
Inductive Programming

Lecture 1

End-User Programming by Induction

Stephen Muggleton

Department of Computing

Imperial College, London and

Univeristy of Nanjing

25th September, 2023

0-0

Overview of Inductive Programming

Each Lecture immediately followed by Tutorial.

Lecture 1 End-user Programming by Induction

Lecture 2 Domain-specific languages and Background Knowledge

Lecture 3 One-shot induction and Bias reformulation

Lecture 4 Inducing an Algorithm from One Example

Lecture 5 Induction of Efficient Programs

Lecture 6 Comprehensibility

Lecture 7 Data wrangling

Lecture 8 Game Strategy Induction

Lecture material

Lecture material:

http://www.doc.ic.ac.uk/~shm/IP/Lecture1.pdf

http://www.doc.ic.ac.uk/~shm/IP/Lecture2.pdf

...

Presentation of IP course

• Research papers provided for each lecture in place of lecture notes

• Tutorial sheets provided with model answers

Paper for this lecture

Paper1.1: S. Gulwani, J. Hernandez-Orallo, E. Kitzelmann, S.H.

Muggleton, U. Schmid, and B. Zorn. Inductive programming

meets the real world. Communications of the ACM, 58(11):90-99,

2015.

Motivation - End-User Programming

• Much of world population use computers for everyday tasks

• Most end-users cannot program

• Often perform repetitive tasks manually

• Programming by example - Inductive Programming - Mass

Market? - Microsoft Excel 2013- release of FlashFill

• Small but complex programs induced from few examples

FlashFill (Excel 2013, Gulwani, ACM Milner award 2014)

Induced string transformation program

Concatenate(ToLower(Substring(v,WordToken,1)), “ ”,

ToLower(SubString(v,WordToken,2)))

End-User Programming - FlashExtract

User Induced program extracts fields

Highlights from Database of unstructured text

Inductive Programming
• Earliest work in 1970s (Plotkin, 1971, Summers, 1975)

• Recent strong revival of interest, both academia and industry

• Inter-disciplinary research area

• Computer Science, Artificial Intelligence and Cognitive Science

• Automatic synthesis of programs from examples

• Inductive Functional Programming

• Inductive Logic Programming

Inductive Functional Programming

• Induction from Examples of Functional Programming

• Functional Programming Framework, deterministic

• Background Knowledge B - set of functions

• Examples E - set of ground equalities, eg factorial(5) = 120

• Hypothesis H - a function

Inductive Logic Programming

• Induction from Examples of Logic Programming

• Logic Programming Framework, non-deterministic

• Background Knowledge B - set of definite clause definitions

• Examples E - set of ground facts, eg larger(jupiter,earth)

• Hypothesis H - set of definite clauses

• ILP systems find H such that B,H |= E

IP versus Machine Learning

Inductive Programming Machine Learning

Examples Small data Big data

Form Relations, constructors Tables, text

Source Humans, software Databases, internet

Hypotheses Programs Network, kernel

Search Derivation Gradient Descent

Comprehend High Low

Expressivity High Low

Bias Background knowledge Bayes’ Prior

Evaluation Diverse Error

Inductive Programming Techniques (1)

Domain-Specific Language (DSL) synthesisers

Formal Methods/Computer Science

Systems: FlashFill, FlashExtract

1. Problem definition. Collect common scenarios based on user

studies.

2. DSL. Design DSL expressive enough to capture scenarios.

3. Inductive Synthesis. Systematically reduce problem to

sub-expressions. Generate multiple DSL programs.

4. Ranking. Return ranking over programs.

Inductive Programming Techniques (2)

Higher-order function induction

Programming Languages/Computer Science

Systems: Igor2, MagicHaskeller

• Background knowledge. Consists of first-order functions, such

as ”+” and higher-order function such as “map”.

• Examples. Provided as equations, eg f [[5 , 7] , [12 , 3]] = [

12 , 15] .

• Inductive Synthesis. Searches function space, eg

MagicHaskeller gives f = (map,sum).

MagicHaskeller demo:

http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html

Inductive Programming Techniques (3)

Meta-Interpretive Learning

Artificial Intelligence

Systems: Metagol

• Background knowledge. Consists of first-order predicates,

such as “copyword” and meta-level predicates such as “while”

and MetaRules such as “Composition”.

• Examples. Provided as ground facts, eg

transform(“john”,“John”) .

• Inductive Synthesis. Searches predicate space and invents

predicates, eg Metagol gives transform(X,Y) ← makeupper(X,Z),

copyword(Z,Y).

Metagol demo: http://metagol.doc.ic.ac.uk

Metagol code: https://github.com/metagol/metagol

Challenges:

Complexity and Compositionality

• Large search space. How do we reduce the size of the search

space?

• Complexity of programs. How do we minimise the

complexity of the learned program?

• Complex tasks. How do we decompose tasks to be learned into

subtasks?

Challenges:

Domain change

• New domain. Developing a new application area for Inductive

Programming requires a large investment of time and effort.

• Transfer. Can we use ideas from Transfer Learning to allow IP

systems to be re-used in a new domain related to previous ones?

• First-order re-use. How can background functions and

predicates be re-used effectively?

• Meta-level re-use. How can meta-level functions and

predicates be re-used effectively?

Challenges:

Validation and Comprehensibility

• Understandability. Many invented predicates predicates.

Generate names to reflect semantics?

• Abstractions. Abstractions to explain programs?

• Confidence measures. Statistical measures to indicate areas of

the program which have high empirical support?

• Pictures. Pictures generated to indicate what a program does?

• Explanations. Explanations of a program in Natural Language

to help user to understand it?

Challenges:

Noise tolerance
• Noise. Real world data often noisy. Values missing or incorrect.

• Representation. Some values might occur in different formats,

eg dates and numbers.

• Background errors. Background knowledge may contain

errors.

• ML approach. Some existing approaches can be imported from

ML literature.

• One-shot noise. ML does not address how noise treated for

one-shot learning. Problem for IP.

Challenges:

Making IP Cognitive
• Human interface. IP involves interaction with human beings.

• Few examples. Cognitive Science shows humans learn complex

ideas from small numbers of positive examples.

• Background knowledge. Humans learn using large amounts of

background knowledge.

• Life-Long Learning. Humans learn continuously and

incrementally.

• Interaction. Human-Computer interactions need to be more

human-like.

Summary
• End-user programming - allow world’s population to program

complex tasks by example.

• Inductive Programming (IP) - emerging inter-disciplinary

research area.

• ILP and IFP - IP areas representing

examples/background/hypotheses as logic/ functional programs.

• Differences between IP and Machine Learning.

• Search techniques include DSL, Meta-synthesis, constraint

solving, Meta-Interpretive Learning.

• Challenges - Domain change, Validation, Noise, Cognitive IP.

