marc, 4 5 7
Best-first search, 396-400
Binary predicate, 38, 44
Binary tree, 72-77, 85, 295

Binding, 9 1
Bips, 150
Bird, R., 245
Bloch, Charlene, 162
Blocks world problem, 269-2 71
Body of a clause, 18
Boolean formula, 82-83
Bottom-up construction, 145-146,

287
Bottom-up evaluation, 44
Bottom-up implementation, 2 3 7
Bottom-up parser, 388
Bowen, Dave, 12 7
Bowen, Ken, 85
Boyer, Robert, 85
Breadth-first search, 266, 305-307,

396, 398
Broderick, David, 3 17
Bruffaerts, A., 355
Bruynooghe, Maurice, 2 12, 282, 300
Builtin predicates, 150, 326-327
Bundy, Alan, 85, 99, 281, 457
Burstall, Rod, 373
Byrd, Lawrence, 457

c a l l , 186
car, 56
Cartesian product, in relational

algebra, 43
cdr, 56
Certainty factor, 330
Certainty threshold, 330-331
Chain rule, for derivatives, 80-81
Character I/O, 216-2 18
Character strings, 216, 2 18
Chen, Weidong, 3 18
Chikayama, Takash, 2 12
Choice point, 208
Chow, D., 99
Circuit, logic program, 32-34
Circular definition, 133
Clark, Keith, 115, 127, 147, 212, 282,

300, 355
Clause, 18, 24, 27-28, 95, 120, 219

body, 18
definition, 18, 27
head, 18
Horn, 18
indexing, 196-197, 209-2 10
iterative, 18, 28
nondeterministic choice, 24, 120
order. See Rule order
reduction, 95, 120, 326
unit, 18, 28

clause, 219, 324-325
Clause reduction level, 326
Clocksin, William, 85, 128
Closed world assumption, 11 5
Code generation (for PL), 470-475
Codish, Michael, 457
Coelho, Helder, 85, 282, 354
Cohen, Jacques, 127, 128
Colmerauer, Alain, 99, 127, 187, 212,

354, 388
Coloring planar maps, 255-257
Comments, 33, 235
Common instance, 16, 88
Commutative relation, 132
Comparison of Prolog with conven-

tional languages, 124-126
Comparison operator, 153
Compiler for PL, 459-475
Compiler for Prolog, 2 13
Complete list, 107, 133
Complete natural number, 107
Complete structure, 133
Complete type, 107
Completeness

of program, 26, 28,46,48, 106
of recursive data structure, 107

Complexity, 108-109
depth, 109
goal-size, 109
length, 108
time, 108, 209

COMPOSERS, 244
Composition, 239, 366-368, 374
Composition specification, 367

compound, 163-164
Compound term, 13-14, 27, 35, 37,

108, 167-173
size of, 108

Computation
deterministic, 95, 112
goal, 92, 96, 120
nondeterministic, 1 12
nonterminating, 92, 106-107, 11 1,

132-133, 332, 386.
of logic program, 22, 28, 92
output, 91
parallel, 99
of Prolog program, 120- 12 3
redundant, 138

Concatenation
of lists, 60-61
of difference-lists, 284

Conceptual dependency, 276, 281
Concurrent logic language, 99, 23 1
Concurrent Prolog, 120, 179, 186,

457
Conjunctive goal, 92, 219
Conjunctive query, 16-18
Cons pair, 58
Consing, 2 11, 284
Constant, 27, 108, 164
constant, 164
consult, 230-231
Context-dependent information, 385
Context, finding keywords in, 3 11-

3 13
Context-free grammar, 369-3 71,

375-377
translation to Prolog program,

372-373
Continuation-style meta-interpreter,

326
Control flow, 124, 133, 238-240
Conventional language, comparison

with Prolog, 124-126
copy-term, 224
Co-routining, 147, 187, 280

Correctness of program, 26, 28,
46-49, 106, 153

Cotta, J., 85, 282
Counterexample, 3 34
Credit evaluation system, 439-457
Cut, 189-213, 327,449

definition, 190
effect of, 190-192,202-205
effect on storage space, 192,

208-209
in expressing mutually exclusive

test, 189
-fail combination. See Cut-fail

combination
green. See Green cut
in if-then-else statement, 205
incompleteness in implementing

negation as failure, 199
loss of flexibility, 194, 204, 205
red, 195, 202-205
restriction on rule order, 198
rule order in negation as failure,

198
scope, 195, 327
search tree pruning, 190- 191
simulation in meta-interpreter,

327
Cut-fail combination, 20 1-202

implementing meta-logical
predicate, 201-202

safe use, 201

DAG, 264, 305-306
Dahl, Veronica, 394
Darlington, John, 373
Data abstraction, 35-38, 258
Data manipulation, in Prolog, 12 5
Data structure, 125, 143-147, 171,

211, 274, 283-300
creation in Prolog, 12 5
cyclic, 298
incomplete, 146, 274, 283-300
in Prolog, 143-147

Database,
deductive, 44
logical, 29
relational, 42-44

Davis, Ernie, 281
DCG. See Definite clause grammar
Debugging, enhanced meta-

interpreter for, 33 1-340
Declarative reading, 19, 57, 65-66,

324
Declarative semantics, 104
Deductive database, 44
Deep backtracking, 124
Default rule, 206-208
Definite clause grammar, 375-388,

466
generative feature, 386
relationshp with context-free

grammar, 376, 377
Denotational semantics, 105
Depth-bounded meta-interpreter,

332-333
Depth-complexity, 109
Depth-first graph traversal, 266
Depth-first search, 112, 120, 130,

264-266, 389, 396
Depth-first traversal of search tree,

112
Derivative, 79-81, 172
Dershowitz, Nachum, 354
Destructive assignment, 125, 170
Deterministic computation, 95,

111-112
Deville, Yves, 115, 147, 244, 245
Dictionary, 293-296, 300, 470, 477
Difference-list, 283-292, 299-300,

304, 305, 371, 373
compatibility of, 284
concatenation, 284-285
head, 283
tail, 284

Difference-structure, 291-293, 457,
476

Difference-sum, 291

Differentiation, 79-81, 172
Dincbas, Mehmet, 3 54
Directed acyclic graph, 264, 305-306
Directed graph, 40-41, 264
Disjunction, 2 1, 186
Disjunctive goal, 186
Disjunctive relationship, 42
Disz, Terry, 127
Divide-and-conquer, 69
Divide-and-query, 3 38
Domain, 106, 133, 332

intended, 332
termination, 106

Don't-care nondeterminism, 263,
280

Don't-know nondeterminism, 263-
264, 280

Double recursion, 73-74, 165, 287
Drabent, W., 354
Dudeney, H., 401
Dutch flag problem, 289-290
Dwork, Cynthia, 99
Dynamic predicate, 232

Editor, 223-226
Edinburgh Prolog, 120, 127, 208
Eggert, Paul, 99
Elcock, E., 280
Eliza, 273-275, 281
Empty difference-list, 284
Empty list, 56
Empty queue, 298
Empty tree, 72
Enhancement, 239-241, 326
Equation solving, 4 39-4 5 7

definition, 440
factorization, 440, 448-449
homogenization, 441,454-456
isolation, 440-44 1, 449-4 52
overview, 439-441
polynomial, 4 52-454
quadratic, 441
simplification, 45 1-4 5 2

Ernst, George, 281

Error condition, 126, 15 1, 164
Error handling, 126, 151
Error, runtime, 15 1, 153
Euclidean algorithm, 54, 152
Evaluable predicate. See Builtin

predicates
Evaluation of arithmetic expression,

150-151
Evaluation function, 395, 403
Evaluation, partial, 360-365
Exception handling, 126, 15 1
Execution mechanism, 120
Execution model of Prolog, 11 9- 12 2
Existential quantification, 20
Existential query, 14-1 5
Expert system

for credit evaluation, 429-438
enhanced interpreters for, 341-

3 54
Evans, Thomas, 281
Explanation shell for expert systems,

341-353
Extra-logical predicate, 2 15-231

for i/o, 215-219
for program access and manipula-

tion, 2 19-22 1
types of, 2 15

Fact, 11-12, 15-16, 27
Factorial, 51-52, 155-156
Factorization, 440, 448-449
Failure-driven loops, 229-23 1, 423
Failure node, 110
False solution, 334-339
FCP, 457
f i nda l l , 302, 317
Finite failure, 113-1 14
Fixpoint of a logic program, 105
Fixpoint semantics, 105
Flattening a list, 164-166, 285-288,

298-299
Fold/unfold, 3 5 7-360, 373
Freezing terms, 183-185
Friiwirth, Thom, 280

Function
algebraic, 440
relationship to relation, 49

Functional programming, 3
Functor, 4, 13-14, 167
functor , 167-174
Furukawa, Koich, 373
Futamura, Y., 373

Gallagher, John, 300, 373
Gallaire, Herve, 44, 3 54
Game playing framework, 402
Game tree, 402-403
Garbage collection, 197, 231, 423
Generalization, 14
Generate-and-test, 69, 249-262, 280

in game playing, 4 12
optimization, 2 52

Generator, 250, 252, 254
get-char, 217-218
GHC, 120, 127
Goal

conjunctive, 22, 92
computation of, 92, 120
definition, 12
derived, 23, 92
disjunctive, 186
dynamic construction of, 3 15
ground, 25-26
invocation, 92, 128
parent, 92
reduction, 22, 92, 95-96
selection, 24
sibling, 92
size, 108

Goal order, 95, 129, 133, 136, 178,
209, 324

and left recursion, 136
and nonterminating computation,

135-136
comparison with clause order,

135
effect on termination, 13 5
effect on trace, 95

Grammar. See Context-free grammar;
Definite clause grammar

Grammar rule, 369-372
Granularity, of a meta-interpreter,

326
Graph, 40-41, 264-266, 305, 306

connectivity, 40-41, 266
cyclic, 305-306
directed, 40-41, 264-266
directed acyclic, 264-266, 305-306

Greatest common divisor, 54, 152
Green cut, 184-195, 212,449

effect on declarative meaning, 194
Gregory, Steve, 127, 198
Ground

definition, 14
goal, 25-26, 93
instance, 24, 26
object, 183-183
reduction, 2 3
representation, 187
term, 27
query, 14

Hammond, Peter, 3 5 5
Haridi, Seif, 12 7
Head of a clause, 18
Head of a list, 58
Heap, 208, 21 1
Heapify a binary tree, 75-77
Heap property, 75
Heintze, Nevin, 187
Henin, Eric, 3 5 5
Herbrand base, 102-105
Herbrand universe, 102
Heuristic search, 395
Hill-climbing, 396-398
Hill, Pat, 187
Hill, R., 1 15
HiLog, 324
Hirschmann, Lynette, 388
Homogenization, 44 1,454-456
Horn clause, 18

IC-Prolog, 120, 127, 147, 280
Identity, 13
If-then-else statement, 205, 212
Incomplete data structure, 146, 274,

283-300
Incomplete list, 107, 133, 136, 141,

144,283, 293
Incomplete structure, 146, 287
Incomplete type, 107
Indexing, 196-197,210
Infinite graph, 266, 305
Infinite search tree, 96, 11 1, 13 1
Inorder traversal of binary tree, 75
Input/output at the character level,

216-218
Input/output for reading in a list of

words, 2 17-2 18
Insertion sort, 69-70, 333
Instance,

common, 16 ,88
definition, 14, 27, 88
ground, 23, 26

Instantiation, 16
Intelligent backtracking, 280
Intended domain, 3 3 2
Interactive

loop, 223
program, 223-230
prompting, 346

integer, 163-164
Interchange sort, 194-195
Interpretation of a logic program,

103-104
Interpreter

abstract. See Abstract interpreter
of automata, 319-322
meta-, 227, 323-341

Intersection in relational algebra, 43
Isolation, 440-44 1, 449-452
Isomorphism of binary trees, 74,

2 64
Iteration, 154-159
Iterative clause, 18, 28, 154

Jaffar, Joxan, 99, 11 5
Jain, Ashish, 245
Janson, Sverker, 12 7
Join in relational algebra, 43

Kahn, Ken, 3 17
Kahn, Gilles, 245
Kalah, 420-427
Kaminski, Steven, 280
Kanoui, H., 457
Key-value pairs, 294
Kirschenbaum, Marc, 244, 245, 374
Knuth, Donald, 85
Komorowski, Jan, 3 73
Kowalslu, Robert, 44, 115, 127, 147,

280
Kunen, Ken, 11 5
KWIC, 311-313, 318

Lakhotia, Arun, 245, 374
Lambda calculus, 1 19
Lambda expression, 3 16, 318
Lambda Prolog, 324
Lasserre, Claudine, 3 54
Lassez, Jean-Louis, 99
Last call optimization, 196-197, 209
Lee algorithm, 306-3 11, 3 17
Lee, Y., 354
Left recursive rule, 132
Lemma, 22 1
Length complexity, 109
Length of list, 64, 160-161, 177
Le Pape, J., 354
Lexical analysis, 461
Li, Deyi, 44
Lim, Pierre, 187
Lndholm, Tim, 232
Linear recursive, 40
LIPS, 209
Lisp, 119, 317, 373
List, 56-64, 125-126, 133, 135,

137-146, 158
complete, 107, 133
definition, 5 7

empty, 56
flattening, 164-166, 285-288,

298-299
head, 56
incomplete, 107, 133, 136, 141,

144, 283, 293
length, 64, 160-161, 177
merging, 137-138, 189-192
splitting, 61
tail, 56
type definition, 57

Lloyd, John, 99, 115, 187, 300
Logging facility, 2 2 7-228
Logic program,

definition, 20, 27
interpretation, 103-104
meaning, 25-26, 28

Logic puzzles, 258-261, 280
Logical consequence, 17, 20
Logical deduction, 16, 20, 27
Logical database, 29
Logical disjunction, 186
Logical implication, 13, 16
Logical variable, 13, 91, 126, 156,

287, 383,476
LOGLISP, 147

Maier, David, 44, 213
Maher, Michael, 99
Maintenance, 242
Mapping of list, 143, 314-315
Marriott, Kim, 99, 300
Marseilles Prolog, 127-128, 2 12
Martelli, Alberto, 99
Mastermind, 41 1-414,423
Matsumoto, Y., 388
McCabe, Frank, 127, 147, 282, 355
McSAM, 274, 276-278, 281
Mellish, Chris, 85, 128, 147
Meaning, 25-26, 28

declarative, 104
definition, 25
intended, 25, 28, 105-106, 332,

340

Meaning (cont.)
of logic program, 25-26

Melting frozen terms, 184, 296
member, 57-58, 59, 61, 130-131, 133,

138, 140,205, 250, 251
Memo-function, 221-222, 232, 396
Merge sort, 69
Merging sorted lists, 137-138, 189-

192
Meta-arguments, 3 73
Meta-interpreter, 227, 242, 323-341

for debugging, 33 1-340, 3 54
definition, 3 2 3
depth-bounded, 332-333
enhanced, 324, 328-331,
granularity, 3 26
proof tree, 329-330, 337-338
run-time overhead, 3 73

Meta-logical predicate, 175-1 86, 201,
317

Meta-logical test, 152, 176-1 78
Meta-programming, 186, 3 19, 354,

366
Meta-variable facility, 15 5-1 56, 2 15,

3 04
Mgu, 88
Michie, Donald, 232
Miller, Dale, 3 18
Minimal model, 104
Minimal recursive program, 46, 132,

140
Minimax algorithm, 404-407
Minker, Jack, 44
Minsky, Marvin, 281
Missing solution, 339-340
Model of a logic program, 104
Mode of use, 243
Module, 244
Monotonic mapping, 105
Montanari, Ugo, 99
Moore, J., 85
Moss, Chris, 212, 232
Most general unifier, 88
MU-Prolog, 120, 127, 147

Multiple solutions, 49-50, 243, 302
Multiple success node, 11

N queens problem, 252-255,280
Nadathur, Gopalan, 3 18
Naish, Lee, 127, 147, 213, 317
Nakashima,, H., 186-187
Natural number, 46-5 1, 102, 104
NDFA, 319-32 1
Negation as failure, 11 3-1 15, 198-

200
Negation in logic programs, 11 3-1 15,

199
Nilsson, Martin, 162
Nim, 41 5-420,423
Nonground representation, 187
Nonterminal symbols in grammar,

369-370
Nonterminating computation, 92,

111, 131-133, 153, 332-334, 386
Nondeterminism, 24, 95-96, 112,

249-280
combining with negation as failure,

303
combining with second-order, 306
definition, 24, 95-96
don't-care, 263, 280
don't-know, 263-264, 280
in game playing, 4 12

Nondeterministic choice, 24, 95, 119
Nondeterministic computation, 11 1-

112
Nondeterministic finite automata,

319-321
nonvar, 176, 178
not, 198-200
NPDA, 322
Number, 46-51, 152

parsing, 386-387
recursive structure, 152

Occurs check, 89, 90-91, 99, 109,
179,298

Offenders set, 441, 455

O'Keefe, Richard, 174, 186, 21 2, 21 3,
232,244,281, 300, 317, 354

Operational semantics, 102
Operator, 31, 150,479-481
Oracle, 33 5

Palindrome, 3 2 2
Parent goal, 92
PARLOG, 120,127
Parser for PL, 466-469
Parse tree, 383
Parsing with DCGs, 375-388
Partial evaluation, 360, 373-374
Partial reduction, 360-36 5
Pascal, 378-379,459
Pattern matching, 273-275, 278
Pereira, Fernando, 128, 388
Pereira, Luis, 280, 354
Permutation sort, 68-69, 2 52
Perpetual process, 23 1, 300
PL, 459-460
Plaisted, David, 99
Pliimer, Lutz, 147
Poker, 74, 87
Polynomial, 78-79, 452-454

coefficient representation, 4 5 2
using cut, 193

Postorder traversal, 75, 335
Power, John, 244
Powers, David, 423
Predicate

definition, 11
dynamic, 232
evaluable, 149
extra-logical, 2 15-23 1
names, 29,233-234
static, 232
structure inspection, 163-1 74
system, 149

Preorder traversal, 75
PRESS, 439,441,457
Priority of operators, 479-480
Problem solving

depth-first framework, 390

best-first framework, 399-400
hill-climbing framework, 397
searchmg state space, 389-398

Procedural semantics, 102
Procedure

defmtion, 2 1
invocation, 124

Program
access and manipulation, 2 19-22 1
completeness, 26, 28,46, 48, 105
complexity, 108-109
correctness, 26, 28, 46-49, 105-

106, 153
definition, 12, 20, 27
development, 235-238
functional, 3, 49
maintenance, 242
relational, 3, 49
termination, 106, 131-133, 147

Programming
with side-effects, 220, 231, 237
bottom-up, 237
interactive, 223-230
style and layout, 233-235

Projection in relational algebra, 43
Prolog

comparison with conventional
languages, 124-126

computation, 120- 122
execution mechanism, 120
higher order extension, 3 14-3 18
program efficiency, 208-2 11
pure, 119, 235, 326, 332

Prolog 11, 120, 127
Proof tree, 25,47, 58, 60-61, 63, 112,

329-330, 337-338
ProSE group, 244
Prototyping, 23 7
Pushdown automata, 321-322
Puzzle solver. 258-261

Quantification, 15, 18-20
Query, 12-18, 28

conjunctive, 16-18

Query (cont.)
definition, 12
existential, 14-1 5
simple, 12, 17

Queue, 297-300
negative elements, 299

Quicksort, 69-71, 122-123, 135,
288-289

read, 215-216
r ea l , 164
Record structure, 126
Recursion, 154-162, 195-198

tail, 154-162, 192, 209, 213
Recursive computation, 154
Recursive data structure, 107, 291

heuristics for goal order, 136
Recursive rule, 39-42, 132-133, 386

left, 132
linear, 40

Red cut, 195, 202-205
Reduced term, 44 1 , 4 5 5
Reduction, 22-23, 92-95, 111
Redundant computation, 138
Redundant solution, 136-1 38, 192
Redundancy, 264
Reiter, Raymond, 11 5
Relation

definition, 11, 30
relationshp to function, 49

Relational algebra, 42-44
Relational database, 42-44
Relational Language, 12 7
Relation scheme, 29, 242
Relocatable code, 461
Renaming, 92
repeat , 230
Repeat loop, 230-231
Resolvent, 22, 92, 96
r e t r a c t , 220-221, 231-232, 304
Reusable code, 242,
Reversing a list, 62-64, 136
Robinson, Alan, 98, 1 15, 147
Ross, Peter, 232, 244, 317

Rotating of list, 3 12
Roussel, Phillipe, 127
rplacd, 284-285
Rule, 18-21, 39-41, 130

body, 18 ,27
default, 206-208
definition, 18, 27
head, 18, 27
recursive, 39-41

Rule order, 129-131, 198
effect on solution, 129-130

Runtime error, 15 1, 15 3

Safra, Shmuel, 232
Sahlin, Dan, 3 74
Sato, T., 373
Scheduling policy, 93, 119
Schemas, 244
Scope of cut in meta-interpreter, 327
Scope of variable, 17
Script, 274, 276-278
Search

best-first, 396-400
breadth-first, 266, 305-307, 396,

398
depth-first, 112, 120, 130, 264-

266, 389, 396
state space, 389-398

Searching game tree, 401-407
Searching state space, 284-294
Search tree, 96, 110-112, 130-131,

191
pruning using cut, 190-192

Second-order predicate, 3 14-3 18
Second-order programming, 30 1 -

318
combining with nondeterministic

programming, 306
Selection in relational algebra, 43
Semantics, 101-105

declarative, 104
denotational, 105
fixpoint, 105
operational, 102

procedural, 102
Sergot, Marek, 355
Set difference, in relational algebra,

4 2
se tof , 303, 317
Set predicate, 303, 31 5-314

implementation, 304
S-expression, 285
Shared variable, 15, 17, 43, 126, 199,

2 56
in conjunctive query, 17, 43
in negation as failure, 199
instantiation, 17

Shapiro, Ehud, 115, 127, 186, 231,
281, 354,423

Shell, 226-228, 341-353, 355
Sibert, Ernie, 147
Sibling goal, 92
Sicstus Prolog, 187
Side effects, 215, 220, 227,

231
Silver, Bernard, 4 5 7
Simple query, 12-18
Simplification of expression, 3 74
Skeleton, 238, 240-242, 244-245,

366-368
SLD tree. See Search tree
SLD resolution, 11 5
Smith, D., 374
Snips, 2 12
Software engineering, 242
S~ndergaard, Harald, 300
Sort

insertion, 69-70, 333
interchange, 194-195
merge, 69
permutation, 68-69, 252
quick, 69-71, 122-123, 135, 288-

289
Specification, 242-243
Specification formalism, 236
Stack, 89, 166, 208-209, 321-322

overflow, 3 3 3
scheduling policy, 93, 119

Standard Prolog, 128, 150, 232, 244,
317

State space graph, 389, 402
State space search, 380-398
Static predicate, 232
Steel, Sam, 213
Stepwise refinement, 67
Stepwise enhancement, 240-242,

244, 366
Sterling, Leon, 85, 244, 245, 280,

281, 355, 373, 374,438,457
Stimulus/response pair, 273-2 74
Stream, 23 1, 300
String manipulation, 2 16
Structure

incomplete, 146, 287
incremental buildup, 292
recursive, 291

Structured data, 35-38
Structure inspection, 163-1 74, 178,

3 15
Stuckey, Peter, 187
Subject/object number agreement in

grammar, 384-385
Substitution, 14, 27, 88

in a list, 71
in a term, 169-171, 182-183
in a tree, 75

Successor function, 46
Success node, 110
Symbolic expression manipulation,

78-81,439,457
System predicates, 149-152

Tail of a list, 58
Tail recursion optimization, 192,

196-197,209,213, 231,423
Tail recursive loop, 2 3 1, 42 3
Term, 11, 13-14, 27, 35,88,167-169,

180- 18 5
accessing, 167-168
building given list, 173
compound, 13-14, 27, 35, 37, 108,

167-173

Term (cont.)
copying, 183, 184
definition, 13
finding subterm, 168-169
identity, 180
reading, 2 15
size, 108
substitution, 169-1 71
unification. See Unification
writing, 2 15

Takeuchi, Alukazu, 3 73
Tarnaki, H., 373
Tarnlund, Sten-Ake, 300
Techmques, 239-242,244-245
Tester, 250, 252, 254
Thawing terms, 184,
Thompson, Henry, 281
Tick, Evan, 280
Time complexity, 108, 209
Top-down construction of struc-

tures, 144-145, 237, 286-288,
293, 383

Top-down development, 65-67
Top-down evaluation, 44
Towers of Hanoi, 81-82, 97-98,

221-222
Trace, 22-23, 92, 96-98, 120-123,

328, 287
as meta-program, 328
of meta-interpreter, 325
of Prolog computation, 120- 123

Transformation, of recursion to
iteration, 154-1 59

Transitive closure of relation, 40-41
Tree

binary, 72-77, 85, 295
empty, 72
game, 404-403
isomorphism of, 74, 264
parse, 383
search, 96, 110-112, 130-131, 191
traversal, 75, 335

Turing machme, 11 5, 323
Type, 45, 242

complete, 107
condition, 50-5 1, 58
delirution, 4 5
incomplete, 107
meta-logical predicate, 176
predicate, 163-164, 176
recursive, 45

Ueda, Kazunori, 1 2 7
Unary relation, type of a term,

163-164
Uncertainty reasoning, 330-33 1,

354-355
Unfolding, 286, 288, 357-360, 373
Unification, 87-91, 98-99, 109, 125-

126, 127, 143, 179-180, 251,
286

algorithm, 88-90, 179-180
including occurs check, 179- 180

Unifier, 88
Union in relational algebra, 42
Unit clause, 18, 28
univ, 171-173
Universal modus ponens, 19, 101
Universal quantification, 15, 18-19
Universally quantified fact, 15-16

Van Emden, Maarten, 99, 115, 212
Vanilla meta-interpreter, 324
var, 176, 317
Variable

anonymous, 2 34
binding, 91
definition, 13
difference in Prolog, 13
identity testing, 180-182
logical, 13, 91, 126, 156, 287, 383,

3 76
mnemonics, 29
as object, 182-185
predicate names, 3 15
renaming, 88,92
scope, 17
shared, 15, 17, 43, 126, 256

size, 108
type, 126
type checking, 256

Van Caneghem, Michel, 12 7,2 13
Venken, Raf, 3 73
Verification, 236

WAM, 2 13
Warren Abstract Machme, 2 13
Warren, David H. D., 127, 128, 213,

232, 282, 300, 317, 318, 388,
478

Warren, David Scott, 127, 213
Weak cut, 212
Weizenbaum, Joseph, 281
Welham, Bob, 457
Why explanation, 346
Wilson, Walter, 407
Winograd, Terry, 388
write, 215

Yalqinalp, Umit, 354, 355

Zebra puzzle, 262-263,280
Zero-sum game, 404

Logic Programming
Ehud Shapiro, editor
Koich Furukawa, Jean-Louis Lassez, Fernando Pereira, and
David H. D. Warren, associate editors

The Art o f Prolog: Advanced Programming Techniques, Leon Sterling and
Ehud Shapiro, 1986

Logic Programming: Proceedings of the Fourth lnternational Conference (vol-
umes 1 and 2), edited by Jean-Louis Lassez, 1987

Concurrent Prolog: Collected Papers (volumes 1 and 2) , edited by Ehud
Shapiro, 1987

Logic Programming: Proceedings of the Fifth International Conference and
Symposium (volumes 1 and 2), edited by Robert A. Kowalski and Kenneth A.
Bowen, 1988

Constraint Satisfaction in Logic Programming, Pascal Van Hentenryck, 1989

Logic-Based Knowledge Representation, edited b y Peter Jackson, Han Re-
ichgelt, and Frank van Harmelen, 1989

Logic Programming: Proceedings o f the Sixth International Conference, edited
by Giorgio Levi and Maurizio Martelli, 1989

Meta-Programming in Logic Programming, edited by Harvey Abramson and
M. H. Rogers, 1989

Logic Programming: Proceedings of the North American Conference 1989
(volumes 1 and 2) , edited by Ewing L. Lusk and Ross A. Overbeek, 1989

Logic Programming: Proceedings of the 1990 North American Conference,
edited by Saumya Debray and Manuel Hermenegildo, 1990

Logic Programming: Proceedings of the Seventh International Conference,
edited by David H. D. Warren and Peter Szeredi, 1990

The Craft of Prolog, Richard A. O'Keefe, 1990

The Practice of Prolog, edited by Leon S. Sterling, 1990

Eco-Logic: Logic-Based Approaches to Ecological Modelling, David Robertson,
Alan Bundy, Robert Muetzelfeldt, Mandy Haggith, and Michael Uschold, 1991

Warren's Abstract Machine: A Tutorial Reconstruction, Hassan Ai't-Kaci, 1991

Parallel Logic Programming, Evan Tick, 1991

Logic Programming: Proceedings of the Eighth International Conference,
edited by Koichi Furukawa, 1991

Logic Programming: Proceedings of the 1991 International Symposium, edited
by Vijay Saraswat and Kazunori Ueda, 1991

Foundations o f Disjunctive Logic Programming, Jorge Lobo, Jack Minker, and
Arcot Rajasekar, 1992

Types in Logic Programming, edited by Frank Pfenning, 1992

Logic Programming: Proceedings of the Joint International Conference and
Symposium on Logic Programming, edited by Krzysztof Apt, 1992

Concurrent Constraint Programming, Vijay A. Saraswat, 1993

Logic Programming Languages: Constraints, Functions, and Objects, edited by
K. R. Apt, J. W. de Bakker, and J. J. M. M. Rutten, 1993

Logic Programming: Proceedings of the Tenth International Conference on
Logic Programming, edited by David S. Warren, 1993

Constraint Logic Programming: Selected Research, edited by Frederic Ben-
hamou and Alain Colmerauer, 1993

A Grammatical View of Logic Programming, Pierre Deransart and Jan
Maluszynski, 1993

Logic Programming: Proceedings of the 1993 International Symposium, edited
by Dale Miller, 1993

The Godel Programming Language, Patricia Hill and John Lloyd, 1994

The Art of Prolog: Advanced Programming Techniques, second edition, Leon
Sterling and Ehud Shapiro, 1994

