Inductive Programming: Tutorial 2 Domain-Specific Languages and Background Knowledge

Stephen Muggleton

The aim of this tutorial is to help you understand concepts in Lecture 2, involving Domain-Specific Languages and Background Knowledge

Question 1

Describe Valiant's PAC-learning model.

Solution Valiant's PAC-learning model defines a class of polynomial time learning algorithms which, when given sufficient training examples, have high Probability of choosing a hypothesis which is Approximately Correct on unseen examples.

Question 2

Assume a PAC algorithm A is applied to two hypothesis spaces of sizes a) 10^5 and b) 10^2 . According to the Blumer bound, what is the minimum number of randomly sampled examples A will require to guarantee with probability 0.7 that A's error will be at most 30%.

Solution $\delta = \epsilon = 0.3$. The Blumer bound is $m \geq \frac{(\ln|\mathcal{H}| + \ln \frac{1}{\delta})}{\epsilon}$. The two cases described are as follows.

a) Substituting into the Blumer Bound gives.

$$m \geq \frac{(\ln|\mathcal{H}| + \ln\frac{1}{\delta})}{\epsilon}$$

$$\geq \frac{(\ln(10^5) + \ln\frac{1}{0.3})}{0.3}$$

$$\geq \frac{(11.51 + 1.20)}{0.3}$$

$$\geq 43$$

b) Substituting into the Blumer Bound gives.

$$m \geq \frac{(4.61 + 1.20)}{0.3} \\ \geq 20$$

Question 3

What are the relationships between Background Knowledge, Metarules and Examples in MIL?

Solution Given input (B, M, E^+, E^-) where background B is a logic program, metarules M are higher-order clauses and examples E^+, E^- are ground atoms. An MIL algorithm returns a logic program hypothesis H such that $M \models H$ and $H \cup B \models E^+$ and $H \cup B \not\models E^-$.

Question 4

What is

- a) the H_2^2 hypothesis space?
- b) the size of the H_2^2 hypothesis space?
- c) the order of the sample complexity based on the Blumer bound?

Solution

- a) The H_2^2 hypothesis space consists of definite clauses with at most two body atoms and at most predicate arity of two.
- **b)** H_2^2 hypothesis space is \mathcal{H} is $O(|M|^np^{3n})$ given M metarules, n clauses in the hypothesis and p predicate symbols.
- c) For fixed M, p we have m is $O(\frac{n}{\epsilon})$.

Question 5

Describe three techniques implemented in Metagol to increase efficiency of the search.

Solution

- 1) Ordering the Herbrand Base guarantees termination of derivations. Orderings can be either lexicographic or interval based.
- 2) Episodes allow sequence of related learned concepts, which reduces the complexity of the search from $\prod_i |H_i|$ to $\sum_i |H_i|$.
- 3) Iterative deepening search $H_0, ..., H_n$ returns $h_n \in H_n$ where n minimal. Hypotheses in H_i have i clauses. Search minimal. Returned consistent hypothesis minimal number of clauses.