Inductive Programming Lecture 8 Game Strategy Induction

Stephen Muggleton
Department of Computing
Imperial College, London and
University of Nanjing

20th November, 2023

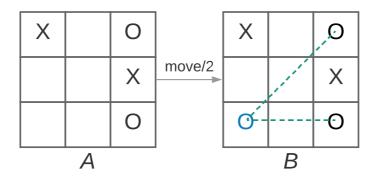
Papers for this lecture

Paper 8.1: S.H. Muggleton and C. Hocquette. Machine discovery of comprehensible strategies for simple games using meta-interpretive learning. New Generation Computing, 37:203-217, 2019.

Motivation

- Inductive Programming and AI
- World-class play for Go, Chess, Checkers AlphaGo (2016) and AlphaZero (2018)
- Deep Reinforcement Learning
- Poor Data Efficiency and Human Comprehensibility
- Meta-Interpretive Game Ordinator (MIGO)
- Minimax Evaluable games Noughts-and-Crosses and Hexapawn

Noughts and Crosses



win_2(A,B):-win_2_1_1(A,B),not(win_2_1_1(B,C)).
win_2_1_1(A,B):-move(A,B),not(win_1(B,C)).
win_1(A,B):- move(A,B),won(B).

Related work

- Reinforcement Learning World's first reinforcement learning,
 MENACE (Michie, 1963) learned noughts-and-crosses using
 matchboxes, punishment and reward beads. HER (Gardner, 1962)
 for Hexapawn.
- Chess endgame strategies Learn minimax depth-of-win using ID3 (Shapiro, Niblett, 1982; Quinlan, 1983) and ILP (Bain Muggleton, 1995).
- **Q-learning** Learn optimal policy (Watkins, 1989). Asymptotic convergence proved (Watkins, Dayan, 1992).
- Relational Reinforcement Learning States and actions represented relationally (Dzeroski et al, 2001). Single agent learning problems.
- **Deep Q-learning** Extension of Q-learning with deep convolutional neural network (Mnih et al, 2015). Atari 2600 games. Also AlphaGo (Silver et al, 2016) and AlphaZero (Silver et al, 2018).

Credit assignment problem

Learning by playing Learner evaluates success from outcomes of games.

Credit assignment What is reward for individual moves?

Reinforcement Learning Assign reward to individual moves based on a delay function. Rewards used to update parameters across all board states in game. The number of board states for Noughts-and-Crosses is 10⁵; Chess is 10⁴⁵; Go is 10¹⁰⁰.

Exploration vs exploitation Step size $\in [0, 1]$ is degree new information overides old.

Discount factors $\gamma \in [0,1]$ is importance of future rewards.

Function approximation Deal with larger problem by approximating function over a continuous state space. eg using Convolution Neural Network.

Credit assignment - MIGO

- **Outcome** $Outcome(P,G) \in \{won, drawn, lost\}$ where $won \succ drawn \succ lost$
- Play Learner P_1 plays against opponent P_2 which follows minimax strategy.
- **Selection** Game starts from a randomly chosen initial board B.
- **Lemma 1** The outcome of P_1 monotonically decreases during a game.
- **Theorem 2** If the outcome is won for P_1 , then every move of P_1 is a positive example for the task of winning.
- **Theorem 3** If S_W accurate strategy and $Outcome(S_W, G) \neq won$ and $Outcome(P_1, G) = drawn$ then every move of P_1 is a positive example for the task of drawing.

MIGO algorithm - Dependency Learning

Input: Positive examples for win_k and draw_k

Output: Strategy for win_k and draw_k

- 1: **for** k in [1,Depth] **do**
- 2: **for** each example of win_k/2 **do**
- 3: one shot learn a rule and add it to the BK
- 4: end for
- 5: Learn win $_k/2$ and add it to the BK
- 6: end for
- 7: **for** k in [1,Depth] **do**
- 8: **for** each example of draw_k/2 **do**
- 9: one shot learn a rule and add it to the BK
- 10: end for
- 11: Learn draw $_k/2$ and add it to the BK
- 12: **end for**

MIL representation

Metarules

Name	Metarule
postcond	$P(A,B) \leftarrow Q(A,B), R(B).$
negation	$P(A,B) \leftarrow Q(A,B), not(R(B,C)).$

Board state Pair s(B, P) where board B and player P.

Primitives

Predicate	Call
Move	$move(S_1, S_2)$
Won	\pmod{S}
Drawn	$\operatorname{drawn}(S)$

Game evaluation - minimax regret

Defn 3.4 The minimax regret of game G is the difference between minimax outcome of the initial position in G and actual outcome of G.

Cumulative minimax regret The sum of minimax regret over a sequence of games. This is an objective measure of performance for competing strategies.

Database Minimax database computed beforehand.

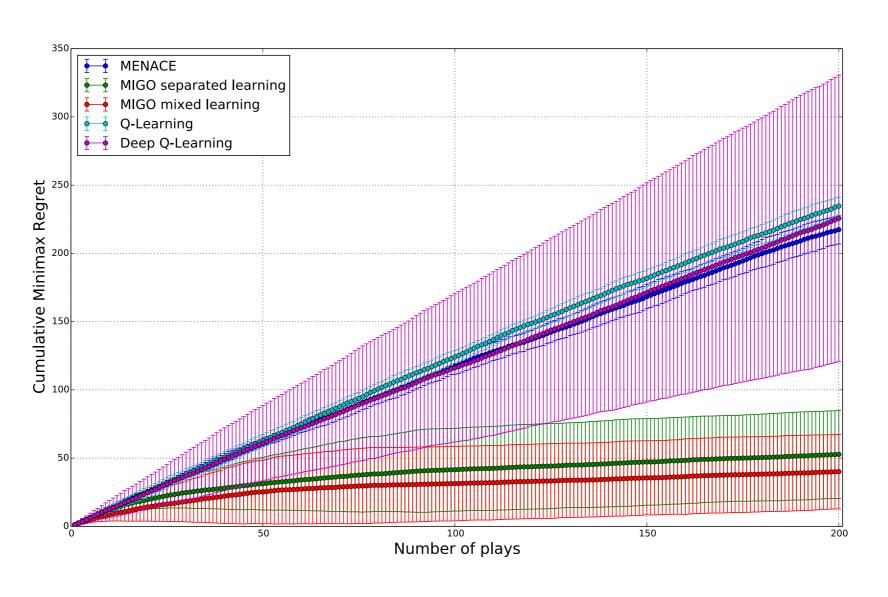
Experiment 1 - Comparison Cumulative Minimax Regret

Null Hypothesis 1 MIGO cannot converge faster than MENACE/HER, Q-learning and Deep Q-learning for learning optimal two-player game strategies.

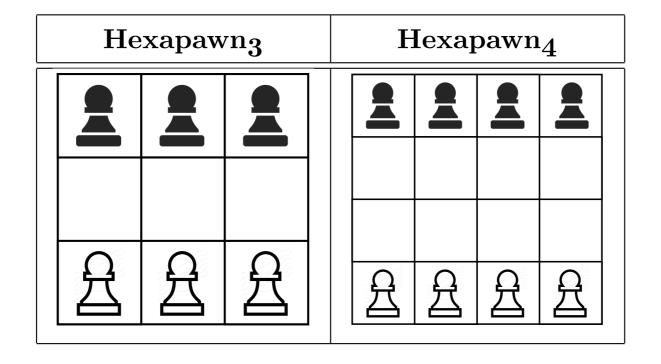
Code for these experiments available at

https://github.com/migo19/migo.git

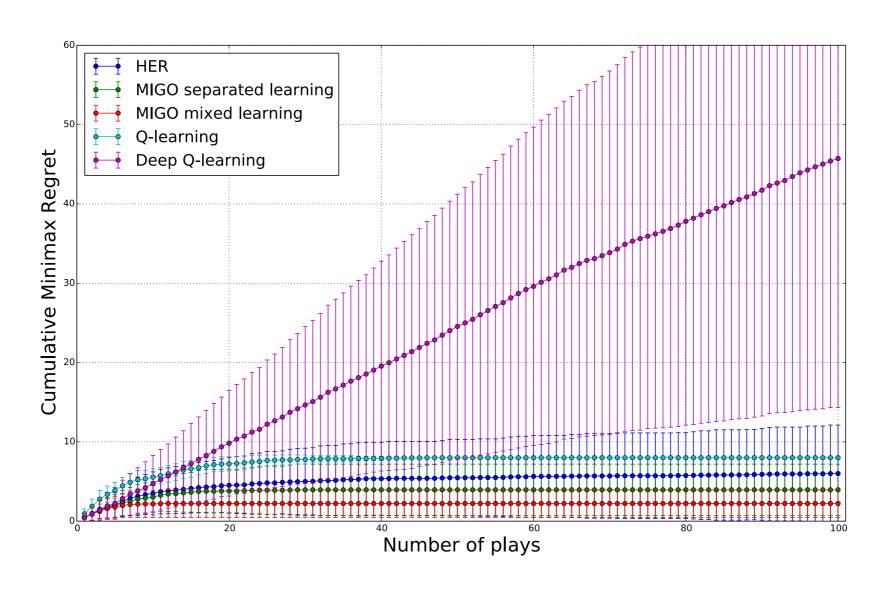
Experiment 1 Nought-and-Crosses



Hexapawn



Experiment Hexapawn₃



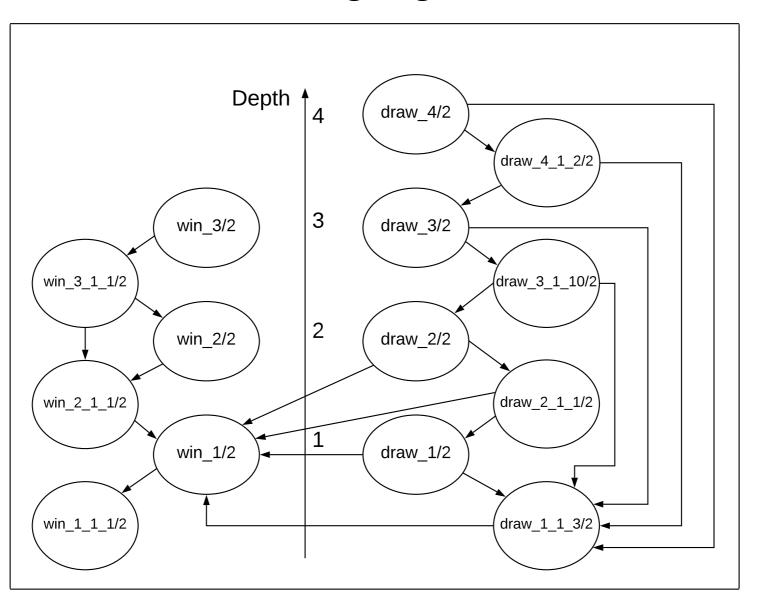
Mean CPU seconds per iteration

	OX	Hexapawn ₃	Hexapawn ₄
MIGO mixed learning	$1.5.10^{-1}$	$3.0.10^{-3}$	3.9
MIGO separated learning	$8.9.10^{-2}$	$2.8.10^{-3}$	3.8
MENACE / HER	$1.5.10^{-3}$	$2.7.10^{-4}$	/
Q-Learning	$2.3.10^{-1}$	$1.9 \cdot 10^{-3}$	$2.7 \cdot .10^{-1}$
Deep Q-Learning	$2.4.10^{-1}$	$1.7.10^{-2}$	$2.1 \cdot .10^{-1}$

Learned rules

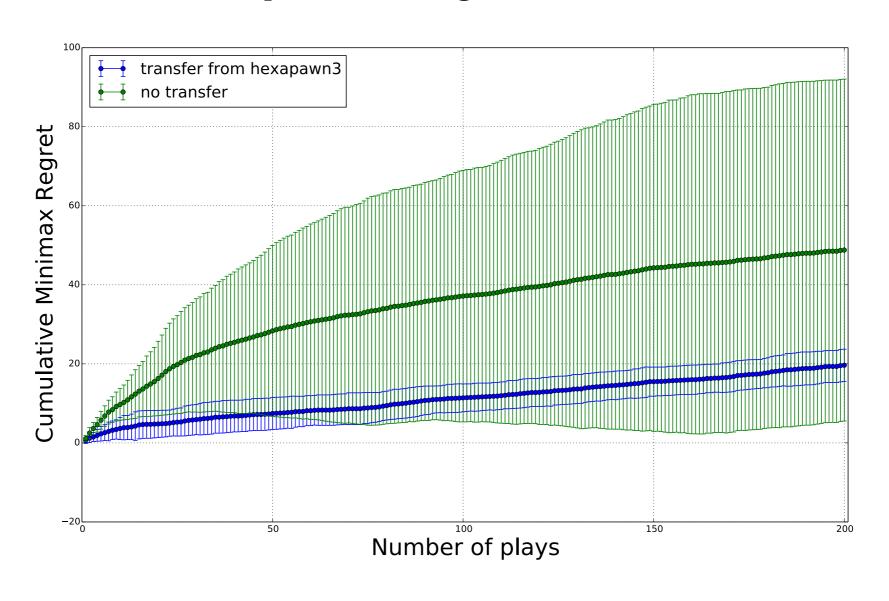
Depth	Rule
1	win_1(A,B):-win_1_1_1(A,B),won(B).
	$win_1_1(A,B):-move(A,B),won(B).$
	draw_1(A,B):-draw_1_1_3(A,B),not(win_1(B,C)).
	$draw_1_1_3(A,B):-move(A,B),not(win_1(B,C)).$
2	win_2(A,B):-win_2_1_1(A,B),not(win_2_1_1(B,C)).
	$win_2_1_1(A,B):-move(A,B),not(win_1(B,C)).$
	draw_2(A,B):-draw_2_1_1(A,B),not(win_1(B,C)).
	$draw_2_1_1(A,B):-draw_1(A,B),not(win_1(B,C)).$
3	win_3(A,B):-win_3_1_1(A,B),not(win_3_1_1(B,C)).
	win_3_1_1(A,B):-win_2_1_1(A,B),not(win_2(B,C)).
	draw_3(A,B):-draw_3_1_10(A,B),not(draw_1_1_12(B,C)).
	draw_3_1_10(A,B):-draw_2(A,B),not(draw_1_1_12(B,C)).
4	draw_4(A,B):-draw_4_1_2(A,B),not(draw_1_1_12(B,C)).
	draw_4_1_2(A,B):-draw_3(A,B),not(draw_1_1_12(B,C)).

Calling diagram

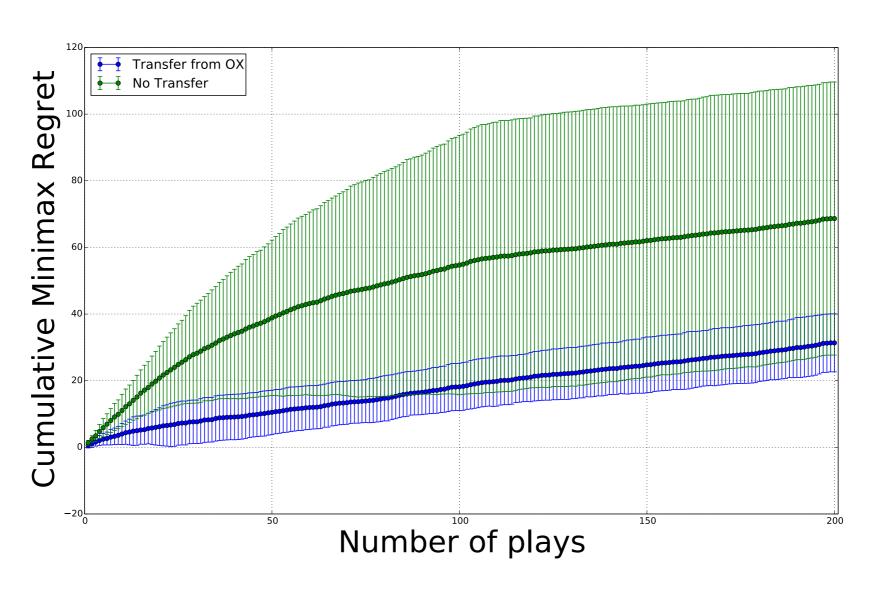


Experiment 2 Null Hypothesis 2 MIGO cannot transfer the knowledge learned during a previous task to a more complex game.

Experiment 2a - Transfer Learning Hexapawn₃ to Noughts and Crosses



Experiment 2b - Transfer Learning Noughts and Crosses to Hexapawn₄



Summary

- MIGO Meta-Interpretive Inductive Programming for two-player-games.
- Novel approach to Credit Assignment Problem.
- Lower Cumulative Minimax Regret than to Deep and classic Q-Learning.
- Strategies transferable to more complex games.
- Over-generalisation since learning from positive example only.
- Running time scales badly with large numbers of board states.
- Optimise running times using Metaopt.
- Assumes optimal opponent relax assumptions and use self-play.
- Need to assess comprehensibility of strategies. Michie's Ultra-Strong Machine Learning.